数理方程练习题
数理方程练习题(1)

数理方程练习题(1)一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是(双曲)型,取值为负对应的是(椭圆)型,取值为零对应的是(抛物)型。
2.在实际中广泛应用的三个典型的数学物理方程:第一个叫(弦自由横振动),表达式为(2tt xx u a B u =),属于(双曲)型;第二个叫(热传导),表达式为( 2t xx u a B u =),属于(椭圆)型;第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=;(B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xφ?=><<?==??==?的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=?=+∑(D) ()001,cos sin cos n n n n at n at n x u x t a b t a b l llπππ∞=??=+++??∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ](A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+;(C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。
数理方程习题全解

93
2k 1 j sin 2k 1 = 2 cos 4 4
k 0,1,2,3
1 1 k 0 : z1 2 cos j sin 2 j 1 j 4 4 2 2 3 3 1 1 k 1 : z2 2 cos j sin 2 j 1 j 4 4 2 2 5 5 1 1 k 2 : z3 2 cos j sin 2 j 1 j 4 4 2 2 7 7 1 1 k 3 : z4 2 cos j sin 2 j 1 j 4 4 2 2
3 8
k k 2 8 cos j sin 2 16 2 16
3 3 8 3
k 0,1,2,3
7 7 2 cos j sin , 2 8 cos j sin , 16 16 16 16 9 15 15 9 2 cos j sin , 2 8 cos j sin ; 16 16 16 16
1 3 5 5 (2) j sin cos j sin 2 2 j cos 3 3 3 3 1 3 j 2 2
4
cos j sin 4 4
4
2
cos j sin 1 j 3 5 5 cos j sin 3 3
数理方程练习题(1)

一、填空题1.二阶线性偏微分方程xx xy yy x y Au Bu C u D u Eu Fu G +++++=(其中各系数均为x 和y 的函数)在某一区域的性质由式子:24B AC -的取值情况决定,取值为正对应的是( 双曲 )型,取值为负对应的是( 椭圆)型,取值为零对应的是( 抛物 )型。
2.在实际中广泛应用的三个典型的数学物理方程:第一个叫( 弦自由横振动 ),表达式为(2tt xx u a B u =),属于(双曲)型; 第二个叫( 热传导 ),表达式为( 2t xx u a B u =),属于( 椭圆 )型; 第三个叫(拉普拉斯方程和泊松方程),表达式为(0x x y yu u+=,(,)xx yy u u x y ρ+=-),属于(椭圆)型;二、选择题1.下列泛定方程中,属于非线性方程的是[ B ](A) 260t xx u u xt u ++=; (B) sin i t tt xx u u u e ω-+=; (C) ()220y xxxxy u x yuu +++=; (D) 340t x xx u u u ++=;2. 下列泛定方程中,肯定属于椭圆型的是[ D ](A)0xx yy u xyu +=; (B) 22x xx xy yy x u xyu y u e -+=;(C)0xx xy yy u u xu +-=; (D)()()()22sin sin 2cos xx xy yy x u x u x u x ++=; 3. 定解问题()()()()()()2,0,00,,0,0,,0tt xx x x t u a u t x lu t u l t u x x u x xϕφ⎧=><<⎪==⎨⎪==⎩的形式解可写成[ D ](A) ()01,coscos2n n a n at n x u x t a ll ππ∞==+∑(B) ()001,coscosn n n at n x u x t a b t a llππ∞==++∑(C) ()0,cos sin cos n nn n at n at n x u x t a b l l l πππ∞=⎡⎤=+⎢⎥⎣⎦∑(D) ()001,cos sin cos n n n n at n at n xu x t a b t a b l llπππ∞=⎡⎤=+++⎢⎥⎣⎦∑ 4. 若非齐次边界条件为12(0,)(),(,)()x u t t u l t t μμ==,则辅助函数可取[C ] (A) ()()12(,)W x t t x t μμ=+; (B) ()()21(,)W x t t x t μμ=+; (C) ()()()12(,)W x t x l t t μμ=-+; (D) ()()()21(,)W x t x l t t μμ=-+;三、求解下列问题(1)2,0,tt xx u a u t x =>-∞<<∞ ,其中a 为常数。
数理方程30题

