数理方程习题解答
数理方程试题及解答二

数理方程试题二一、填空:(10×2分=20分)1.边界条件2.初始状态3.定解条件.4.边值问题5.拉普拉斯方程的连续解6.狄利克莱问题7.牛曼问题8.()⎰⎰⎰⎰⎰⎰⎰⎰ΩΓΩ⋅-∂∂=∇dV gradv gradu dS n vudV v u 2 9.()()()0001114M M M M u M u m u M dS n r r n πΓ⎡⎤⎛⎫∂∂=--⎢⎥ ⎪ ⎪∂∂⎢⎥⎝⎭⎣⎦⎰⎰10.()()()()01!21220≥++Γ-=++∞=∑n m n m x x J m n mn mm n二、选择题:(5×4分,共20分)1.A; 2. B; 3. C; 4. C; . 5. D .三、(7分)解定解问题()()()()()⎪⎩⎪⎨⎧==≤≤='=><<=''-''=.0,,0,0;0,,0,;0,0,002t l u t u l x x g u x f x u t l x u c u t t xx tt解:令()()()()()()()2,0X x T t u x t X x T t X x c T t λ''''=≠⇒==-,()()()()20,0T t c T t X x X x λλ''''+=+=由方程()()()()000X x X x X X l λ''+=⎧⎪⎨==⎪⎩解出()()sin 1,2,3,n n n X x B x n l π== 由方程()()20T t c T t λ''+=解出:()()cos sin 1,2,3,.n nn n ct n ctT t C D n l lππ''=+= -----------4分 从而有:()(),cos sin sin 1,2,3,n n n n ct n ct n x u x t C D n l l l πππ⎛⎫=+= ⎪⎝⎭ 叠加起来:()()11,,cos sin sin ,n n n n n n ct n ct n x u x t u x t C D l l l πππ∞∞==⎛⎫==+ ⎪⎝⎭∑∑ 代入初始条件确定,n n C D 有:()()002sin 2sin l n l nn C x xdx l ln D x xdx n c l πϕπψπ⎧=⎪⎪⎨⎪=⎪⎩⎰⎰ ------------------------------------3分四、(7分)证明: ()[]()x xJ x xJ x01d d= 证明: ()()()()(),!21!32!2221222266244220 +-++-+-=k x x x x x J k k k()()().!1!21!4!32!3!22!22212127755331 ++-++⋅⋅-⋅⋅+⋅-=++k k x x x x x x J k k k---------------------4分将()x J 1乘以x 并求导数,得()[]()()⎥⎦⎤⎢⎣⎡++-++⋅-=++ !1!21!222d d d d 12223421k k x x x x x xJ x k k k()()+-++-=+221233!212k x x x k k k()()()(),!21!32!222122226624422⎥⎦⎤⎢⎣⎡+-++-+-= k x x x x x k k k即()[]()x xJ x xJ x01d d=---------------------------------------------------------------3分 五、(7分)由定解问题 ()()⎪⎩⎪⎨⎧+∞<<-∞='+∞<<-∞=''=''==x x u x x u u a u t t t xx tt ,,;002ψϕ导出达朗贝尔公式。
数理方程习题解答

+
α
2 2
=
α32
+
α
2 4
,取单位特征方向,
α12
+
α
2 2
+ α32
+
α
2 4
= 1。所以,α12
+
α
2 2
= α32
+
α
2 4
=
1 2
。记
α1
=
1 2
cosθ ,
α2
=
1 2
sinθ ,α3
=
1 2
cosϑ,
α4
=
1 2
sinϑ
,则
α
=
⎛ ⎜⎝
1 2
cosθ ,
1 sinθ , 2
1 2
cosϑ,
则杆上各点 在时刻 的位移是
。
在杆上任取一段,其两端点静止时的坐标为
,此小杆段在时刻 的相对伸长
为: 律知张力为
,令
得 点在时刻 的相对伸长为ux (x, t) ,由 Hooke 定
,再此小杆段上用 Newton 第二定律得
两边同除 并令
得:
若杨氏模量为 为常数则得:
。
1 牛顿(Newton)第二定律与动量守恒定律等价,也可以用动量守恒定律来见方程,见《数学物理方程 讲义》 (姜礼尚、陈亚浙)P1
=
1 2
sinθ ,α3
=
±
1 sinθ ,则 2
α
=
⎛ ⎜⎝
cosθ
,
1 sinθ , ± 2
1 2
sin
θ
⎞ ⎟⎠
。
( ) 2 对波动方程utt − a2 uxx + uyy = 0 过直线l : t = 0, y = 2x 的特征平面。
数理方程期末试题B答案

