电气供配电系统大学毕业论文英文文献翻译及原文

合集下载

毕业设计外文原文+翻译(电力系统)

毕业设计外文原文+翻译(电力系统)

对称相电压
在图 2-10 中,三相电源的终端呗标记为 a、b、c,电源相电压标记为Ean , Ebn ,Ecn ,当电源的三相电压有相同的幅度,任意两相之间互差 120 度角时,电 源是对称的。当以Ean 作为参考相量时,相电压的幅值是 10v,对称三相相电压 如下所示:
Ean =100 Ebn 10 120 10 240 (2.5.1) Ecn 10 120 10 240
8
河南理工大学 HENAN POLYTECHNIC UNIVERSITY
480 30 Ean 3 IA= Z L ZY 180 30 40 3 277.1-30 (0.0872+j0.9962)( + 7.660+j6.428) 277.1-30 277.1-30 = = =25.83-73.78 A (2.5.18) (7.748+j7.424) 10.7343.78 I B 25.83166.22 A I C 25.8346.22 A
Ebn Eab
Ebc
30
Ean
Ecn
Eca
(a)向量图
b
Eab Ebn
a
Ebc Ean Eca
c
Ecn
(b)电压三角形
图 2.12 正序三相 Y 形连接系统相电压和相线电压
3
河南理工大学 HENAN POLYTECHNIC UNIVERSITY
对称线电流
在图 2-10 中,因为从电源到负载的中性线的阻抗忽略不计,所以 n 与 N 之间是 同电位的,即EnN =0。因此每一相都可以列一个单独的 KVL 方程,经观察,线电 流为:
I a Ean ZY I b Ebn ZY (2.5.7) I c Ecn ZY

电气专业毕业设计英文文献

电气专业毕业设计英文文献

电气专业毕业设计英文文献电气专业毕业设计英文文献外文资料与中文翻译外文资料:Relay protection present situation anddevelopment一、Relay protection development present situationElectrical power system's swift development to the relay protection proposed unceasingly the new request, the electronic technology, the computer technology and communication's swift development unceasingly has infused the new vigor for the relay protection technology's development, therefore, the relay protection technology is advantageous, has completed the development 4 historical stage in 40 remaining years of time.After the founding of the nation, our country relay protection discipline, the relay protection design, the relay factory industry and the relay protection technical team grows out of nothing, has passed through the path which in about 10 year the advanced countries half century pass through. In the 50s, our country engineers and technicians creatively absorption, the digestion, have grasped the overseas advanced relay protection equipment performance and the movement technology [1], completed one to have the deep relay protection theory attainments and the rich service experience's relay protection technical team, and grew the instruction function to the national relay protection technical team's establishment. The Achengrelay factory introduction has digested at that time the overseas advanced relay technique of manufacture, has established our country own relay manufacturing industry.Therefore our country has completed the relay protection research, the design, the manufacture, the movement and the teaching complete system in the 60s. This is the mechanical and electrical -like relay protection prosperous time, was our country relay protection technology development has laid the solid foundation.From the late 50s, the transistor relay protection was starting to study. In the 60s to the 80s in is the time which the transistor relay protection vigorous development and widely uses. And the Tianjin University and the Nanjing Electric power Automation Plant cooperation research's 500kv transistor direction high frequency protection develops with the Nanjing Electric power Automation Research institute the transistor high frequency block system is away from the protection, moves on the Gezhou Dam 500 kv lines [2], finished the 500kv line protection to depend upon completely from the overseas import time.From the 70s, started based on the integration operational amplifier's integrated circuit protection to study. Has formed the complete series to the late 80s integrated circuit protection, substitutes for the transistor protection gradually. The development which, the production, the application protected to the early 90s integrated circuit were still in the dominant position, this was theintegrated circuit protection time. The integrated circuit power frequency change quantity direction which develops in this aspect Nanjing Electric power Automation Research institute high frequency protected the influential role [3], the Tianjin University and the Nanjing Electric power Automation Plant cooperation development's integrated circuit phase voltage compensation type direction high frequency protection alsomoved in many 220kv and on the 500kv line.Our country namely started the computer relay protection research from the late 70s [4], the institutions of higher learning and the scientific research courtyard institute forerunner's function. Huazhong University of Science and Technology, the Southeast University, the North China electric power institute, Xi'an Jiaotong University, the Tianjin University, Shanghai Jiaotong University, the Chongqing University and the Nanjing Electric power Automation Research institute one after another has developed the different principle, the different pattern microcomputer protective device. in 1984 the original North China electric power institute developed the transmission line microcomputer protective device first through the appraisal, and obtained the application in the system [5], has opened in our country relay protection history the new page, protected the promotion for the microcomputer to pave the way. In the main equipment protection aspect, the generator which the Southeast University and Huazhong University of Science and Technology develops loses magnetism protection, the generator protection and the generator? Bank of transformers protectionalso one after another in 1989, in 1994 through appraisal, investment movement. The Nanjing Electric power Automation Research institute develops microcomputer line protective device alsoin 1991 through appraisal. Tianjin University and Nanjing Electric power Automation Plant cooperation development microcomputer phase voltage compensation type direction high frequency protection, Xi'an Jiaotong University and Xuchang relay factory cooperation development positive sequence breakdown component direction high frequencyprotection also one after another in 1993, in 1996 through appraisal. Hence, the different principle, the different type's microcomputer line and the main equipment protect unique, provided one group of new generation performance for the electrical power system to be fine, the function was complete, operation reliable relay protection installment. Along with the microcomputer protective device's research, in microcomputer aspects and so on protection software, algorithm has also made many theory progresses. May say that started our country relay protection technology from the 90s to enter the time which the microcomputer protected.二、future development of Relay protectionThe future trend of relay protection technology is to computerization, networking is intelligent, protect, control, measure and data communication developing by integration. The principles of protection of electric power circuits are quite independent of the relay designs which may be applied. For example, if the current to an electriccircuit or a machine is greater than that which can be tolerated, it is necessary to take remedial action. The device for recognizing the condition and initiating corrective measures would be termed as an over-current relay regardless of the mechanists by whichthe function would be accomplished. Because the functions of electromechanical devices are easily described, their performance wills ever as a basis for presenting a description of relays and relay systemsin general.Relays must have the following characteristics: Reliability---The nature of the problem is that the relay may be idle for periods extending into years and then be required tooperatewith fast responds, as intended, the first time. The penalty for failure to operate properly may run into millions of dollars.Selectivity---The relay must not respond to abnormal, but harmless, system conditions such as switching transients or sudden changes in load.Sensitivity---The relay must not fail to operate, even in borderline situations, when operation was planned.Speed---The relay should make the decision to act as close to instantaneously as possible. If intentional time delay is available, it should be predictable and precisely adjustable.Instantaneous---The term means no intentional time delay.There are several possible ways to classify relays: by function, by construction, by application. Relays are one of two basic types of construction: electromagnetic or solid-state. The electromagnetic type relies on the development of electromagnetic forces on movable members,which provide switching action by physically opening or closing sets of contacts. The solid state variety provides switching action with no physical motion by changing the state of serially connected solid state component from no conducting to conducting(or vice versa). Electromagnetic relays are older and more widely used; solid state relays are more versatile, potentially more reliable, and fast.1)ComputerizationWith swift and violent development of computer hardware, computer protect hardware develop constantly even. The power system is improving to the demand that the computer protects constantly, besides basic function protected, should with trouble information of the large capacity and data the long-term parkingspace also, fast data processing function, strong communication capacity, network in order to share the whole system data , information , ability , network of resource with other protection , control device , dispatcher, high-level language programming ,etc.. This requires computer protector to have function which is equivalent to a pc machine. In computer is it develop initial stage to protect, is it make with one minicom relay protection install to imagine. Because the small-scale organism was accumulated greatly, with high costs at that time, dependability was bad, this imagined it was unrealistic . Now, exceed the minicomputer of those years greatly with computer protector size similar worker function , speed , memory capacity of accusing of machine, so make with complete sets of worker person who accuse of opportunity of relay protection already ripe, this will be one of the developing direction that a computer is protected . Tianjin university is it spend whom transformation act as continue the electric protector with computer protector structure self-same one worker person whoaccuse of to develop into already. The advantage of this kind of device is as follows, (1)it have functions of 486pc,it can meet to at present and it is various kinds of function demand where computerprotect future. (2)The size and structure are similar to present computer protector , the craft is superior, takes precautions against earthquakes , defends overheatedly and defending the electromagnetic ability of interfering strongly, can operate it in very abominable working environment , the cost is acceptable.