概率论与数理统计复习笔记 (1)

概率论与数理统计复习笔记 (1)
概率论与数理统计复习笔记 (1)

概率论与数理统计复习 第一章 概率论的基本概念

一.基本概念

随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.

必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算

?(事件B

包含事件A )事件A 发生必然导致事件B 发生.

∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生.

5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.

6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .

运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质

1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;

(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),

P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质

(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,

P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ?B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .

(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n

…+(-1)n-1P(A 1A 2…A n )

四.等可能(古典)概型

1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.

2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率

1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).

2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)

3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则

当P(B i )>0时,有全概率公式 P(A)=()()i n

i i B A P B P ∑=1

当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()

∑==n

i i i i i i B A P B P B A P B P A P AB P 1

. 六.事件的独立性

1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .

(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.

2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 个事件A 1,A 2,…,A n ,如果对任意k (1

()()()()

k

k

i i i i i i A P A P A P A A A P ΛΛ2

1

2

1

=,则称这n 个事件A 1,A 2,…,A n 相互独立.

第二章 随机变量及其概率分布

一.随机变量及其分布函数

1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.

2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:

(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1

1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞

=k k p .

2.离散型随机变量的分布函数 F(x)=∑≤x

X k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃

点,其跳跃值为p k =P{X=x k } .

3.三种重要的离散型随机变量的分布

(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0

(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()k

n k p p k n --???

? ??1(k=0,1,2,…,n) (0

λ-e k k !

(k=0,1,2,…) (?>0)

三.连续型随机变量

1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x

?∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).

2.概率密度的性质

(1)非负性 f(x)≥0 ; (2)归一性 ?∞

∞-dx x f )(=1 ;

(3) P{x 1

1

)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .

注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布

(1)X ~U (a,b) 区间(a,b)上的均匀分布 ???=-0

)(1a b x f 其它b x a << .

(2)X 服从参数为?的指数分布.()???=-0

/1θθx e

x f 00≤>x x 若若 (?>0).

(3)X~N (?,?2

)参数为?,?的正态分布 222)(21)(σ

μσ

π--=

x e x f -?0.

特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度

2

221)(x e x -=

π

? , 标准正态分布函数 ?=

Φ∞--x

t dt e x 2221)(π

, ?(-x)=1-Φ(x) .

若X ~N ((?,?2

), 则Z=

σ

μ

-X ~N (0,1), P{x 1

σ

μ

-2x )-Φ(

σ

μ

-1x ).

若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数

若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.

若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数

若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f k

y X k

∑??

其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .

(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机

变量,其概率密度为 ()()()()

?

??'=0y h y h f y f X Y 其它βα<

其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .

如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .

第三章 二维随机变量及其概率分布

一.二维随机变量与联合分布函数

1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.

对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质

(1)F(x,y)分别关于x 和y 单调不减.

(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .

(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1

P{x 1

二.二维离散型随机变量及其联合分布律

1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.

2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i j

ij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑

∑≤≤x x y

y ij i j p

三.二维连续型随机变量及其联合概率密度

1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=??∞-∞-y

x

dudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=??∞

∞-∞

∞-dxdy y x f .

(3)若f (x,y)在点(x,y)连续,则y

x y x F y x f ???=)

,(),(2

(4)若G 为xoy 平面上一个区域,则??=∈G

dxdy y x f G y x P ),(}),{(.

四.边缘分布

1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y

2.二维离散型随机变量(X,Y)

关于X 的边缘分布律 P{X= x i }= ∑∞

=1

j ij p = p i · ( i =1,2,…) 归一性 11

=∑∞

=?i i p .

关于Y 的边缘分布律 P{Y= y j }= ∑∞=1

i ij p = p ·j ( j =1,2,…) 归一性 11

=∑∞

=?j j p .

3.二维连续型随机变量(X,Y)

关于X 的边缘概率密度f X (x)=?∞

∞-dy y x f ),( 归一性1)(=?∞

∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ?∞

-),( 归一性1)(=?∞

∞-dy

y f Y

五.相互独立的随机变量

1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.