北 京 交 通 大 学2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B )(参考答案)学院_ ____________ 专业___________________ 班级________ ____学号_______________ 姓名___________ __一、 计算题(共80分,每题16分)1.求下列定解问题(15分)2222201200,0,0,|,|,|0,|0.x x l t t u ua A x l t t x u M u M u u t ====⎧∂∂=+<<>⎪∂∂⎪⎪==⎨⎪∂⎪==⎪∂⎩2.用积分变换法及性质,求解半无界弦的自由振动问题:(15分)2,0,0,(,0)0,(,0)0,(0,)(),lim (,)0.tt xx t x u a u x t u x u x u t t u x t φ→+∞⎧=<<+∞>⎪==⎨⎪==⎩ 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。
初速度为零,又没有外力作用。
求弦做横向振动时的位移(,)u x t 。
[ 解 ] 问题的定解条件是1(,)(cos sin )sin n a n a n n n l l l n u x t C t D t x πππ∞==+∑由初始条件可得0, 1,2,...n D n ==222202()sin d ()sin d =sin, 1,2,...c lh n hn n lc l l c l c hl n c lc l c n C x x x x l x x n ππππ--⎡⎤=+--⎢⎥⎣⎦=⎰⎰4.证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求出波动方程的通解。
5.用分离变量法解下列定解问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=∂∂===><<+∂∂=∂∂====0|,0|0|,0|00sin sin 0002222222t t l x x l a l t uu u u t l x t x x u a t u ,,ππ [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。
数理方程第二版 课后习题答案教学教材

数理方程第二版课后习题答案第一章曲线论§1 向量函数1. 证明本节命题3、命题5中未加证明的结论。
略2. 求证常向量的微商等于零向量。
证:设,为常向量,因为所以。
证毕3. 证明证:证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。
证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。
所以,,根据数量函数的Lagrange中值定理,有其中,,介于与之间。
从而上式为向量函数的0阶Taylor公式,其中。
如果在区间上处处有,则在区间上处处有,从而,于是。
证毕5. 证明具有固定方向的充要条件是。
证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。
充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是因为,故,从而为常向量,于是,,即具有固定方向。
证毕6. 证明平行于固定平面的充要条件是。
证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。
充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。
如果,则与不共线,又由可知,,,和共面,于是,其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。
证毕§2曲线的概念1. 求圆柱螺线在点的切线与法平面的方程。
解:,点对应于参数,于是当时,,,于是切线的方程为:法平面的方程为2. 求三次曲线在点处的切线和法平面的方程。
解:,当时,,,于是切线的方程为:法平面的方程为3. 证明圆柱螺线的切线和轴成固定角。
证:令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则证毕4. 求悬链线从起计算的弧长。
数理方程第一章答案

u = f( − 3 ) + g(x + y) (−3 ) + ( ) = 3 代入边界条件得: (−3 ) + ( ) = 0 (2)式积分得: (−3 ) + ( ) = 3 −
(−3 ) + ( ) = 0 (3)
求得: 所以:
( )= ( )= u= ( + ) + ( −3 )
14.解下列定解问题. = , > 0, − ∞ < x < +∞ (2). (0, ) = 特征方程: 特征线 f(x + at) f(x) = u=( + )
∫ ( )
[∫ ( ) +
∫ ( )
+ ]
( ) ( )
( )]
+ ( )+
(2).