(3)Adopting std bus or pc bus, hardware module , can select different module for use to different protection wantonly , it is flexible , easy to expand to dispose.It is an irreversible development trend to continue the computer , computerization of the electric protector. But to how better meet power system demand, how about raise the dependability of relay protection further, how make heavy economic benefits and social benefit, need carry on concrete deep research.2) NetworkedComputer network become the technological pillar of information age as message and data communication tool, made the mankind producing , basic change has taken place in the appearance with social life. It isinfluencing each industrial field deeply, has offered the powerful communication means for each industrial field too. Up till now, except that protect differentially and unite protecting vertically, all continue electric protector can only react that protect the electric quantity of installing office. The function of relay protection is only limited to excising the trouble component too , narrow the accident coverage. This mainly lack the powerful data communication means. Having already put forward the concept protected systematically abroad, this meant the safe automatics mainly at that time. Because the function of relay protection is not only limited to excising the trouble component and restriction accident coverage (this is primary task), the peace and steadiness that will be guaranteed the whole system run . This require each protect unit can share the whole operation and data , trouble of information of system, each protect unit and coincident floodgate device coordination on the basis of analysing the information and data, guarantee systematic peace and steadiness run . Obviously , realize the primary condition that system protect the whole system every protector of capitalequipment link with the computer network, namely the one that realized the computer protector is networked. This is totally possible under present technological condition .To general protecting systematically , realize the computer networking of the protector has a very great advantage too. It continue electric trouble not the less many in information not systematic can receiving protector ,for trouble nature , judgement and the trouble,trouble of position from measuring the less accurate. Protect to self-adaptation research of principle pass long time very already , make certain achievement too, but should really realize protecting the self-adaptation to the operation way of the system and trouble state, must obtain more system operating and trouble information , the computer that only realizes protecting is networked, could accomplish this . As to the thing that some protectors realize computer networking , can improve the dependability protected . Tianjin Sanxia vltrahigh voltage many return circuit bus bar , 500kv of power station , put forward one distributed principle that bus bar protected to future 1993 such as university, succeed in developing this kind of device tentatively. Principle its bus bar is it disperse several (with protect into bus bar back to way the same ) bus bar protect Entrance to protect traditional concentration type, disperse and install it in every return circuit is protected and rejected , each protect the unit to link with the computer network, each one protects the electric current amount that the unit only inputs a return circuit , after changing it into figure amount, convey to the protection units of other return circuits through the computer network, each protect the unit according to the electric current amount of this return circuit and electric current amount of other return circuits gotfrom computer network, carry on bus bar differential calculation that protect, if result of calculation prove bus bar trouble jump format return circuit circuit breaker only, isolate the bus bar of the trouble. At the time of the trouble outside the bus bar district , each protect the unit and calculate for movements of the external trouble. This kind protect principle by distributed bus barthat network realize with computer, bus bar protect principle have higher dependability than traditional concentration type. Because if one protect unit interfere or mistake in computation and when working up by mistake, can only jump format return circuit , can is it make bus bar to be whole of malignant accident that excise to cause wrong, this is very important to systematic pivot with supervoltage bus bar of hydropower station like SanxiaCan know computer protector networked to can raise and protect the performance and dependability greatly while being above-mentioned, this is an inexorable trend that a computer protects development 3) Protect , control , measure , data communication integratesOn terms that realize computerization of relay protection and networked, the protector is a high performance , multi-functional computer in fact, it is a intelligent terminal on the computer network of whole power system. It can obtain any information and data of operating and trouble of the power system from network , can convey network control centre or any terminal function , and can also finish the measurement , control , data communication function in there is no normal running of trouble cases, namely realize protecting ,controlling , measuring , data communication integrates.At present, for measurement, need that protects and controlling, all equipment of the outdoor transformer substation, two voltage, electric current of voltage transformer, circuit,etc. must with control cable guide to the top management room for instance. Lay control cable take a large amount of investment, make the very much complicated returncircuit 2 times in a large amount. But if above-mentioned protection, control, measure, data communication integrated computer device, install in to is it by the equipment , protect into voltage , electric current amount of equipment in device this after changing into the figure amount to protect outdoor transformer substation on the spot, send to the top management room through the computer network, can avoid a large number of controlcables . If use optic fibre as the transmission medium of the network , can avoid and interfere electromagnetically. The photocurrent mutual inductor of now (ota ) and photovoltage mutual inductor (otv ) have been already during the course of studying and testing, must get application in the power system in the future. In case of adopting ota and otv, namely should be putting and is being protected near the equipment.After the optical signals of ota and otv are input in the integrated device here and changes into an electric signal, what is on one hand uses as being protected calculation is judged ; As measurement amount on the other hand, send to the top management room through the network. Can to protect operation of equipment control order send this integrated device to through network from top management room, therefore the integrated device carries out the operation of the circuit breaker. The university of Tianjin put forward protecting,controlled , measured , communication integration in 1992, develop based on tms320c25 digital signal processor (dsp ) first protecting , control , measure , the integrated device of data communication.4)IntelligentIn recent years, if artificial intelligence technology neural network, hereditary algorithm, evolve plan , fuzzy logic ,etc. get application in power system all field, the research that is used in the field of relay protection has already begun too. Neural network one non-linear method that shine upon, a lot of difficult to list equation or difficult in order to the complicated non-linear question that is solved, use the method of the neural network to be very easily solved .For example the short circuit of crossing the resistance of courseof emergence is a non-linear problem in transmit electricity in the systematic electric potential angle of both sides of line and lay cases, it is very difficult to make discrimination , trouble of position while being correct for distance to protect, is it work up or is it work up to refuse by mistake to lead to the fact; If use neural network method, through a large number of trouble training of sample, so long as sample centralized to fully consider various kinds of situations, can differentiate correctly while any trouble takes place. Other if hereditary algorithm , is it is it have is it solve complicated abilityof problem to asking unique their too to plan to evolve. Artificial intelligence the being method proper to is it can make it solve speed to be fast not to ask to combine. Can predict , the artificial intelligence technology must get application in the field of relay protection, in order to solve the problem difficult to solvewith the routine method.中文翻译:继电保护的现状与发展一、继电保护发展现状电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。