2.离散型随机变量X 和Y 相互独立?p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.

3.连续型随机变量X 和Y 相互独立?f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布

1.二维离散型随机变量的条件分布

定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称

,

}{},{j

j i j j i p p y Y P y Y x X P ?=====

P{X=x i |Y=y j }

为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称

P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.

第四章 随机变量的数字特征

一.数学期望和方差的定义

随机变量X 离散型随机变量 连续型随机变量

分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)

数学期望(均值)E(X) ∑∞

=1i i i p x (级数绝对收敛) ?

∞-dx x xf )((积分绝对收敛)

方差D(X)=E{[X-E(X)]2

} []∑-∞

=1

2)(i i i p X E x ?-∞

∞-dx x f X E x )()]([2

=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞

=1)((级数绝对收敛) ?∞

∞-dx x f x g )()((积分绝对收敛)

标准差?(X)=√D(X) . 二.数学期望与方差的性质

1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) . ,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .

3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .

4. D(X) = 0 ? P{X = C}=1 ,C 为常数.

三.六种重要分布的数学期望和方差 E(X) D(X) ~ (0-1)分布P{X=1}= p (0

,

}{},{?

=====i j

i i j i p p x X P y Y x X P

~ U(a,b) (a+b)/2 (b-a) 2/12 服从参数为?的指数分布 ? ?2 ~ N (?,?2) ? ?2 四.矩的概念

随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }

随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…

随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }

第六章 样本和抽样分布

一.基本概念

总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.

统计量是指样本的不含任何未知参数的连续函数.如:

样本均值∑==n i i X n X 1

1 样本方差()

∑--==n i i

X X n S 122

11 样本标准差S 样本k 阶矩∑==n i k i k X n A 1

1( k=1,2,…) 样本k 阶中心矩∑-==n

i k i k X X n B 1)(1( k=1,2,…)

二.抽样分布 即统计量的分布

1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .

2.?2

分布 (1)定义 若X ~N (0,1

) ,则Y =∑=n

i i X 1

2~ ?2(n)自由度为n 的?2分布.

(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .

②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则

2

2

)1(σS n -~ ?2(n-1),且X 与S 2相互独立.

(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足

的点)()(),(),(2

2

/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布

(1)定义 若X~N (0,1

),Y~ ?2

(n),且X,Y 相互独立,则t=n

Y X ~t(n)自由度为n 的t 分

布.

(2)性质①n →∞时,t 分布的极限为标准正态分布.

②X ~N (?,?2 )时, n

S X μ

-~ t (n-1) . ③两个正态总体

相互独立的样本 样本均值 样本方差

X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22

则 2

1211

1)()(n n S Y X w +

---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212

2

2211

2-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足

的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).

分布 (1)定义 若U~?2

(n 1), V~ ?2

(n 2), 且U,V 相互独立,则F =2

1

n V n U ~F(n 1,n 2)自由度为

(n 1,n 2)的F 分布.

(2)性质(条件同3.(2)③)

22

21

2221σσS S ~F(n 1-1,n 2-1)

(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足

的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .)

.(1

),(12211n n F n n F αα=

-

第七章 参数估计

一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .

X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.

1.矩估计法

先求总体矩?????===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到???

??===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,

以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量???

????===∧

),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,

若代入样本值则得到矩估计值. 2.最大似然估计法

若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n

的联合分布∏==n

i k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的

∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.

若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组

0=??i L θ 或 对数似然方程组 0ln =??i

L

θ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准

(1) 无偏性 若E(∧

θ)=?,则估计量∧

θ称为参数?的无偏估计量.