+ ( , ) = ( , ) ,u = u(x, y)
直接套用公式 6. 推导杆的微小纵振动方程 解: 设细杆截面积 S,密度 ,杨氏模量 E 取一小段 dx, 用牛顿第二定律得:
E S u ( x dx, t ) u ( x, t ) 2u ES Sdx 2 x x t
数理方程 A 参考答案 中国科学技术大学
代入原方程得:
u 1, u f ( )
u xy f ( x 2 y 2 ) 15.一端固定的半无界弦的定解问题. = , > 0, >0 ( , 0) = 0 (0, ) = sin , (0, ) =
若为cos ,则 =? 解: 为满足边界条件作以下延拓: φ(x) = sin , 由达朗贝尔公式得: u(t, x) = [sin( +
d 2 R 2 dR )0 dr 2 r dr
数理方法习题解答(方程部分)0809

作业参考答案3、在(,ππ-)这个周期上,2()f x x x =+,试将它展开为傅立叶级数,又在本题所得展开式中置x π=,由此验证222211112346π++++=解:因为2()f x x x =+在(,ππ-)上满足狄氏定理,可以展开为傅立叶级数 又 l π=所以()0101()cos sincos sin k k k k k k k k f x a a x b x l l a a kx b kx ππ∞=∞=⎛⎫=++ ⎪⎝⎭=++∑∑23201111()d 2233a x x x x πππππππ--=+==⎰ 21()cos d k a x x kx xπππ-=+⎰()()22312sin cos sin 2cos sin xkx kx kx kx kx kx kx k k k πππππππππ---=+++-()241k k =- 21()sin d k b x x kx xπππ-=+⎰()()22312sin cos 2sin cos cos xkx kx kx kx kx kx kx k k k πππππππππ---=-+--()121k k +=- 所以 ()()1221142()1cos 1sin 3k k k f x kx kx kk π∞+=⎛⎫=+-+- ⎪⎝⎭∑222,,,x x x x x ππππππ⎧+-<<⎪==-⎨⎪=⎩令x π=代入上式得:()()()()122222211142141cos 1sin 1133k k k k k k kx kx k k kπππ∞∞+==⎛⎫⎛⎫+-+-=+-⨯-= ⎪ ⎪⎝⎭⎝⎭∑∑ 所以有222211112346π++++=得证5.(1)()cos ,(0,),(0)0,()0f x x x f f αππ=∈==作奇延拓,展为奇函数(sin 函数)1()sin k k f x b kx ∞==∑2cos sin d k b x kx x παπ=⎰2sin()sin()d 2k x k xx πααπ-++=⎰0111cos()cos()k x k x k k ππααπαα--⎡⎤=-++⎢⎥-+⎣⎦()()111cos cos 1cos cos 1k k k k παππαππαα--⎡⎤=-+-⎢⎥-+⎣⎦12221(1)cos ()k k k αππα+⎡⎤=+-⎣⎦- 12212()1(1)cos sin ,0()k k kf x kx x k απππα∞+=⎡⎤∴=+-<<⎣⎦-∑6. (1)2cos(/),(0,/2)(),(0)0,()00,(,)lx l x l f x f f l x l π∈⎧''===⎨ ∈⎩ 作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑/2/200002111cos d cos d sin 2l l l x x x a x x l l l l l πππππ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰所以要讨论k =1的情况/221021cos d 2l x a x l l π⎛⎫== ⎪⎝⎭⎰ /202cos cos d l k x k x a x l l l ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⎰/202111cos cos d 2l k k x x x l l l ππ⎡+-⎤⎛⎫⎛⎫= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰ /211111sin sin 11l k k x x k l k l πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦11111sin sin 1212k k k k πππ⎡+-⎤⎛⎫⎛⎫=+ ⎪ ⎪⎢⎥+-⎝⎭⎝⎭⎣⎦120,212(1),2(41)m k m k m m π+ =+⎧⎪=-⎨ =⎪-⎩121112(1)2()cos cos ,02(41)m m x mf x x x l l m l ππππ+∞=-∴=++<<-∑ (2)()(1/),(0,),(0)0,()0f x a x l x l f f l ''=-∈==作偶延拓,展为偶函数(cos 函数)01()cos k k k x f x a a l π∞=⎛⎫=+ ⎪⎝⎭∑002(1/)d 22l aa a x l x l =-=⎰ 02(1)cos d l k x k x a a x l l l π⎛⎫=- ⎪⎝⎭⎰ 202221sin cos l a l k k k x x x l l k l l l ππππ-⎛⎫=+ ⎪⎝⎭()222202211421(21)k k n a a k n k n ππ=⎧⎪⎡⎤=--=⎨⎣⎦=+⎪+⎩220421()cos ,02(21)n a a n f x x x l n lππ∞=+∴=+<<+∑8.