u(x,t) = cos at sin x
注记:如果用系数计算公式
∫ ∫ Cn
=
2 L
L sin(ξ ) sin(nξ )dξ
0
, Dn
=
2 nπa
L 0 × sin(nξ )dξ ,(n=1,2,……)
0
会得出同样结论。
例 8.用分离变量法求解双曲型方程初边值问题
⎧u ⎪⎪⎨u
[Cn
n=1
cos
nπ L
t
+
Dn
sin
nπ L
t]sin
nπ L
x
利用初值条件,得
∑ ∑ ∞ Cn
n=0
sin
nπ L
x
=
x(L −
x) , π L
∞
nDn
n=0
sin
nπ L
x
=
0
为计算系数,首先令ϕ(x) = x(L − x) ,显然ϕ(0) = 0,ϕ(L) = 0 ,且
ϕ′(x) = L − 2x ,ϕ′′(x) = −2
x x
+ +
C1 C2
⎡ ∂ξ
构造变换:
⎧ξ ⎩⎨η
= =
2 sin 4 sin
x x
+ +
cos cos
y y
,
⎢ ⎢ ⎢
∂x ∂η
⎢⎣ ∂x
∂ξ ⎤
∂y ∂η
⎥ ⎥ ⎥
=
⎡2 ⎢⎣4
cos cos
x x
∂y ⎥⎦
− sin y⎤ − sin y⎥⎦
所以, a12 = 8sin 2 y cos2 x − 18cos2 x sin 2 y + 8cos2 x sin 2 y = −2 cos2 x sin 2 y
数理方程期末试题

数理方程与特殊函数试题(行波法与付氏变换)(2008-10-27)一、(15分)求解初值问题:⎩⎨⎧==>∞<<-∞+===x t t t xx tt xeu x u t x x u u 00|,sin |)0,(sin 解:令 u (x ,t ) = v (x ,t ) + w (x ),……………………………………………………(2分) 代入原方程,得v tt = [v xx + w xx ] + sin x ………………………………(2分)所以取 w (x ) = sin x ,……………………………………………………………………(2分) 得v (x ,t )满足的初值问题⎪⎩⎪⎨⎧===x t xx tt xex v x v v v )0,(0)0,(…………………………………………(2分) 由达朗贝尔公式,得⎰+--+-++---+==t x t x t x t x t x t x e e e t x e t x d e t x v ])()[(2121),(ξξξ…………(3分) ])1()1[(21t x t x e t x e t x -++---+=………………(2分) 所以u (x ,t ) = v (x ,t ) + w (x )x e t x e t x t x t x sin ])1()1[(21++---+=-+……(2分)二、(15分)求解半无界弦定解问题:⎪⎪⎩⎪⎪⎨⎧===>∞<<====0sin ,cos )0,0(0002x x t t t xx tt u x u x u t x u a u 解:对初始条件中函数做偶延拓⎩⎨⎧<≥=0,cos 0,cos )(x x x x x ϕ…………………………………………(2分) ⎩⎨⎧<-≥=0,sin 0,sin )(x x x x x ψ………………………………………(2分) 应用达朗贝尔公式,当x >0,且 x > at 时,有⎰+-+-++=at x at x d aat x at x t x u ξξsin 21)]cos()[cos(21),(………………(2分) )]cos()[cos(21cos cos at x at x aat x --+-+=………………(2分)at x aat x sin sin 1cos cos -=……………………………………(1分) 当x >0,且 x < at 时,有 ⎰⎰+--+-++=at x at x d d a at x at x t x u 00sin sin [21)]cos()[cos(21),(ξξξξ……(4分) )]cos(11)[cos(21cos cos at x at x aat x -+--+-+=………………(2分) )cos cos 1(1cos cos at x a at x -+=……………………………………(2分)三、(15分)记)]([)(ˆx f F f=ω 1.证明)](ˆ)(ˆ[)]([ωωωf fx f x F '+-='; 2. 用付里叶变换方法求解方程0='-''y x y 。
数理方程模拟试题1X

200__~200__学年第___学期《数理方程》期末模拟试卷1 题号 一 二 三 四 五 六 总分 得分一、 选择题(每题只有一个正确答案, 每小题4分,共28分)1、34233(,,)v v v xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 2、2(,)tt xx u a u x t ϕ-= (其中0>a ) 属于( )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 3、在用分离变量法求解定解问题200,0,0|0,|0|()t x x x x xl t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭D 、 (21)sin,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭4、下列方程是非线性偏微分方程的是( ) A 22()()sin u u x x y 抖+=抖 B (,)u u f x y x y抖+=抖 C 22(,)(,)cos u u a x t b x t x x t 抖+=抖 D 3433(,,)v v v g x y z x x y z∂∂∂++=∂∂∂∂ 5、对Laplace 变换的性质下列式子错误的是( ) A 22[sin ](Re 0)L t p p ww w =>+B []2[][]L f g L f L g p *=?C 0[()]()(Re )p L f t e F p p tt g --=>D 0000[()]()(Re Re )p t L e f t F p p p p g =->+6、在弱相等意义下,对d 函数的说法错误的是( ) A ()()x x d d =- B ()x x x d = C 1()()(0)||ax x a a d d =? D ()()()()x x a a x a j d j d -=-7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( )类边界条件。
西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。
数理方程题库