不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,

样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,

(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧

θ2有效. (3)一致性(相合性) 若n →∞时,θθP

→∧,则称估计量∧

θ是参数?的相合估计量. 二.区间估计

1.求参数?的置信水平为1-?的双侧置信区间的步骤

(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定. (2)利用双侧?分位点找出W 的区间(a,b),使P{a

待估参数 其它参数 W 及其分布 置信区间

? ?2

已知 n

X σμ

-~N (0,1) (2/ασz n X ±) ? ?2未知 n

S X μ

-~ t (n-1) )1((2/-±n t n S X α ?2

?未知 2

2

)1(σS n -~ ?2

(n-1) ))

1()1(,)1()1((22/12

2

2/2

-----n S n n S n ααχχ 3.两个正态总体 (1)均值差? 1-? 2

其它参数 W 及其分布 置信区间

已知

22

21,σσ

2

22

1

2

1

21)

(n n Y X σσμμ+

--- ~ N(0,1) )(2

22

1

21

2

n n z Y X σσα

+

±-

未知2

2221σσσ== 2

12111)(n n S Y X w

+---μμ~t(n 1+n 2-2) )1

1)2((21212n n S n n t Y X w

+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.

(2) ? 1,? 2未知, W=

2

2

212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为

注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

概率论与数理统计(二)笔记

概率论与数理统计(二)笔记 经济数学基础二(概率论与数理统计)课程教学大纲 一、课程教学目的与基本要求 概率论与数理统计是高等学校(专科)经济、管理类及计算机类专业最重要的基础理论课之一。本课程是我院经济、管理类及计算 机类专业继微积分课程之后的一门基础课。通过本课程的学习,使学生获得概率论与数理统计的基本知识和基本运算技能。教学中要贯彻“以应用为目的,以必需、够用为度”的原则,教学重点放在掌握概念,强化应用,培养技能上。通过各教学环节逐渐培养学生具有比较熟练的分析问题和解决问题的能力,并为专业课程的定量分析打下基础。 1.要正确理解以下概念: 随机试验,随机事件、概率的古典定义、事件的独立性、一元随机变量、分布函数、二元随机变量、联合分布及边缘分布、随机变量相互独立性、随机变量的数字特征、总体与样本、统计量、两类错误、回归的基本概念 2. 要掌握下列基本理论、基本定理和公式: 概率的基本性质。概率加法定理、乘法定理、全概率公式和贝叶斯公式、贝努里概型。切比雪夫大数定律与贝努里大数定律、中心极限定理。常用的统计量的分布。参数估计的基本思想。小概率原理。 3.熟练掌握下列运算法则和方法: 事件的关系与运算。古典概型的概率计算。一元随机变量的分布函数、二元随机变量的边缘分布计算。标准正态分布表的查法。随机变量的数学期望、方差、协方差计算。 4.应用方面: 用数学期望、方差的概念及性质解决具体问题的计算。利用正态分布的理论解决具体问题。用区间估计正确解决实际问题,并能解释其结果。运用小概率原理,对具体问题做假设检验。用一元线性回归方程及相关性检验解决实际问题。 二、课程主要内容 第一章随机事件及其概率(10学时) 1. 理解随机试验、随机事件的概念,了解样本空间的概念,掌握事件的关系与运算并会能灵活表达。 2. 了解概率的统计定义,理解概率的古典定义,会计算简单的古典概率。 3. 了解概率的公理化定义。掌握概率的基本性质及概率加法定理。