矩形波()f x 在(/2,/2)T T -这个周期上可以表示为0,/2/2(),/2/20,/2/2T x f x H x x T ττττ-<<-⎧⎪=<<-⎨⎪<<⎩试将它展为复数形式的傅立叶级数解:因为()f x 在(/2,/2)T T -上满足狄氏定理,可以展开为复数形式的傅立叶级数 又 2l T =2()k k ix ix lTkkk k f x c ec eππ∞∞=-∞=-∞==∑∑22/2/2/2/211()d d k k T i x i x T Tk T c f x e x He x T T ππττ--==⎰⎰ 2/2/22k ixTH T e T i k πττπ-⎛⎫=⎪-⎝⎭sin 2k k i i TT H e e H k k i k T πτπτπτππ-⎛⎫- ⎪== ⎪ ⎪⎝⎭当k =0时,/2/2/2/211()d d T k T H c f x x H x T T Tτττ--===⎰⎰ 2211()sin sin k k i x i x T Tk k H H k H k f x e e T k T k T ππτπτπτππ-∞=-∞=∴=++∑∑*****************************************************************3.把下列脉冲()f t 展开为傅立叶积分0,(),0,00,t T f t h T t h t T t T⎧⎪<-⎪⎪=--<<⎨⎪<<⎪>⎪⎩解:在(,)t ∈-∞∞,()f t 满足狄氏条件,且绝对可积,所以()f t 可以展开为付氏积分。
数学物理方程答案(全)

SY (ux (x dx,t) ux (x,t)) Sdxutt
utt
Y P
uxx
杆的一端固定,有 u(0,t) 0 ,另一端为自由端有 ux (x,l) 0
由于弦在出事时刻处于静止状态,即初速度为零,故 ut (0,t) 0
在 t 0 时刻,整个杆被纵向拉长 d ,则单位杆长的伸长量为 d ,故 x 点处的伸长 l
(3)特征方程为
4( dy )2 8( dy ) 3 0
dx
dx
解得
dy 3 和 dy 1 dx 2 dx 2
习题 2.2
1.一根半径为 r,密度为 ,比热为 c,热传导系数为 k 的匀质圆杆,如同截面
上的温度相同,其侧面与温度为 1 的介质发生热交换,且热交换的系数为 k1 。
试导出杆上温度 u 满足的方程。 解:
0
x
x+dx
取微元在 (x, x dx) 之间,在时间 t 内
x
从左右两截面流入的热量,有热传导方程可得
dT g dx 对上式进行积分,并且利用在 x 0 处的张力为T x0 gl 可求得 T (x) g(l x)
对于(2)式 sin2 tan2 ux (x dx,t) sin 1 tan 1 ux (x,t)
将上述结果代入(2)式得出
T (x dx,t)ux (x dx,t) T (x)ux (x,t) uttdx
2 x ux)
Y P
x
(x2
u x
)
1 x2
4.一根长为 L、截面面积为 1 的均匀细杆,其 x=0 端固定,以槌水平击其 x=L
端,使之获得冲量 I。试写出定解问题。
解:由 Newton 定律: SYux (x dx,t) YSux (x,t) Sdxutt ,其中,Y 为杨
数学物理方程课后作业答案

于 杆 x=L 端 为 自 由 振 动 , 故
u x |x = L = 0
u |x=0 = 0 。综上所述,定解条件为:
⎧ u t |t = 0 = 0 ⎪ b ⎪ u | = k x = 1 + x ⎪ t=0 L ⎨ ⎪ u |x = 0 = 0 ⎪ ⎪ ⎩ u x |x= L = 0
tan β L = −
5. 一根均匀弦两端分别在 x=0 及 x=L 处固定,设初始速度为零,初 始时刻弦的形状为一抛物线,抛物线的顶点为( ,h) 。求弦振动的 位移。 解:设位移函数为 u ( x, t ) ,他是下列定解问题的解:
L 2
⎧ ⎪ 2 u = a u xx , tt ⎪ ⎪ ⎨u x =0 = u x = L = 0, ⎪ ⎪u = 4h x ⎛1 − x ⎞;u t =0 t ⎜ ⎟ ⎪ L ⎝ L⎠ ⎩
于是得到固有值问题:
⎧ X // ( x ) + λ X ( x ) = 0 ⎪ ⎨ X ( x ) x =0 = 0 ⎪ / ⎩[ X ( x ) + hX ( x )] x= L = 0
所以当 λ > 0时,X = A cos β x + B sin β x
X
x=0
= A=0
∴ A = 0, B ≠ 0
2. (2)
u xx + 2u xy − 3u yy = 0
△=2 -4×(-3)=16﹥0 dy ⎛ dy ⎞ ⎜ ⎟ −2 −3 = 0 dx ⎝ dx ⎠
2
2
解:由题意可知: => 双曲型
=>
dy = 3 或 -1 dx
3
⎧ε = 3 x − y 令 ⎨ ⎩η = x + y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d dx
k
(x)
dy dx
q(x)
y
(x)
y
0
在第一类齐次边界条件及自然条件下
特征函数系
Pm (r)
J
n
(
(n m R
)
r)
m 1, 2,...