第一章定义和方程类型1、34233(,,)v v v xyv g x y z x x y z∂∂∂+++=∂∂∂∂ 是( D )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶 1、22(,,)vxy v g x y z z∂+=∂ 是( A )偏微分方程 A 、 一阶 B 、二阶 C 、 三阶 D 、 四阶1、33232(,,)v v vv xyv g x y z x x y z ∂∂∂+++=∂∂∂∂ 是( C )偏微分方程A 、 一阶B 、二阶C 、 三阶D 、 四阶 2、2(,)txx u a u f x t -= (其中0>a ) 属于( A )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 2、2(,)ttxx u a u x t ϕ-= (其中0>a ) 属于( B )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合2、22(,,)tt xx u a u x y t ϕ+= (其中0>a ) 属于( C )型偏微分方程 A 、 抛物 B 、双曲 C 、 椭圆 D 、 混合 2、(,)xx yy u u f x y += (其中(,)u u x y =) 属于( C )型偏微分方程A 、 抛物B 、双曲C 、 椭圆D 、 混合 4、下列方程是非线性偏微分方程的是( A )A 22()()sin u u x x y 抖+=抖 B (,)u uf x y x y抖+=抖 C 22(,)(,)cos u ua x tb x t x x t抖+=抖 D 3433(,,)v v v g x y z x x y z ∂∂∂++=∂∂∂∂ 7、下列方程是非齐次方程的是( A )A(,)(,)0u uxy f x y f x y x y 抖+=?抖, B 2,0t xx u a u a =?C 22(,)(,)0u u a x t b x t x t 抖+=抖 D 34330v v v x x y z ∂∂∂++=∂∂∂∂3、在用分离变量法求解定解问题200,0,0|0,|0|()t xx x x x l t u a u x l t u u u x ϕ===⎧=<<>⎪==⎨⎪=⎩时,得到的固有函数系为( D ) A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x ln π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n π C 、{},...2,1,sin =n x n π D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x ln π 3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧====><<=====)(|),(|0|,0|0,0,0002x u x u u u t l x u a u t t t l x x x x xx tt ψϕ时,得到的固有函数系为( B )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n πB 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos ,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、 ,...2,1,2)12(sin =⎭⎬⎫⎩⎨⎧-n x l n π3、在用分离变量法求解定解问题⎪⎩⎪⎨⎧===><<====)(|0|,0|0,0,002x u u u t l x u a u t l x x xx t ϕ时,得到的固有函数系为( A )A 、,...2,1,sin=⎭⎬⎫⎩⎨⎧n x l n π B 、,...2,1,0,cos=⎭⎬⎫⎩⎨⎧n x l n πC 、(21)cos,1,2,...2n x n l π-⎧⎫=⎨⎬⎩⎭ D 、,...2,1,2)12(sin=⎭⎬⎫⎩⎨⎧-n x l n π7、给出未知函数 u 在区域Ω的边界Γ上的值0,),,(|≥Γ∈=Γt M t M u μ 的边界条件,称为第( A )类边界条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 定解问题与偏微分方程理论
习题2.1
1. 密度为ρ均匀柔软的细弦线x =0端固定,垂直悬挂,在重力作用下,于横向拉它一下,使之作微小的横振动。
试导出振动方程。
2. 长为L ,均匀细杆,x = 0端固定,另一端沿杆的轴线方向被拉长b 静止后(在弹性限度内)突然放手,细杆作自由振动。
试写出振动方程的定解条件。
3. 长为L 、密度为ρ的底半径为R 的均匀圆锥杆(轴线水平)作纵振动,锥的顶点固定在x =0处。
导出此杆的振动方程。
4. 一根长为L 、截面面积为1的均匀细杆,其x =0端固定,以槌水平击其x =L 端,使之获得冲量I 。
试写出定解问题。
习题2.2