(完整版)电气专业中英文对照翻译毕业设计论文

(完整版)电气专业中英文对照翻译毕业设计论文

优秀论文审核通过未经允许切勿外传Chapter 3 Digital Electronics3.1 IntroductionA circuit that employs a numerical signal in its operation is classified as a digital circuitputers,pocket calculators, digital instruments, and numerical control (NC) equipment are common applications of digital circuits. Practically unlimited quantities of digital information can be processed in short periods of time electronically. With operational speed of prime importance in electronics today,digital circuits are used more frequently.In this chapter, digital circuit applications are discussed.There are many types of digital circuits that electronics, including logic circuits, flip-flop circuits, counting circuits, and many others. The first sections of this unit discuss the number systems that are basic to digital circuit understanding. The remainder of the chapter introduces some of the types of digital circuits and explains Boolean algebra as it is applied to logic circuits.3.2 Digital Number SystemsThe most common number system used today is the decimal system,in which 10 digits are used for counting. The number of digits in the systemis called its base (or radix).The decimal system,therefore,the counting process. The largest digit that can be used in a specific place or location is determined by the base of the system. In the decimal system the first position to the left of the decimal point is called the units place. Any digit from 0 to 9 can be used in this place.When number values greater than 9 are used,they must be expressed with two or more places.The next position to the left of the units place in a decimal system is the tens place.The number 99 is the largest digital value that can be expressed by two places in the decimal system.Each place added to the left extends the number system by a power of 10.Any number can be expressed as a sum of weighted place values.The decimal number 2583,for example, is expressed as (2×1000)+(5×100)+(8×10)+(3×1).The decimal number system is commonly used in our daily lives. Electronically, the binary system.Electronically,the value of 0 can be associated with a low-voltage value or no voltage. The number 1 can then be associated with a voltage value larger than 0. Binary systems that use these voltage values are said to , this chapter.The two operational states of a binary system,1 and 0,are natural circuit conditions. When a circuit is turned off or the off, or 0,state. An electrical circuit that the on,or 1,state. By using transistor or ICs,it is electronically possible to change states in less than a microsecond. Electronic devices make it possible to manipulate millions of 0s and is in a second and thus to process information quickly.The basic principles of numbering used in decimal numbers apply ingeneral to binary numbers.The base of the binary system is 2,meaning that only the digits 0 and 1 are used to express place value. The first place to the left of the binary point,or starting point,represents the units,or is,location. Places to the left of the binary point are the powers of 2.Some of the place values in base 2 are 2º=1,2¹=2,2²=4,2³=8,2⁴=16,25=32,and 26=64.When bases other than 10 are used,the numbers should example.The number 100₂(read“one,zero,zero, base 2”)is equivalent to 4 in base 10,or 410.Starting with the first digit to the left of the binary point,this number this method of conversion a binary number to an equivalent decimal number,write down the binary number first. Starting at the binary point,indicate the decimal equivalent for each binary place location where a 1 is indicated. For each 0 in the binary number leave a blank space or indicate a 0 ' Add the place values and then record the decimal equivalent.The conversion of a decimal number to a binary equivalent is achieved by repetitive steps of division by the number 2.When the quotient is even with no remainder,a 0 is recorded.When the quotient process continues until the quotient is 0.The binary equivalent consists of the remainder values in the order last to first.3.2.2 Binary-coded Decimal (BCD) Number SystemWhen large numbers are indicated by binary numbers,they are difficult to use. For this reason,the Binary-Coded Decimal(BCD) method of counting was devised. In this system four binary digits are used to represent each decimal digit.To illustrate this procedure,the number 105,is converted to a BCD number.In binary numbers,To apply the BCD conversion process,the base 10 number is first divided into digits according to place values.The number 10510 gives the digits 1-0-5.Converting each displayed by this process with only 12 binary numbers. The between each group of digits is important when displaying BCD numbers.The largest digit to be displayed by any group of BCD numbers is 9.Six digits of a number-coding group are not used at all in this system.Because of this, the octal (base 8) and the binary form but usually display them in BCD,octal,or a base 8 system is 7. The place values starting at the left of the octal point are the powers of eight: 80=1,81=8,82=64,83=512,84=4096,and so on.The process of converting an octal number to a decimal number is the same as that used in the binary-to-decimal conversion process. In this method, equivalent decimal is 25810.Converting an octal number to an equivalent binary number is similar to the BCD conversion process. The octal number is first divided into digits according to place value. Each octal digit is then converted into an equivalent binary number using only three digits.Converting a decimal number to an octal number is a process of repetitive division by the number 8.After the quotient determined,the remainder is brought down as the place value.When the quotient is even with no remainder,a 0 is transferred to the place position.The number for converting 409810 to base 8 is 100028.Converting a binary number to an octal number is an importantconversion process of digital circuits. Binary numbers are first processed at a very output circuit then accepts this signal and converts it to an octal signal displayed on a readout device.must first be divided into groups of three,starting at the octal point.Each binary group is then converted into an equivalent octal number.These numbers are then combined,while remaining in their same respective places,to represent the equivalent octal number.3.2.4 Hexadecimal Number SystemThe digital systems to process large number values.The base of this system is 16,which means that the largest number used in a place is 15.Digits used by this system are the numbers 0-9 and the letters A-F. The letters A-P are used to denote the digits 10-15,respectively. The place values to the left of the .The process of changing a proper digital order.The place values,or powers of the base,are then positioned under the respective digits in step 2.In step 3,the value of each digit is recorded. The values in steps 2 and 3 are then multiplied together and added. The sum gives the decimal equivalent value of a . Initially,the converted to a binary number using four digits per group. The binary group is combined to form the equivalent binary number.The conversion of a decimal number to a ,as with other number systems. In this procedure the division is by 16 and remainders can be as large as 15.Converting a binary number to a groups of four digits,starting at the converted to a digital circuit-design applications binary signals arefar superior to those of the octal,decimal,or be processed very easily through electronic circuitry,since they can be represented by two stable states of operation. These states can be easily defined as on or off, 1 or 0,up or down,voltage or no voltage,right or left,or any other two-condition states. There must be no in-between state.The symbols used to define the operational state of a binary system are very important.In positive binary logic,the state of voltage,on,true,or a letter designation (such as A ) is used to denote the operational state 1 .No voltage,off,false,and the letter A are commonly used to denote the 0 condition. A circuit can be set to either state and will remain in that state until it is caused to change conditions.Any electronic device that can be set in one of two operational states or conditions by an outside signal is said to be bistable. Relays,lamps,switches,transistors, diodes and ICs may be used for this purpose. A bistable device .By using many of these devices,it is possible to build an electronic circuit that will make decisions based upon the applied input signals. The output of this circuit is a decision based upon the operational conditions of the input. Since the application of bistable devices in digital circuits makes logical decisions,they are commonly called binary logic circuits.If we were to draw a circuit diagram for such a system,including all the resistors,diodes,transistors and interconnections,we would face an overwhelming task, and an unnecessary one.Anyone who read the circuit diagram would in their mind group the components into standard circuits and think in terms of the" system" functions of the individual gates. Forthis reason,we design and draw digital circuit with standard logic symbols. Three basic circuits of this type are used to make simple logic decisions.These are the AND circuit, OR circuit, and the NOT circuit.Electronic circuits designed to perform logic functions are called gates.This term refers to the capability of a circuit to pass or block specific digital signals.The logic-gate symbols are shown in Fig.3-1.The small circle at the output of NOT gate indicates the inversion of the signal. Mathematically,this action is described as A=.Thus without the small circle,the rectangle would represent an amplifier (or buffer) with a gain of unity.An AND gate the 1 state simultaneously,then there will be a 1 at the output.The AND gate in Fig. 3-1 produces only a 1 out-put when A and B are both 1. Mathematically,this action is described as A·B=C. This expression shows the multiplication operation. An OR gate Fig.3-1 produces a when either or both inputs are l.Mathematically,this action is described as A+B=C. This expression shows OR addition. This gate is used to make logic decisions of whether or not a 1 appears at either input.An IF-THEN type of sentence is often used to describe the basic operation of a logic state.For example,if the inputs applied to an AND gate are all 1,then the output will be 1 .If a 1 is applied to any input of an OR gate,then the output will be 1 .If an input is applied to a NOT gate,then the output will be the opposite or inverse.The logic gate symbols in Fig. 3-1 show only the input and output connections. The actual gates,when wired into a digital