《概率论与数理统计》实验报告答案

《概率论与数理统计》实验报告 学生姓名李樟取 学生班级计算机122 学生学号201205070621 指导教师吴志松 学年学期2013-2014学年第1学期

实验报告一 成绩 日期 年 月 日 实验名称 单个正态总体参数的区间估计 实验性质 综合性 实验目的及要求 1.了解【活动表】的编制方法; 2.掌握【单个正态总体均值Z 估计活动表】的使用方法; 3.掌握【单个正态总体均值t 估计活动表】的使用方法; 4.掌握【单个正态总体方差卡方估计活动表】的使用方法; 5.掌握单个正态总体参数的区间估计方法. 实验原理 利用【Excel 】中提供的统计函数【NORMISINV 】和平方根函数【SQRT 】,编制【单个正态总体均值Z 估计活动表】,在【单个正态总体均值Z 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【总体标准差】的具体值,就可以得到相应的统计分析结果。 1设总体2~(,)X N μσ,其中2σ已知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为 样本的观测值 于是得到μ的置信水平为1-α 的置信区间为 利用【Excel 】中提供的统计函数【TINV 】和平方根函数【SQRT 】,编制【单个正态总体均值t 估计活动表】,在【单个正态总体均值t 估计活动表】中,只要分别引用或输入【置信水平】、【样本容量】、【样本均值】、【样本标准差】的具体值,就可以得到相应的统计分析结果。 2.设总体2~(,)X N μσ,其中2 σ未知,12,,,n X X X L 为来自X 的一个样本,12,,,n x x x L 为样本的观测值 整理得 /2/21X z X z n n P αασαμσ? ?=-??? ?-<<+/2||1/X U z P n ασμα????==-??????-

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计期末试卷及答案(最新11)

湖北汽车工业学院 概率论与数理统计考试试卷 一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是 )(A )()|(A P B A P =. )(B )()|(B P A B P =. )(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为 则)35(+X E 等于 )(A 8. )(B 2. )(C 5-. )(D 1-. 【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而 }5{},4{21+≥=-≤=μμY P p X P p ,则 )(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <. )(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >. 【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是 )(A 3213211X X X ++= μ. )(B 2223212X X X ++=μ. )(C 3333213X X X ++=μ. )(D 4 443214X X X ++=μ. 【D 】5. 设)(~n t X ,则~2 X )(A )(2n χ. )(B )1(2χ. )(C )1,(n F . )(D ),1(n F . 【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P , 若α=<)(c X P ,则c 等于 )(A 2αu . )(B )1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{},2,3,4,5,6 1=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61. 2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占 3%。已知一学生数学不及格,那么他语文也不及格的概率是 5 1 . 3. 设离散型随机变量X 的分布列为{}k a k X P ?? ? ??==31, ,3,2,1=k ,则=a 2. 4. 已知2)(-=X E ,5)(2 =X E ,那么=-)32015(X D 9.

概率论与数理统计实验报告

概率论与数理统计 实验报告 概率论部分实验二 《正态分布综合实验》

实验名称:正态分布综合实验 实验目的:通过本次实验,了解Matlab在概率与数理统计领域的应用,学会用matlab做概率密度曲线,概率分布曲线,直方图,累计百分比曲线等简单应用;同时加深对正态分布的认识,以更好得应用之。 实验内容: 实验分析: 本次实验主要需要运用一些matlab函数,如正态分布随机数发生器normrnd函数、绘制直方图函数hist函数、正态分布密度函数图形绘制函数normpdf函数、正态分布分步函数图形绘制函数normcdf等;同时,考虑到本次实验重复性明显,如,分别生成100,1000,10000个服从正态分布的随机数,进行相同的实验操作,故通过数组和循环可以简化整个实验的操作流程,因此,本次实验程序中要设置数组和循环变量。 实验过程: 1.直方图与累计百分比曲线 1)实验程序 m=[100,1000,10000]; 产生随机数的个数 n=[2,1,0.5]; 组距 for j=1:3 for k=1:3 x=normrnd(6,1,m(j),1); 生成期望为6,方差为1的m(j)个 正态分布随机数

a=min(x); a为生成随机数的最小值 b=max(x); b为生成随机数的最大值 c=(b-a)/n(k); c为按n(k)组距应该分成的组数 subplot(1,2,1); 图形窗口分两份 hist(x,c);xlabel('频数分布图'); 在第一份里绘制频数直方图 yy=hist(x,c)/1000; yy为各个分组的频率 s=[]; s(1)=yy(1); for i=2:length(yy) s(i)=s(i-1)+yy(i); end s[]数组存储累计百分比 x=linspace(a,b,c); subplot(1,2,2); 在第二个图形位置绘制累计百分 比曲线 plot(x,s,x,s);xlabel('累积百分比曲线'); grid on; 加网格 figure; 另行开辟图形窗口,为下一个循 环做准备 end end 2)实验结论及过程截图 实验结果以图像形式展示,以下分别为产生100,1000,10000个正态分布随机数,组距分别为2,1,0.5的频数分布直方图和累积百分比曲线,从实验结果看来,随着产生随机数的数目增多,组距减小,累计直方图逐渐逼近正态分布密度函数图像,累计百分比逐渐逼近正态分布分布函数图像。