1. 一半径为r ,密度为ρ,比热为c ,热传导系数为k 的匀质圆杆,如同截面上的温度相同,其侧面与温度为u 1的介质发生热交换,且热交换的系数为k 1。
试导出杆上温度u 满足的方程。
4. 设有一根具有绝热的侧表面的均匀细杆,它的初始温度为)(x ϕ,两端满足下列边界条件之一:
(1)一端(x =0)绝热,另一端(x = L )保持常温u 0;
(2)两端分别有热流密度q 1和q 2进入;
(3)一端(x =0)温度为u 1(t ),另一端(x = L )与温度为)(t θ的介质有热交换。
试分别写出上述三种热传导过程的定解问题。
习题2.4
1. 判断下列方程的类型:
(1)04=+++++u cu bu au au au y x yy xy xx ;
(2)02=+++++u cu bu au au au y x yy xy xx ;
(3)02222=+++++u au bu au au au y x yy xy xx ;
(4)0=+yy xx xu u 。
2. 求下列方程的通解
(1)0910=++yy xy xx u u u ;
(3)0384=++yy xy xx u u u 。
第三章 分离变量法
习题3.1
2. 求解下列定解问题
(1)⎪⎪⎩⎪⎪⎨⎧-====><<=====)
(,00)0,0(,0002x L x u u u u t L x u a u t t t L x x xx tt
3. 求下列边值问题的固有值和固有函数:
(1)⎩⎨⎧===+''==0
,000L x x X X X X λ (3)⎩⎨⎧0,0012===+'+''==e x x y y y y x y x λ 习题3.2
1.求定解问题:
⎪⎩⎪⎨⎧-===><<====)
(0
,0)0,0(,002x L x u u u t L x u a u t L x x xx t 习题3.5
2. 求解定解问题:
⎪⎩⎪⎨⎧===><<=+-===-0
0020
,0)0,0(,0T u u u t L x Ae u a u t L x x x t xx α 0T 是常数。
3. 求解定解问题:
2000cos sin ,(0,0)0,00,0
tt xx x x x x L t t t x u a u A t x L t L u u u u πω====⎧=+<<>⎪⎪==⎨⎪==⎪⎩
习题3.6
2. 求解定解问题: ⎪⎩⎪⎨⎧====><<+=====)
(),(,)0,0(),(002102x u x u M u M u t L x x f u a u t t t L x x xx tt ψϕ
其中,1M 和2M 为常数。
5. 求解定解问题:
⎪⎩
⎪⎨⎧====+=0),0(,),0()(,),(,0)0,()(,x u Ex x u E E L t u t u g g u u t x xx tt 为常数为常数
第四章 行波法
习题4.1
1. 求下列波动方程柯西问题的解: (1) ⎪⎩⎪⎨⎧=====2002,sin x u x u u a u t t
t xx tt (2) ⎪⎩⎪⎨⎧=====x
u u u a u t t t xx tt 002,5 6. 求下列强迫振动的柯西问题的解
(1)⎪⎩⎪⎨⎧==+===2002,5)ex p(x
u u x u a u t t t xx tt ;(2)⎪⎩⎪⎨⎧==+===0,sin )ex p(002t t t xx tt u x u t x u a u 习题4.2
1. 求解半无界弦定解问题:
2000, 0,0sin , cos 0
tt xx t t t x u a u x t u x u x u ===⎧=<<+∞>⎪==⎨⎪=⎩
5. 求解下列定解问题:
⎪⎩⎪⎨⎧==>+∞<<-∞=-++==)(),()0,(,0200
22x u x u t x u a u u u t t t xx t tt ψϕεε [提示:作代换t
w e u ε=。
] 第五章 积分变换
习题5.1
1.若)()]([ωf x g F =,求证:)(2)]([ωπ-=g x f F 。
3.求函数的付里叶变换
(1)|)|exp()(x x f -=;(2))ex p()(2
x x f π-=;(3)2cos )(x x f ω= 第六章 格林函数法
1.求区域上的格林函数
(1)求上半圆域的格林函数;
(2)求上半球域的格林函数。
2.求解圆域上的Dirichlet 问题
⎩
⎨⎧=≤==)(),(1,01θϕθr r u r u ∆ (1)θθϕcos )(a =;(2)θθϕcos )(a b +=。
第七章
1.设有静电场的圆柱域的上下底(半径为a )接地,侧面电位为u 0。
求域内电位分布。
即问题的定解问题为:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧===<<<=++===000)0,(,01u u u u h z a u u u a h z z zz ρρρρρρ
对定解问题分离变量求出贝塞尔方程的特解。
2.证明:x x
x J cos 2)(21π=
-。
3.证明:0)0(12=-n J ,其中n=1,2,3,…。