circuit, would pin 14 and 7.3.4 Combination Logic GatesWhen a NOT gate is combined with an AND gate or an OR gate,it iscalled a combination logic gate. A NOT-AND gate is called a NAND gate,which is an inverted AND gate. Mathematically the operation of a NAND gate is A·B=. A combination NOT-OR ,or NOR,gate produces a negation of the OR function.Mathematically the operation of a NOR gate is A+B=.A 1 appears at the output only when A is 0 and B is 0.The logic symbols are shown in Fig. 3-3.The bar over C denotes the inversion,or negative function,of the gate.The logic gates discussed .In actual digital electronic applications,solid-state components are ordinarily used to accomplish gate functions.Boolean algebra is a special form of algebra that was designed to show the relationships of logic operations.Thin form of algebra is ideally suited for analysis and design of binary logic systems.Through the use of Boolean algebra,it is possible to write mathematical expressions that describe specific logic functions.Boolean expressions are more meaningful than complex word statements or or elaborate truth tables.The laws that apply to Boolean algebra are used to simplify complex expressions. Through this type of operation it may be possible to reduce the number of logic gates needed to achieve a specific function before the circuits are designed.In Boolean algebra the variables of an equation are assigned by letters of the alphabet.Each variable then exists in states of 1 or 0 according to its condition.The 1,or true state,is normally represented by a single letter such as A,B or C.The opposite state or condition is then described as 0,or false,and is represented by or A’.This is described as NOT A,A negated,or A complemented.Boolean algebra is somewhat different from conventional algebra withrespect to mathematical operations.The Boolean operations are expressed as follows:Multiplication:A AND B,AB,,A·BOR addition:A OR B .A+BNegation,or complementing:NOT A,,A’Assume that a digital logic circuit only C is on by itself or when A,B and C are all on expression describes the desired output. Eight (23) different combinations of A,B,and C exist in this expression because there are three,inputs. Only two of those combinations should cause a signal that will actuate the output. When a variable is not on (0),it is expressed as a negated letter. The original statement is expressed as follows: With A,B,and C on or with A off, B off, and C on ,an output (X)will occur:ABC+C=XA truth table illustrates if this expression is achieved or not.Table 3-1 shows a truth table for this equation. First,ABC is determined by multiplying the three inputs together.A 1 appears only when the A,B,and C inputs are all 1.Next the negated inputs A andB are determined.Then the products of inputs C,A,and B are listed.The next column shows the addition of ABC and C.The output of this equation shows that output 1 is produced only when C is 1 or when ABC is 1.A logic circuit to accomplish this Boolean expression is shown in Fig. 3-4.Initially the equation is analyzed to determine its primary operational function.Step1 shows the original equation.The primary function is addition,since it influences all parts of the equation in some way.Step 2 shows the primary function changed to a logic gate diagram.Step 3 showsthe branch parts of the equation expressed by logic diagram,with AND gates used to combine terms.Step 4 completes the process by connecting all inputs together.The circles at inputs,of the lower AND gate are used to achieve the negative function of these branch parts.The general rules for changing a Boolean equation into a logic circuit diagram are very similar to those outlined.Initially the original equation must be analyzed for its primary mathematical function.This is then changed into a gate diagram that is inputted by branch parts of the equation.Each branch operation is then analyzed and expressed in gate form.The process continues until all branches are completely expressed in diagram formmon inputs are then connected together.3.5 Timing and Storage ElementsDigital electronics involves a number of items that are not classified as gates.Circuits or devices of this type the operation of a system.Included in this system are such things as timing devices,storage elements,counters,decoders,memory,and registers.Truth tables symbols,operational characteristics,and applications of these items will be presented an IC chip. The internal construction of the chip cannot be effectively altered. Operation is controlled by the application of an external signal to the input. As a rule,very little work can be done to control operation other than altering the input signal.The logic circuits in Fig. 3-4 are combinational circuit because the output responds immediately to the inputs and there is no memory. When memory is a part of a logic circuit,the system is called sequential circuit because its output depends on the input plus its an input signal isapplied.A bistable multivibrator,in the strict sense,is a flip-flop. When it is turned on,it assumes a particular operational state. It does not change states until the input is altered.A flip-flop opposite polarity.Two inputs are usually needed to alter the state of a flip-flop. A variety of names are used for the inputs.These vary a great deal between different flip-flops.1. R-S flip-flopsFig.3-5 shows logic circuit construction of an R-S flip-flop. It is constructed from two NAND gates. The output of each NAND provides one of the inputs for the other NAND. R stands for the reset input and S represents the set input.The truth table and logic symbol are shown in Fig. 3-6.Notice that the truth table is somewhat more complex than that of a gate. It shows, for example,the applied input, previous output,and resulting output.To understand the operation of an R-S flip-flop,we must first look at the previous outputs.This is the status of the output before a change is applied to the input. The first four items of the previous outputs are Q=1 and =0. The second four states this case of the input to NANDS is 0 and that is 0,which implies that both inputs to NANDR are 1.By symmetry,the logic circuit will also stable with Q0 and 1.If now R momentarily becomes 0,the output of NANDR,,will rise to resulting in NANDS be realized by a 0 at S.The outputs Q and are unpredictable when the inputs R and S are 0 states.This case is not allowed.Seldom would individual gates be used to construct a flip-flop,rather than one of the special types for the flip-flop packages on a single chipwould be used by a designer.A variety of different flip-flops are used in digital electronic systems today. In general,each flip-flop type R-S-T flip-flop for example .is a triggered R-S flip-flop. It will not change states when the R and S inputs assume a value until a trigger pulse is applied. This would permit a large number of flip-flops to change states all at the same time. Fig. 3-7 shows the logic circuit construction. The truth table and logic symbol are shown in Fig. 3-8. The R and S input are thus active when the signal at the gate input (T) is 1 .Normally,such timing,or synchronizing,signals are distributed throughout a digital system by clock pulses,as shown in Fig. 3-9.The symmetrical clock signal provides two times each period.The circuit can be designed to trigger at the leading or trailing edge of the clock. The logic symbols for edge trigger flip-flops are shown in Fig.3-10.2. J-K flip-flopsAnother very important flip-flop unpredictable output state. The J and K inputs addition to this,J-K flip-flops may employ preset and preclear functions. This is used to establish sequential timing operations. Fig.3-11 shows the logic symbol and truth table of a J-K flip-flop.3. 5. 2 CountersA flip-flop be used in switching operations,and it can count pulses.A series of interconnected flip-flops is generally called a register.Each register can store one binary digit or bit of data. Several flip-flops connected form a counter. Counting is a fundamental digital electronic function.For an electronic circuit to count,a number of things must beachieved. Basically,the circuit must be supplied with some form of data or information that is suitable for processing. Typically,electrical pulses that turn on and off are applied to the input of a counter. These pulses must initiate a state change in the circuit when they are received. The circuit must also be able to recognize where it is in counting sequence at any particular time. This requires some form of memory. The counter must also be able to respond to the next number in the sequence. In digital electronic systems flip-flops are primarily used to achieve counting. This type of device is capable of changing states when a pulse is applied,output pulse.There are several types of counters used in digital circuitry today.Probably the most common of these is the binary counter.This particular counter is designed to process two-state or binary information. J-K flip-flops are commonly used in binary counters.Refer now to the single J-K flip-flop of Fig. 3-11 .In its toggle state,this flip-flop is capable of achieving counting. First,assume that the flip-flop is in its reset state. This would cause Q to be 0 and Q to be 1 .Normally,we are concerned only with Q output in counting operations. The flip-flop is now connected for operation in the toggle mode. J and K must both be made the 1 state. When a pulse is applied to the T,or clock,input,Q changes to 1.This means that with one pulse applied,a 1 is generated in the output. The flip-flop the next pulse arrives,Q resets,or changes to 0. Essentially,this means that two input pulses produce only one output pulse. This is a divide-by-two function.For binary numbers,counting is achieved by a number of divide-by-two flip-flops.To count more than one pulse,additional flip-flops must be employed. For each flip-flop added to the counter,its capacity is increased by the power of 2. With one flip-flop the maximum count was 20,or 1 .For two flip-flops it would count two places,such as 20 and 21.This would reach a count of 3 or a binary number of 11.The count would be 00,01,10,and 11. The counter would then clear and return to 00. In effect, this counts four state changes. Three flip-flops would count three places,or 20,21,and 22.This would permit a total count of eight state changes.The binary values are 000,001,010,011,100,101,110 and 111.The maximum count is seven,or 111 .Four flip-flops would count four places,or 20,21,22,and 23.The total count would make 16 state changes. The maximum count would be 15,or the binary number 1111.Each additional flip-flop would cause this to increase one binary place.河南理工大学电气工程及其自动化专业中英双语对照翻译。