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

11概率论与数理统计试卷及答案

福州大学概率论与数理统计试卷A (20130702) 附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t 一、 单项选择(共18分,每小题3分) 1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( ) (A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且3 1 )0()0(= ≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )3 1 4. 设128,,,X X X K 和1210,,,Y Y Y L 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( ) (A )222152S S (B ) 212254S S (C )222125S S (D )2 22 145S S 5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.25 6.设总体),(~2 σμN X ,n X X X ,,,21Λ为X 的一组样本, X 为样本均值,2 s 为样本 方差,则下列统计量中服从)(2n χ分布的是( ). (A) 1--n s X μ (B) 2 2)1(σs n - (C) n s X μ - (D) ∑=-n i i X 1 22)(1μσ 学院 专业 级 班 姓 名 学 号

概率论与数理统计复习笔记 (1)

概率论与数理统计复习 第一章 概率论的基本概念 一.基本概念 随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集. 必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算 ?(事件B 包含事件A )事件A 发生必然导致事件B 发生. ∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生. 5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生. 6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质 1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ; (3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…), P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质 (1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,

概率论与数理统计实验报告

概率论与数理统计实验报告 一、实验目的 1.学会用matlab求密度函数与分布函数 2.熟悉matlab中用于描述性统计的基本操作与命令 3.学会matlab进行参数估计与假设检验的基本命令与操作 二、实验步骤与结果 概率论部分: 实验名称:各种分布的密度函数与分布函数 实验内容: 1.选择三种常见随机变量的分布,计算它们的方差与期望<参数自己设 定)。 2.向空中抛硬币100次,落下为正面的概率为0.5,。记正面向上的次数 为x, (1)计算x=45和x<45的概率, (2)给出随机数x的概率累积分布图像和概率密度图像。 3.比较t(10>分布和标准正态分布的图像<要求写出程序并作图)。 程序: 1.计算三种随机变量分布的方差与期望 [m0,v0]=binostat(10,0.3> %二项分布,取n=10,p=0.3 [m1,v1]=poisstat(5> %泊松分布,取lambda=5 [m2,v2]=normstat(1,0.12> %正态分布,取u=1,sigma=0.12 计算结果: m0 =3 v0 =2.1000 m1 =5 v1 =5 m2 =1 v2 =0.0144 2.计算x=45和x<45的概率,并绘图 Px=binopdf(45,100,0.5> %x=45的概率 Fx=binocdf(45,100,0.5> %x<45的概率 x=1:100。 p1=binopdf(x,100,0.5>。 p2=binocdf(x,100,0.5>。 subplot(2,1,1>

plot(x,p1> title('概率密度图像'> subplot(2,1,2> plot(x,p2> title('概率累积分布图像'> 结果: Px =0.0485 Fx =0.1841 3.t(10>分布与标准正态分布的图像 subplot(2,1,1> ezplot('1/sqrt(2*pi>*exp(-1/2*x^2>',[-6,6]> title('标准正态分布概率密度曲线图'> subplot(2,1,2> ezplot('gamma((10+1>/2>/(sqrt(10*pi>*gamma(10/2>>*(1+x^2/10>^(-(10+1>/2>',[-6,6]>。b5E2RGbCAP title('t(10>分布概率密度曲线图'> 结果:

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

《概率论与数理统计》笔记

《概率论和数理统计》笔记 一、课程导读 “概率论和数理统计”是研究随机现象的规律性的一门学科 在自然界,在人们的实践活动中,所遇到的现象一般可以分为两类: 确定性现象随机现象 确定性现象 在一定的条件下,必然会出现某种确定的结果.例如,向上抛一枚硬币,由于受到地心引力的作用,硬币上升到某一高度后必定会下落.我们把这类现象称为确定性现象(或必然现象).同样,任何物体没有受到外力作用时,必定保持其原有的静止或等速运动状态;导线通电后,必定会发热;等等也都是确定性现象. 随机现象 在一定的条件下,可能会出现各种不同的结果,也就是说,在完全相同的条件下,进行一系列观测或实验,却未必出现相同的结果.例如,抛掷一枚硬币,当硬币落在地面上时,可能是正面(有国徽的一面)朝上,也可能是反面朝上,在硬币落地前我们不能预知究竟哪一面朝上.我们把这类现象称为随机现象(或偶然现象).同样,自动机床加工制造一个零件,可能是合格品,也可能是不合格品;射击运

动员一次射击,可能击中10环,也可能击中9环8环……甚至脱靶;等等也都是随机现象. 统计规律性 对随机现象,从表面上看,由于人们事先不能知道会出现哪一种结果,似乎是不可捉摸的;其实不然.人们通过实践观察到并且证明了,在相同的条件下,对随机现象进行大量的重复试验(观测),其结果总能呈现出某种规律性.例如,多次重复抛一枚硬币,正面 朝上和反面朝上的次数几乎相等;对某个靶进行多次射击,虽然各次弹着点不完全相同,但这些点却按一定的规律分布;等等.我们把随机现象的这种规律性称为统计规律性. ●使用例子 摸球游戏中谁是真正的赢家 在街头巷尾常见一类“摸球游戏”.游戏是这样的:一袋中装有16个大小、形状相同,光滑程度一致的玻璃球.其中8个红色、8个白色.游戏者从中一次摸出8个,8个球中.当红白两种颜色出现以下比数时.摸球者可得到相应的“奖励”或“处罚”: 结果(比数) A (8:0) B (7:1) C (6:2) D (5:3) E (4:4) 奖金(元)10 1 0.5 0.2 -2 注:表中“-2”表示受罚2元

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案
第 1 章 概率论的基本概念
§1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢 3 次,观察正面 H﹑反面 T 出现的情形. 样本空间是:S=
(2) 一枚硬币连丢 3 次,观察出现正面的次数. 样本空间是:S= 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于 2,则 B= (2) 一枚硬币连丢 2 次, A:第一次出现正面,则 A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则 C= ;b5E2RGbCAP ;p1EanqFDPw .DXDiTa9E3d .
§1 .2 随机事件的运算
1. 设 A、B、C 为三事件,用 A、B、C 的运算关系表示下列各事件: (1)A、B、C 都不发生表示为: .(2)A 与 B 都发生,而 C 不发生表示为: .RTCrpUDGiT (3)A 与 B 都不发生,而 C 发生表示为: .(4)A、B、C 中最多二个发生表示为: .5PCzVD7HxA (5)A、B、C 中至少二个发生表示为: .(6)A、B、C 中不多于一个发生表示为: .jLBHrnAILg 2. 设 S ? {x : 0 ? x ? 5}, A ? {x : 1 ? x ? 3}, B ? {x : 2 ?? 4}:则 (1) A ? B ? (4) A ? B = , (2) AB ? , (5) A B = , (3) A B ? 。 ,
xHAQX74J0X
§1 .3 概率的定义和性质
1. 已知 P( A ? B) ? 0.8, P( A) ? 0.5, P( B) ? 0.6 ,则 (1) P( AB) ? , (2)( P( A B) )= 则 P( AB) = , (3) P( A ? B) = . .LDAYtRyKfE
2. 已知 P( A) ? 0.7, P( AB) ? 0.3,
§1 .4 古典概型
1. 某班有 30 个同学,其中 8 个女同学, 随机地选 10 个,求:(1)正好有 2 个女同学的概率, (2)最多有 2 个女同学的概率,(3) 至少有 2 个女同学的概率. 2. 将 3 个不同的球随机地投入到 4 个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为 7, 则其中一颗为 1 的概率是 2. 已知 P( A) ? 1 / 4, P( B | A) ? 1 / 3, P( A | B) ? 1 / 2, 则 P( A ? B) ? 。 。
§1 .6 全概率公式
1.
有 10 个签,其中 2 个“中” ,第一人随机地抽一个签,不放回,第二人再随机地抽一个签,说明两人 抽“中‘的概率相同。Zzz6ZB2Ltk 1 / 19