R 0
rJ
n
(
(n) m R
r
)J
n
(
(n) k R
r)dr
0 mk
R2 2
J
2 n1
(m(n)
)
R2 2
J
2 n1
(
(n m
)
)
mk
设
① ② ①-②
J0 ( x)
贝塞尔函数的图象
J1(x)
J 2 ( x)
J3 ( x)
贝塞尔方程在第一 类边界条件下的 特征值和特征函数
r2P(r) rP(r) (r2 n2 )P(r) 0
P(r) rR 0
P(r) r0
Jn ( R) 0
R
(n) m
(m 1, 2,...)
(n) m
(
(n) m
贝塞尔函数的性质(4)
二维热传导物理问题
u
t
a2
2u x2
2u y 2
u t0 (x, y)
,
x2 y2 R2
u 0 x2 y2 R2
u(x, y,t) V (x, y)T (t)
T (t) a2T (y 2
V
0
V 0 x2 y2 R2
贝塞尔函数的性质(1)
第一类贝赛尔函数:
在整个数轴上收敛,在每个指定的点都
取有限值 第二类贝赛尔函数:
1 n 0 Jn(0) 0 n 0
在x 0时为无限大
求定解问题讨论 边界条件时用到
贝塞尔函数的性质(2):奇偶性
n为偶数时
Jn(x) Jn(x)
n为奇数时
Jn(x) Jn(x)
贝塞尔函数的性质(3)递推公式
x
J(n1) (x) 2
2
n1
x2
(1
d
)n (cos x)
x dx x
Jn1 (x) (1)n 2
2
n1
x2
(
1
d
)n (sin x)
x dx x
贝塞尔函数递推公式应用
证明
J2
(
x)
J
0
(
x)
1 x
J
0
(x)
d dx
[x
J0 ( x) J
1(x)]
x[
J
2 0
(
x)
J12 (x)]
求积分
x5J0 ( x)dx J2(x)dx x2J2 (x)dx J3(x)dx
T (t) a2T (t) 0
2V
x2
2V y 2
V
0
V 0 x2 y2 R2
2V
r
2
1 r
V r
1 r2
2V
2
V
0,
V rR 0
rR
V (r, ) P(r)( )
n2 ,
0 ( )
a0 2
,
n0
n ( ) an cos n bn sin n
n 1, 2...
Yn
(
x)
limn
J
n
(
J (x) cos J sin
x) cos n Jn (x) ,
(
x) n
,
n 整数 整数
sin n
在x 0时 为无限大
柱函数
勒让德方程的引入及解
d [(1 x2 ) dy ] l(l 1) y 0
dx
dx
l阶勒让德(legendre)方程.
y y0 y1
( ) ( ) 0
r2P(r) rP(r) (r2 )P(r) 0
P(r) rR 0
P(r
)
r0
r2P(r) rP(r) (r2 n2 )P(r) 0
P(r) rR 0
P(r) r0
• 斯特姆——刘维尔方程
d dr
r
dP dr
n2 r
P
rP
0
d [k(x) dy(x)] q(x) y(x) (x) y(x) 0, (a x b)
y C 1 Pl (x) C2Ql (x) l 整数
Pl (x) 1
无界
-1 x 1
[l]
Pl (x)
2
(1)k
k 0
(2l 2l k !(l
2k)! k)!(l
xl2k 2k )!