电气专业毕业设计英文文献

电气专业毕业设计英文文献

hcihw yb stsinahcem eht fo sseldrager yaler tnerruc-revo na sa demret eb dluow serusaem evitcerroc gnitaitini dna noitidnoc eht gnizingocer rof ecived ehT .noitca laidemer ekat ot yrassecen si ti ,detarelot eb nac hcihw taht naht retaerg si enihcam a ro tiucric cirtcele na ot tnerruc eht fi ,elpmaxe roF .deilppa eb ya m hcihw sngised yaler eht fo tnednepedni etiuq era stiucric rewop cirtcele fo noitcetorp fo selpicnirp ehT .noitargetni yb gnipoleved noitacinummoc atad dna erusaem ,lortnoc ,tcetorp ,tnegilletni si gnikrowten ,noitaziretupmoc ot si ygcetorp enil retupmocorcim spoleved etutitsni hcraeseR noitamotuA rewop cirtcelE gnijnaN ehT .tnemevom tnemtsevni ,lasiarppa hguorht 4991 ni ,9891 ni rehtona retfa eno osla noitcetorp sremrofsnart fo knaB ?rotareneg eht dn a noitcetorp rotareneg eht ,noitcetorp msitengam sesol spoleved ygolonhceT dna ecneicS fo ytisrevinU gnohzauH dna ytisrevinU tsaehtuoS eht hcihw rotareneg eht ,tcepsa noitcetorp tnempiuqe niam eht nI .yaw eht evap ot retupmocorcim eht rof noitomorp eht detcetorp ,egap wen eht yrotsih noitcetorp yaler yrtnuoc ruo ni denepo sah ,]5[ metsys eht ni noitacilppa eht deniatbo dna ,lasiarppa eht hguorht tsrif ecived evitcetorp retupmocorcim enil noissimsnart eht depoleved etutitsni rewop cirtcele anihC htroN lanigiro eht 4891 ni .ecived evitcetorp retupmocorcim nrettap tnereffid eht ,elpicnirp tnereffid eht depoleved sah rehtona retfa eno etutitsni hcraeseR noitamotuA rewop cirtcelE gnijnaN eht dna ytisrevinU gniqgnohC eht ,ytisrevinU gnotoaiJ iahgnahS ,ytisrevinU n ijnaiT eht ,ytisrevinU gnotoaiJ na'iX ,etutitsni rewop cirtcele anihC htroN eht ,ytisrevinU tsaehtuoS eht ,ygolonhceT dna ecneicS fo ytisrevinU gnohzauH .noitcnuf s'rennurerof etutitsni draytruoc hcraeser cifitneics eht dna gninrael rehgih fo snoitutitsni eht ,]4[ s07 etal eht morf hcraeser noitcetorp yaler retupmoc eht detrats yleman yrtnuoc ruO .enil vk005 eht no dna vk022 ynam ni devom osla noitcetorp ycneuqerf hgih noitcerid epyt noitasnepmoc egatlov esahp tiucric detargetni s'tnempoleved noitarepooc tn alP noitamotuA rewop cirtcelE gnijnaN eht dna ytisrevinU nijnaiT eht ,]3[ elor laitneulfni eht detcetorp ycneuqerf hgih etutitsni hcraeseR noitamotuA rewop cirtcelE gnijnaN