概率论与数理统计数学实验

概率论与数理统计数学实验 目录 实验一几个重要的概率分布的MATLAB实现 p2-3 实验二数据的统计描述和分析 p4-8 实验三参数估计 p9-11 实验四假设检验 p12-14 实验五方差分析 p15-17 实验六回归分析 p18-27

实验一 几个重要的概率分布的MATLAB 实现 实验目的 (1) 学习MATLAB 软件与概率有关的各种计算方法 (2) 会用MATLAB 软件生成几种常见分布的随机数 (3) 通过实验加深对概率密度,分布函数和分位数的理解 Matlab 统计工具箱中提供了约20种概率分布,对每一种分布提供了5种运算功能,下表给出了常见8种分布对应的Matlab 命令字符,表2给出了每一种运算功能所对应的Matlab 命令字符。当需要某一分布的某类运算功能时,将分布字符与功能字符连接起来,就得到所要的命令。 例1 求正态分布()2,1-N ,在x=1.2处的概率密度。 解:在MATLAB 命令窗口中输入: normpdf(1.2,-1,2) 结果为: 0.1089 例2 求泊松分布()3P ,在k=5,6,7处的概率。 解:在MATLAB 命令窗口中输入: poisspdf([5 6 7],3) 结果为: 0.1008 0.0504 0.0216 例3 设X 服从均匀分布()3,1U ,计算{}225P X .-<<。 解:在MATLAB 命令窗口中输入: unifcdf(2.5,1,3)-unifcdf(-2,1,3) 结果为: 0.75000

例4 求概率995.0=α的正态分布()2,1N 的分位数αX 。 解:在MATLAB 命令窗口中输入: norminv(0.995,1,2) 结果为: 6.1517 例5 求t 分布()10t 的期望和方差。 解:在MATLAB 命令窗口中输入: [m,v]=tstat(10) m = 0 v = 1.2500 例6 生成一个2*3阶正态分布的随机矩阵。其中,第一行3个数分别服从均值为1,2,3;第二行3个数分别服从均值为4,5,6,且标准差均为0.1的正态分布。 解:在MATLAB 命令窗口中输入: A=normrnd([1 2 3;4 5 6],0.1,2,3) A = 1.1189 2.0327 2.9813 3.9962 5.0175 6.0726 例7 生成一个2*3阶服从均匀分布()3,1U 的随机矩阵。 解:在MATLAB 命令窗口中输入: B=unifrnd(1,3,2,3) B = 1.8205 1.1158 2.6263 2.7873 1.7057 1.0197 注:对于标准正态分布,可用命令randn(m,n);对于均匀分布()1,0U ,可用命令rand(m,n)。

概率论与数理统计作业与解答

概率论与数理统计作业及解答 第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹?设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示? 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为 E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC; 或工 ABACBC ;或工 ABC_(AB C ABC A BC ). (和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB) 2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率 ★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率 A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}. C 6 (C 2 )6 32 C 8C 4(C 2)4 80 0.2238, P(B) 8 皆 0.5594, P(A) 8 /143 ★ 4.设某批产品共50件.其中有5件次品?现从中任取3件?求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99 ⑴冷 0.724.⑵虫产 0.2526. C 50 1960 C 50 392 5. 从1?9九个数字中?任取3个排成一个三位数?求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率? 4 (1) P {三位数为偶数} = P {尾数为偶数}=-, 9 ⑵P {三位数为奇数} = P {尾数为奇数} = 5, 9 或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5. 9 9 6. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}. 1 1 2 C m C M m C m m(2M - m -1) M (M -1) 6 — C 16 143 P(C)二 C 8 CJC 2 ) 30 0.2098. 143 C 16

相关文档
最新文档