式中
[
l 2
]
l
l, 2 1 2
,
l 2n l 2n 1
(n 0,1, 2, )
球函数
x
2
xJ
n
(
x
)
nJn( x)
xJn1( x)
xJn ( x) nJn( x) xJn1( x)
2 Jn1( x) Jn1( x) x nJn ( x) Jn1( x) Jn1( x) 2Jn ( x)
半奇数阶的贝赛尔函数
2
J1 (x)
2
sin x
x
J1 (x) 2
2 cos x
n
(
(n) m R
r)
m 1, 2,...
m 1, 2,...
问题思考
• 贝塞尔方程在第二类边界条件下的特征值和特征函数?
应用贝塞尔函数求定解问题
u t
a2
2u r 2
1 r
u r
u t0 1 r2
,
u r1 0
0 r 1
u r1 0
对于 只有当 取 的零点时 问题才有非零解。 设 为 的第M个正零点
特征值 l(l 1)
特征函数 Pl (x)
2.勒让德多项式的正交性及其模
不同阶的勒让德多项式在区间 [1,1] 上满足
1
1 Pn (x)Pl
(x)dx
N 2 l n,l
其中
n,l
1 0
(n l) (n l)
当 n l
时满足
1
1Pn (x)Pl (x)dx 0
称为正交性. 相等时可求出其模
分布;
• Jn (x)的零点与 Jn1(x) 的零点彼此相间分布,即 Jn (x) 的 任意两个相邻零点之间必存在一个且仅有一个 Jn1(x) 的零点;
•
以
m(n表) 示
Jn (x)
的正零点,则
(n) m 1
当 ( n )
m
m
时,无限
接近于 ,即 Jn (x) 几乎是以 2 为周期的周期函数
贝塞尔函数的性质(4)
Nl
1 1
Pl2
(
x) dx
2 2l 1
(l 0,1, 2, )
在区间 [-1,1]上的具有一阶连续导数及分段
连续的二阶导数的函数 f (x) ,满足勒让德多项式满
足的边界条件,则在[-1,1]上可展开为勒让德多项式的
级数 其中系数
f (x) CnPn (x) n0
Cn
2n 1 2
1
1 f ( x)Pn ( x)dx
y0
a0 [1
l(l 1) 2!
x2
l(l
2)(l 1)(l 4!
3)
x4
...]
l 整数
y1
a1[ x
(l
1)(l 3!
2)
x3
(l
1)(l
3)(l 5!
2)(l
4)
x5
...]
-1 x 1 无界
勒让德方程的解
d [(1 x2 ) dy ] l(l 1) y 0
dx
dx
l阶勒让德(legendre)方程.
f
(r)
m 1
Am
J
n
(
(n m R
)
r)
由正交关系,可得:
Am
R2 2
1
J
2 n1
(
(n m
)
)
R 0
rf
(
r
)J
n
(
(n m R
)
r )dr
贝塞尔方程在第一 类边界条件下的 特征值和特征函数
Jn ( R) 0
R
(n) m
(m 1, 2,...)
(n) m
(
(n) m
R
)2
Pm (r)
J
存在非零解
此时
由方程边界条件经分离变量法可得通解为
利用正交 性求系数
由于
贝塞尔函数的其他类型
第三类贝塞尔函数----汉克尔函数
波的散射问题
虚宗量贝塞尔函数
jx
虚宗量(或 变形)的贝 塞尔方程
虚宗量贝塞尔函数没有实零点
n不为整数 n为整数
勒让德多项式的性质
1. 勒让德多项式的零点
对于勒让德多项式的零点,有如下结论:
xk Js (x)dx
k,s关系,递推 公式的使用?
整数阶贝塞尔函数的母函数
• 函数 W (x,t) 按t展开成幂级数,其系数为所有整数
阶的贝塞尔函数,W (x,t) 称为贝塞尔函数的母函数,
母函数是贝塞尔函数的另一种生成方式
W ( x, t) Jn ( x)t n n
x(t1)
W (x,t) e 2 t
设
n阶贝塞尔 函数的零点
设
分别对 求导
由递推关系
由递推关系
贝塞尔函数的性质(5)