电子电气专业毕业外文翻译

电子电气专业毕业外文翻译

DC Switching Power Supply Protection TechnologyAbstract: The DC switching power supply protection system, protection system design principles and machine protection measures, an analysis of switching power supply in the range of protected characteristics and its design methodology, introduced a number of practical protection circuit.Keywords: switching power supply protection circuit system designA、IntroductionDC switching regulator used in the price of more expensive high-power switching devices, the control circuit is also more complex, In addition, the load switching regulators are generally used a large number of highly integrated electronic systems installed devices. Transistors and integrated device tolerance electricity, less heat shocks. Switching Regulators therefore should take into account the protection of voltage regulators and load their own safety. Many different types of circuit protection, polarity protection, introduced here, the program protection, over-current protection, over-voltage protection, under-voltage protection and over-temperature protection circuit. Usually chosen to be some combination of protection, constitutes a complete protection system.B、Polarity protectionDC switching regulator input is generally not regulated DC power supply. Operating errors or accidents as a result of the situation will take its wrong polarity; switching power supply will be damaged. Polarity protection purposes, is to make the switching regulator only when the correct polarity is not connected to DC power supply regulator to work at. Connecting a single device can achieve power polarity protection. Since the diode D to flow through switching regulator input total current, this circuit applied in a low-power switching regulator more suitable. Power in the larger occasion,while the polarity protection circuit as a procedure to protect a link, save the power required for polarity protection diodes, power consumption will be reduced. In order to easy to operate, make it easier to identify the correct polarity or not, collect the next light.C、Procedures to protectSwitching power supply circuit is rather complicated, basically can be divided into low-power and high-power part of the control part of the switch. Switch is a high-power transistors, for the protection of the transistor switch is turned on or off power safety, we must first modulator, amplifier and other low-power control circuit. To this end, the boot to ensure the correct procedures. Switching Regulators generally take the input of a small inductor, the input filter capacitor. Moment in the boot, filter capacitor will flow a lot of surge current, the surge current can be several times more than the normal input current. Such a large surge current may contact the general power switch or relay contact melting, and the input fuse. In addition, the capacitor surge current will damage to shorten the life span of premature damage. To this end, the boot should be access to a current limiting resistor, through the current limiting resistor to capacitor charging. In order not to make the current limiting resistor excessive power consumption, thus affecting the normal switching regulator, and the transient process in the boot after a short period then automatically relays it to DC power supply directly to the switching regulator power supply. This circuit switching regulator called a "soft start" circuit.Switching regulator control circuit of the logic components required or op-amp auxiliary power supply. To this end, the auxiliary power supply must be in the switch circuit. This control circuit can be used to ensure the boot. Normal boot process is: to identify the polarity of input power, voltage protection procedures → boot → auxiliary power supply circuit and through current limiting resis tor R of the switching regulator input capacitor C →charge modulation switching regulator circuit, → short-circuit current limiting resistor stability switching regulator.In the switching regulator, the machines just because the output capacitance, and charge to the rated output voltage value of the need for a certain period of time. During this time, sampling the output amplifier with low input voltage sampling, closed-loop regulation characteristics of the system will force the switching of the transistor conduction time lengthened, so that switching transistor during this period will tend to continuous conduction, and easily damaged. To this end, the requirements of this paragraph in the boot time, the switch to switch the output modulation circuit transistor base drive signal of the pulse width modulation, can guarantee the switching transistor by the cut-off switches are becoming more and more normal state, therefore the protection of the setting up of a boot to tie in with the soft start.D、Over-current protectionWhen the load short-circuit, overload control circuit failure or unforeseen circumstances, such as would cause the flow of switching voltage regulator transistor current is too large, so that increased power tubes, fever, if there is no over-current protection device, high power switching transistor may be damaged. Therefore, the switching regulator in the over-current protection is commonly used. The most economical way is to use simple fuse. As a result of the heat capacity of small transistors, general fuse protection in general can not play a role in the rapid fuse common fuse. This method has the advantage of the protection of vulnerable, but it needs to switch transistor in accordance with specific security requirements of the work area to select the fuse specifications. This disadvantage is over-current protection measures brought about by the inconvenience of frequent replacement of fuses.Linear voltage regulator commonly used in the protection and currentlimiting to protect the cut-off in the switching regulator can be applied. However, according to the characteristics of switching regulators, the protection circuit can not directly control the output transistor switches, and over current protection must be converted to pulse output commands to control the modulator to protect the transistor switch. In order to achieve over-current protection are generally required sampling resistor in series in the circuit, this will affect the efficiency of power supply, so more for low-power switching regulator of occasions. In the high-power switching power supply, by taking into account the power consumption should be avoided as far as possible access to the sampling resistor. Therefore, there will usually be converted to over-current protection, and under-voltage protection.E、Over-voltage protectionSwitching regulator's input over-voltage protection, including over-voltage protection and output over-voltage protection. Switching regulator is not used in DC power supply voltage regulator and rectifier, such as battery voltage, if too high, so switching regulator is not working properly, or even damage to internal devices, therefore, it is necessary to use the input over-voltage protection circuit. Using transistors and relays protection circuit.In the circuit, when the input DC power supply voltage higher than the voltage regulator diode breakdown voltage value, the breakdown voltage regulator tube, a current flowing through resistor R, so that V turn-on transistor, relay, normally closed contact off open, cut off the input. Voltage regulator voltage regulator which controls the value of Vs. = Earwax-UBE. The polarity of input power with the input protection circuit can be combined with over-voltage protection, polarity protection constitute a differential circuit and over voltage protection.Output over-voltage protection switching power supply is essential. In particular, for the 5V output of the switching regulator, it is a lot of load on a high level of integration of the logic device. If at work, switching regulator sudden damage to the switch transistor, the output potential may be increased immediately to the importation of non-regulated DC power supply voltage value, causing great loss instantaneous. Commonly used method is short-circuit protection thirsted. The simplest over-voltage protection circuit. When the output voltage is too high, the regulator tube breakdown triggered thirstier turn-on, the output short-circuit, resulting in over-current through the fuse or circuit protective device to cut off the input to protect the load. This circuit is equivalent to the response time of the opening time of thirstier is about 5 ~ 10μs. The disadvantage is that its action is fixed voltage, temperature coefficient, and action points of instability. In addition, there is a voltage regulator control parameters of the discrete, model over-voltage start-up the same but has different values, difficult to debug. Esc a sudden increase in output voltage, transistors V1, V2 conduction, the thruster conduction. Reference voltage Vs. by type.F、Under-voltage protectionOutput voltage below the value to reflect the input DC power supply, switching regulator output load internal or unusual occurrence. Input DC power supply voltage drops below the specified value would result in switching regulator output voltage drops, the input current increases, not only endanger the switching transistor, but also endanger the input power. Therefore, in order to set up due to voltage protection. Due to simple voltage protection.When no voltage regulator input normal, ZD breakdown voltage regulator tube, transistors V conduction, the relay action, contact pull-in, power-switching regulator. When the input below the minimum allowable voltage value, the regulator tube ZD barrier, V cut-off, contact Kai-hop,switching regulator can not work. Internal switching regulator, as the control switch transistor circuit disorders or failure will decrease the output voltage; load short-circuit output voltage will also decline.Especially in the reversed-phase step-up or step-up switching regulator DC voltage of the protection due to over-current protection with closely related and therefore more important. Implementation of Switching Regulators in the termination of the output voltage comparators.Normally, there is no comparator output, once the voltage drops below the allowable value in the comparator on the flip, drive alarm circuit; also fed back to the switching regulator control circuit, so that switching transistor cut-off or cut off the input power.G、Over-temperature protectionSwitching regulator and the high level of integration of light-weight small volume, with its unit volume greatly increased the power density, power supply components to its work within the requirements of the ambient temperature is also a corresponding increase. Otherwise, the circuit performance will deteriorate premature component failure. Therefore, in high-power switching regulator should be set up over-temperature protection.Relays used to detect the temperature inside the power supply temperature, when the internally generated power supply overheating, the temperature of the relay on the action, so that whole circuit in a warning alarm, and the realization of the power supply over-temperature protection. Temperature relay can be placed in the vicinity of the switching transistor, the general high-power tube shell to allow the maximum temperature is 75 ℃, adjust the temperature setting to 60 ℃. When the shell after the temperature exceeds the allowable value to cut off electrical relay on the switch protection. Semiconductor switching device thermal "hot thirstier," in the over-temperature protection, played an important role. It can be used asdirected circuit temperature. Under the control of p-hot-gate thirstier (TT102) characteristics, by RT value to determine the temperature of the device turn-on, RT greater the temperature the lower the turn-on. When placed near the power switching transistor or power device, it will be able to play the role of temperature instructions. When the power control the temperature of the shell or the internal device temperature exceeds the allowed value, the heat conduction thirstier on, so that LED warning light. If the opt coupler with, would enable the whole circuit alarm action to protect the switching regulator. It can also be used as a power transistor as the over-temperature protection, crystal switch the base current by n-type gate control thirstier TT201 thermal bypass, cut-off switch to cut off the collector current to prevent overheating.I、ConclusionDiscussed above in the switching regulator of a variety of conservation, and introduces a number of specific ways to achieve. Of a given switching power supply is concerned, but also protection from the whole to consider the following points:1) The switching regulator used in the switching transistor in the DC security restrictions on the work of regional work. The transistor switches selected by the manual available transistors get DC safe working area. According to the maximum collector current to determine the input value of over-current protection. However, the instantaneous maximum value should be converted to the average current. At rated output current and output voltage conditions, the switch of the dynamic load line does not exceed a safe working area DC maximum input voltage, input over-voltage protection is the voltage value.2)The switching regulator output limit given by the technical indicators within. Work within the required temperature range, the switching regulator's output voltage, the lower limit of the output is off, due to thevoltage value of voltage protection. Over-current protection can be based on the maximum output current to determine. False alarm in order not to protect the value of a certain margin to remain appropriate.3)From the above two methods to determine the protection after the power supply device in accordance with the needs of measures to determine the alarm. Measures the general alarm sound and light alarm two police. Voice of the police applied to more complex machines, power supply parts and do not stand out in a place, it can give staff an effective warning of failure; optical Police instructions can be eye-catching and fault alarm and pointed out that the fault location and type. Protection measures should be protected as to determine the location. In the high-power, multi-channel power supply, always paying, DC circuit breakers, relays, etc. high-sensitivity auto-protection measures, to cut off the input power supply to stop working the system from damage. Through the logic control circuit to make the appropriate program cut-off switch transistor is sensitive it is convenient and economic. This eliminated large, long response time, the price of your high-power relay or circuit breaker.4) The power of putting in the protection circuit will be affected after the reliability of the system, for which want to protect the reliability of the circuit itself is higher in order to improve the reliability of the entire power system, thereby increasing its own power supply MTBF. This requires the protection of strict logic, the circuit is simple, at least components, In addition to the protection circuit should also be considered a failure of maintenance of their difficulty and their power to protect the damage.Therefore, we must be comprehensive and systematic consideration of a variety of switching power supply protection measures to ensure the normal operation of switching power supplies and high-efficiency and high reliability.直流开关稳压电源的保护技术摘要:讨论了直流开关稳压电源的保护系统,提出保护系统设计的原则和整机保护的措施,分析了开关稳压电源中的各种保护的特点及其设计方法,介绍了几种实用保护电路。

一篇电气专业英语文献与翻译

一篇电气专业英语文献与翻译

The Load Estimation and Power Tracking Integrated Control Strategy for Dual-Sides Controlled LCC Compensated WirelessCharging SystemABSTRACT In this paper, the wireless power transfer (WPT) system with dynamic loads such as batteries is studied comprehensively. An integrated control technology of load estimation and power tracking of LCC compensated is proposed, which realizes load estimation, mode judgment and charging control at the transmitter, and standard load setting and decoupling control at the receiver. Based on the inflfluence of reflflection impedance on the output current of the inverter, a method of identifying coupling coeffificient and equivalent load is proposed and a mathematical model is established. Receiver controller provides standard reference load for load estimation. Transmitter controller judges battery status according to the estimation of equivalent load and adopts double closed-loop control to regulate power and current. Receiver decouples control when battery charging voltage reaches the threshold, and providing mode conversion sign for transmitter controller to realize constant current (CC) and constant voltage (CV) charging of battery.The Dual-sides integrated control scheme has no data communication between transmitter and receiver, so it can control independently, which reduces the complexity of the system and is suitable for different charging modes. The proposed controller is more effificient as it maintains a track current, and dynamically alters the pick-up characteristics to suit the load demand. Finally, the simulation and experimental results validate the feasibility of proposed control method, which realizes the estimation of the load and CC/CV charging of the battery. The proposed WPT system achieved the effificiency at 91.16% while delivering 2 kW to the load with a vertical air gap of 150 mm.INDEX TERMS Wireless power transfer, integrated control, load estimation, constant current/voltage charging, LCC compensation, phase shift control.Wireless Power Transmission (WPT) or Contactless Power Transmission (CPT) achieves the power transmission without physical connection, which makes up for the shortcomings of traditional power transmission methods . Wireless charging will promote the development of electric vehicles (EVs), because it provides more convenient, reliable and safer charging options than conductive charging . There are many research fields in WPT for EVs, especially the WPT system is sensitive to coupling coefficient, air gap, resonant frequency, and load change, which makes it hard for There are many research fields in WPT for EVs, especially the WPT system issensitive to coupling coefficient, air gap,resonant frequency, and load change, which makes it hard for robust control, and most scholars focus on the steady state of the WPT systems .When the resonant frequency, position, parameters and load of the wireless charging system change, which result in a higher volt-ampere rating and lower power transfer efficiency. Therefore, resonant compensation is an important part at the transmitter and receiver of the system. Different compensation topologies have been proposed and implemented to tune the two coils working at a resonant frequency in a wide range of applications. there are four basic compensation topologies, namely Series-Series (SS), SeriesParallel (SP), Parallel-Series (PS) and Parallel-Parallel (PP),are widely adopted for EV applications.Many other novel compensation topologies are also used to improve the power transfer efficiency and to simplify the control of WPT systems. Literatures show that LCL topology and series LC topology are the commonly used primary compensation networks for WPT. Compared with series LC, LCL performs better in power conversion efficiency over the full range of coupling and loading imposed, and its constant current source characteristic make its closed-loop control implementation easier. More advantageous compensation topologies are put forward in . The double-sided LCC compensation topology is outstanding since not only is its resonant frequency independent of coupling coefficient and load condition, but also its advantages of facilitating zero voltage switch (ZVS) or zero current switch (ZCS) of the inverter, realize CC charging at zero phase angle (ZPA) condition, increasing lateral misalignment tolerance, and improving WPT efficiency have been demonstrated.The other problem with WPT charger systems is implementing a charge process for EV batteries.Since batteries are considered to be varying loads during charging, the charge converter needs to regulate its output precisely to implement the constant current (CC) charge and constant voltage (CV) mode charge. Thus, meticulous control and tuning of the inverter is necessary since the load varies violently as the receive coil moves with the online EV.This adds to the control complexity and may reduce systematic reliability. In order to improve battery life and charging efficiency, it is necessary for a charger to provide accurate charge current and voltage through stable operations. In recent years, various control strategies have been studied to provide the required output currentorvoltagefortime-varyingloadsatdifferentcharging stages.The traditional control method is to use wireless communication to send the load state information to the transmitter controller to adjust the output power of the inverter to achieve CC/CV charging in . In order to simplify the control of an WPT charger system and avoid the above drawbacks of conventional control methods under wide variations of the load in implementing the CC/CV charge, some researchers have started to utilize the load-independent characteristics of the compensation topologies at their resonant frequencies proposes a design method which makes it possible to implement the CC/CV mode charge with minimum frequency variation during the entire charge process by using the load-independent characteristics of an WPT system under the ZPA condition without any additional switches. But, frequency variation may result in a bifurcation phenomenon,where the control ability and stability of the system are lost.In order to realize ZPA condition in the whole charging process, a switchablehybrid topology is proposed in [19], and [20]. CC and CV charging are realized in different compensation topologies. However, the addition of switches complicates the system, and changes in system parameters can also lead to instability.In[21], a new control technique was proposed, which only employs the controller at transmitting and and load identification approach to adjust charging voltage/current for SS and SP compensated WPT systems. The advantages are that dual-side wireless communication for real-time charging current/voltage adjustment is avoided as well as it is suitable for different charging modes. However, switching between two kinds of topologies is still needed. For the CC/CV charging control at constant frequency, some approaches employ a DC/DC converter to control the output current or voltage while the front-end converter operates at the resonant frequency to achieve the ZPA condition in [22] and [23]. However, this increases the component counts, losses and complexity. In [24], DC/DC converters are used for decoupling control rather than CC or CV charging.In [25]and [26], a single primary-side controller based on phase shift H-bridge inverter are proposed to adjust the charging current or charging voltage against various load, may make it hard for the High frequency inverter to achieve ZVS in full load range, especially with light load condition. Then, the primary-side control method that realizes CC/CV charging for battery is analyzed, which is the main contribution of this paper.The objective of this research is to study and develop a new integrated control strategy for load and power tracking that realizes CC/CV charging for LCC compensation through the double-loop controlled phase shift H-bridge inverter and load identification approach. The system adopts dual-side controller to avoid wireless communication, and the mathematical models of load estimation and mode judgment are derived by using the topological compensation characteristics of double-sided LCC. The working state of the battery is fed back to the transmitter controller by reflecting the impedance of the receiver, and the coupling coefficient of coils and load value are estimated.The transmitter judges the charging mode according to the estimated load, adjusts the output power of the inverter, and maintains CC/CV charging by phase-shifting control. In CC mode, the transmitter can transfer more power and prevents overloading. In CV mode, the output power can be adjusted according to the charging curve. The receiver control circuit adopts Buck-Boost structure. Different from the traditional impedance matching or CC/CV charging control mode, the receiver controller sets the standard reference value of load estimation control by impedance matching. Buck-Boost converter operates in switching mode during charging. When the charging voltage reaches the reference value, the switching action changes the reflection impedance and provides the mode conversion mark for the transmitter. Based on the feedback signal and the amount of transferred power, the controlling module continuously adjusts the transmitting coil current during the charging.The rest of the sections are organized as follows:Section II gives the system structure and basic theoretical analysis. Section III proposes the integrated control method of load estimation and power tracking, and then the double closed-loop PIcontroller of transmitter and receiver is designed. Section IV validates the proposed method with simulations and experiments.Finally,last section summarizes the conclusions drawn from the investigation.II. SYSTEM STRUCTURE AND THEORETICAL ANALYSISIn this section, the system structure and methodology for analyzing the WPT system are discussed. Then, basic output characteristics for LCC compensation are analyzed to propose the Integrated control method on the transmitting side and the receiving side.A.WIRELESS POWER TRANSMISSION SYSTEM TRUCTURE In this paper, the most widely used variable impedance load battery is taken as the research object.Charging characteristic curve of the battery is shown in Figure 1. Charging process includes CC/CV charging. In CC stage, the output power of the power supply increases with the increase of the battery terminal voltage, while the equivalent impedance of the battery increases with little change. In the CV stage, the charge current and power decrease,and the equivalent impedance of the battery increases rapidly.B. LOAD ESTIMATE AND MODEL RECOGNITION The transmitter controller measures Iinv to estimate the load and mutual inductance changes, and judges the working state of the receiver. The inverter operates at ZPA resonant frequency and the controller adjusts fro m 180◦ phase shift, which means that the minimum input voltage is applied to the transmitting coil. According to the requirement of the receiver, the power control unit uses phase shift control to adjust the It and VC to keep the CC and CV working modes at the receiver.The transmitter can control the power output according to the working mode of the receiver and the load demand. In order to achieve this function, the designed controller should be able to estimate mutual inductance and equivalent load, and then judge the charging mode of the receiving end. The control block diagram of load estimation and mode judgment strategy is shown in Figure 5. Where, Rx is the standard reference load of the receiver.CONCLUSION An integrated control method of load estimation and power tracking is proposed in this paper to achieve CC/CV charging.of LCC compensation WPT system. Firstly, through theoretical analysis, the LCC compensation topology can realize the charge of CC mode under ZPA condition, and get the relationship between the equivalent load and the current of the inverters. Then, a standard reference load is set at the receiver so that the transmitter can estimate the equivalent load by calculating the refection impedance and detecting the output current of the inverter. Finally, according to the estimated load value and the conversion mark given by the decoupling control of the receiver, the CC/CV charging for LCC compensation are realized by PI controlled phase shift full-bridge inverter. The simulation and experimental results validate the feasibility of the proposed control method for whole load changes. The proposed WPT system can achieve a high effenciency at 91.16% with a 20-cm air gap when delivering 0.2−2kW to the load in different charging stages.双边控制的LCC补偿型无线充电系统的负载估计与功率跟踪集成控制策略摘要本文对电池等动态负载下的无线电能传输(WPT)系统进行了全面的研究。

电力和配电系统之外文翻译(英)

电力和配电系统之外文翻译(英)

Power Supply and Distribution SystemThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference. Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . Itbrings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system.Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directlygrounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be morepopularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electricdistribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection. At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.。

智能电网供配电系统中英文对照外文翻译文献

智能电网供配电系统中英文对照外文翻译文献

中英文对照资料外文翻译外文资料翻译Power supply system of high-rise building designAbstract: with the continuous development of city size, more and more high-rise buildings, therefore high-rise building electrical design to the designers had to face. In this paper, an engineering example, describes the electrical design of high-rise buildings and some of the more typical issues of universal significance, combined with the actual practice of an engineering solution to the problem described.Key words: high-rise building; electrical design; distribution; load calculation1 Project OverviewThe commercial complex project,with a total construction area of 405570m2,on the ground floor area of 272330m2, underground construction area of 133240m2, the main height of 99m. Project components are: two office buildings, construction area is 70800m2, 28 layers, the standard story is 3.2m.2 Load Calculation1) Load characteristics: electric load, much larger than the "national civil engineering technical measures" Large 120W/m2 indicators, especially in the electricity load more food, and different types of food and beverage catering different cultural backgrounds also high.2) the uncertainty of a large load, because the commercial real estate rents are often based on market demand, and constantly adjust the nature of the shops, making the load in the dynamic changes.3) There is no specification and technical measures in the different types of commercial projects refer to the detailed parameters of the shops, engineering design load calculation in the lack of data, in most cases to rely on staff with previous experience in engineering design calculations.Load the selection of parameters: for the above problems, the load calculation, the first developer of sales and good communication, to determine the form of layers of the forms and nature of floor area, which is calculated on the basis of electrical load basis; followed to determine parameter index within the unit area of shops is also very important and complex because there is no clear indicator of the specification can refer to; and different levels of economic development between cities is not balanced, power indices are also different; will be in the same city, different regions have different consumer groups .3) the need to factor in the choice: parameters determined, the need for load calculation. Need to factor commonly used method, the calculation will not repeat them. Need to explore is the need for coefficient selection, which in the current specifications, manuals and the "unified technical measures" is also not clear requirements, based on years of design experience that most end shops in the distribution or level within the household distribution box with case Kx generally take a while, in the calculation of the loop route to take 0.7 to 0.8, the distribution transformers in the substation calculations take 0.4 to 0.6.3 substations setLoad calculation based on the results of this project the total installed capacity of transformer 43400Kv.A, after repeated consultations with the power company, respectively, in the project in northern, central and southern three sections set the three buildings into three power substations, 1 # set 6 sets 2500Kv.A transformer substation, take the northern section of power supply; 2 # 4 1600Kv.A transformer substations located, plus 6 sets 2000Kv.A transformers, take the middle of the power supply, in addition to 5 Taiwan 10Kv.A high-pressure water chillers (total 4000Kv.A); 3 # substation located 2 units plus 2 units 1000Kv.A 2000Kv.A transformers, take the southern section of A, B twooffice supply. 10Kv power configuration of this project into two points, each at the two 10Kv lines, the power company under the provisions of 10Kv power capacity: maximum load per channel is about to 11000Kv.A, two is the 22000Kv.A, design # 1 , 3 # combination of a substation 10Kv, power line, with a total capacity of 21000Kv.A; 2 # substation transformers and 10Kv, 10Kv chillers sharing a power line, with a total capacity of 22400Kv.A. The design of the substation layout, in addition to meeting regulatory requirements, it also need to consider the high-pressure cabinets, transformers and low voltage power supply cabinet by order of arrangement, especially in low voltage distribution cabinet to feed the cable smooth and easy inspection duty problems are not seriously consider the construction of the cable crossing will cause more long detour, a waste of floor space, and convenient inspections and other issues【8】.4 small fire load power supplyIn the design of large commercial projects often encounter small fire load of electrical equipment and more dispersed distribution, if fed by a substation, a substation will be fed a lot of low-voltage low-current counter circuit breaking capacity circuit breaker and conductor of the dynamic and thermal stability in a certain extent. According to GB50045-1995 "fire protection design of tall buildings," rule "should be used in Fire Equipment dedicated power supply circuit, the power distribution equipment shall be provided with clear signs." Interpretation of the provisions of the power supply circuit means "from the low-voltage main distribution room (including the distribution of electrical room) to last a distribution box, and the general distribution lines should be strictly separated." In this design, the use of methods to increase the level of distribution, that is different from the substation bus segments, respectively, a fire fed a special circuit, set in place two distribution cabinets, distribution cabinets and then the resulting radial allocated to the end of the dual power to vote each box, so that not only meets the specification requirements for dedicated power supply circuit, but also to avoid feeding the substation level of many small current loop.5, the choice of circuit breaker and conductorCommercial real estate projects use the room as the uncertainty in the choice of circuit breakers and conductors must be considered in a certain margin to meet the needs caused by adjustment of the load changes. According to this characteristic, increased use in the design of the plug bus-powered, not only meet the requirements of large carrying capacity, and also allows the flexibility to increase supply and distribution, are reserved in each shaft in the plug-box backup in order to change, according to changes in upper and lower load, to adjust. For example: a bus is responsible for a shaft 1 to 3 layers of power, when a layer due to the change in capacity increases, while the 3-layer capacity is reduced, you can use a spare plug box layer off the 3-layer 1 layer capacity rationing . This level distribution in the substation, select the circuit breaker to choose the setting value when the circuit breaker to adjust to changes at the end to adjust the load setting value; in the bus and the transformer circuit breaker according to the choice of the general framework of values to select . For example: Route certain equipment capacity 530Kv, Kx take 0.7 to calculate current of 704A, select the frame circuit breaker is 1000A, tuning is 800A; current transformer for the 1000/50; bus carrying capacity for the 1000A, this road can meet the maximum 1000A current load requirements, even if there is adjustment, power distribution switches and circuit can not make big changes.6 layer distribution box setAccording to the division of layers of fire protection district, respectively numbered as A ~ K layers within the set level shaft for the retail lighting power distribution box, with one on one power supply shops in radial power. Should be noted that the forms of the complex layers of layers of fire partition, does not correspond to the lower, making some of shaft power in charge of the fire district at the same time, also responsible for the power supply adjacent to the fire district. At design time, using the principle of proximity, while also taking into account the burden of the whole trunk load conditions, so that each shaft as far as possible a more balanced load. PrerequisitesThe loop that you want to auto-tune must be in automatic mode. The loopoutput must be controlled by the execution of the PID instruction. Auto-tune will fail if the loop is in manual mode.Before initiating an auto-tune operation your process must be brought to a stable state which means that the PV has reached setpoint (or for a P type loop, a constant difference between PV and setpoint) and the output is not changing erratically.Ideally, the loop output value needs to be near the center of the control range when auto-tuning is started. The auto-tune procedure sets up an oscillation in the process by making small step changes in the loop output. If the loop output is close to either extreme of its control range, the step changes introduced in the auto-tune procedure may cause the output value to attempt to exceed the minimum or the maximum range limit.If this were to happen, it may result in the generation of an auto-tune error condition, and it will certainly result in the determination of less than near optimal suggested values.Auto-Hysteresis and Auto-DeviationThe hysteresis parameter specifies the excursion (plus or minus) from setpoint that the PV (process variable) is allowed to make without causing the relay controller to change the output. This value is used to minimize the effect of noise in the PV signal to more accurately determine the natural oscillation frequency of the process.If you select to automatically determine the hysteresis value, the PID Auto-Tuner will enter a hysteresis determination sequence. This sequence involves sampling the process variable for a period of time and then performing a standard deviation calculation on the sample results.In order to have a statistically meaningful sample, a set of at least 100 samples must be acquired. For a loop with a sample time of 200 msec, acquiring 100 samples takes 20 seconds. For loops with a longer sample time it will take longer. Even though 100 samples can be acquired in less than 20 seconds for loops with sample times less than 200 msec, the hysteresis determinationsequence always acquires samples for at least 20 seconds.Once all the samples have been acquired, the standard deviation for the sample set is calculated. The hysteresis value is defined to be two times the standard deviation. The calculated hysteresis value is written into the actual hysteresis field (AHYS) of the loop table.TipWhile the auto-hysteresis sequence is in progress, the normal PID calculation is not performed. Therefore, it is imperative that the process be in a stable state prior to initiating an auto-tune sequence. This will yield a better result for the hysteresis value and it will ensure that the process does not go out of control during the auto-hysteresis determination sequence.The deviation parameter specifies the desired peak-to-peak swing of the PV around the set point. If you select to automatically determine this value, the desired deviation of the PV is computed by multiplying the hysteresis value by 4.5. The output will be driven proportionally to induce this magnitude of oscillation in the process during auto-tuning.Auto-Tune SequenceThe auto-tuning sequence begins after the hysteresis and deviation values have been determined. The tuning process begins when the initial output step is applied to the loop output.This change in output value should cause a corresponding change in the value of the process variable. When the output change drives the PV away from setpoint far enough to exceed the hysteresis boundary a zero-crossing event is detected by the auto-tuner. Upon each zero crossing event the auto-tuner drives the output in the opposite direction.The tuner continues to sample the PV and waits for the next zero crossing event.A total of twelve zero-crossings are required to complete the sequence. The magnitude of the observed peak-to-peak PV values (peak error) and the rate at which zero-crossings occur are directly related to the dynamics of the process. Early in the auto-tuning process, the output step value is proportionally adjustedonce to induce subsequent peak-to-peak swings of the PV to more closely match the desired deviation amount. Once the adjustment is made, the new output step amount is written into the Actual Step Size field (ASTEP) of the loop table.The auto-tuning sequence will be terminated with an error, if the time between zero crossings exceeds the zero crossing watchdog interval time. The default value for the zero crossing watchdog interval time is two hours.Figure 1 shows the output and process variable behaviors during an auto-tuning sequence on a direct acting loop. The PID Tuning Control Panel was used to initiate and monitor the tuning sequence.Notice how the auto-tuner switches the output to cause the process (as evidenced by the PV value) to undergo small oscillations. The frequency and the amplitude of the PV oscillations are indicative of the process gain and natural frequency.7 public area distribution box setTaking into account the future needs of the business re-decoration of public areas must be reserved for power. Here the design needs to consider the following points:①question of how much reserve power, lighting and electricity, which according to GB50034-2004 "Architectural Lighting Design Standards" table of Article 6.1.3 and 6.1.8, commercial building lighting power density value, high-end supermarkets, business offices as 20W/m2, under the "decorative lighting included 50% of the total lighting power density calculation" requirements, using the reserved standard 40W/m2.②In order to facilitate the decoration in each partition set fire lighting in public areas and emergency lighting distribution box distribution box, in order to identify the electrical power distribution decoration cut-off point.③the staircase, storage rooms and other parts of the decoration does not need to do, set the power distribution circuit or a separate distribution box, try not to be reserved from the public area of electricity distribution board fed hardcover out.④control of lighting in public areas, the majority in two ways, namely,C-BUS control system or the BA system, the use of C-BUS has the advantage of more flexible control, each road can be fed out of control, adjustable light control; shortcomings is a higher cost. BA system control advantages of using low cost, simple control; disadvantage is that the exchanges and contacts for the three-phase, three-way control may be related both to open, or both, in the decoration of the contacts required to feed the power supply circuit diverge to avoid failure blackouts.Design of distribution box 8In the commercial real estate design, shop design is often only a meter box, and outlet route back to the needs of the user according to their second design, but the shops are difficult to resolve within the power supply fan coil units, air-conditioning system as a whole can not debug. The project approach is to add a circuit breaker in the meter box for the coil power supply, another way for users to use the second design, as shown below.User distribution box design9 distribution cabinet / box number and distribution circuitsLarge-scale projects are often low voltage distribution cabinet / box number, low-voltage circuits to feed the more often there will be cabinet / box number and line number duplication, resulting in the design and the future looks difficult maintenance and overhaul. The project has three 10Kv substations, 20 transformer, hundreds of low-voltage fed out of the closet, fed the circuit more. Accordance with the International Electrotechnical Commission (IEC) and the Chinese national standard requirements:①All the distribution number to be simple and clear, not too box and line numbers are not repeated.②number to simple and clear, not too long.③distinction between nature and type of load.④law was easy to find, make viewer at a glance. Based on the above requirements and on the ground, fire district and the underground construction industry form the different conditions, using two slightly different ways.Essential for the underground garage, uses a single comparison, also relatively fire district neat, according to fire district number, such as AL-BL-1 / 1, AP and APE, the meaning of the letters and numbers: AL on behalf of lighting distribution (AP on behalf of Power distribution box, APE on behalf of the emergency power distribution box); BI on behalf of the basement; 1 / 1 for partition 1, I fire box. Above ground is more complex, more fire district, and on the fire district does not correspond to the lower, according to shaft number is better, such as AL-1-A1, AP, and APE, letters and numbers mean: 1 represents a layer; A1 on behalf of A, No. 1 shaft fed a distribution box. Fed a low-voltage circuits, such as the number of uses: W3-6-AL-1-A1, W3-6) indicates that the route back to power supply transformer 3, 6, feed the power distribution cabinet, AL-1-A1, said the then the first loop of the distribution box for the AL-1-A1 and so on, and so on.10 ConclusionWith more and more complex commercial design projects, designers need to continually improve the design level, designed to make fine. These are only bits of the design in the business lessons learned, and the majority of designers want to communicate译文:浅谈高层建筑供配电系统设计摘要:随着城市规模的不断发展,高层建筑越来越多,因此,高层建筑电气设计就成为设计者不得不面对的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)外文文献翻译文献、资料中文题目:供配电系统文献、资料英文题目:POWER SUPPLY AND DISTRIBUTIONSYSTEM文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14POWER SUPPLY AND DISTRIBUTION SYSTEMABSTRACTThe basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWARDS:power supply and distribution,power distribution reliability,reactive compensation,load distributionTEXTThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and theway has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding andadopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, butdon't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.。

相关文档
最新文档