高考数学复习题库 高考数学归纳法
高考数学复习第七章数列与数学归纳法专题探究课三高考中数列不等式证明的热点题型理市赛课公开课一等奖省名

≤|a2n-a2n-1|+|a2n-1-a2n-2|+…+|an+1-an| ≤13232n-2+232n-3+…+23n-1 =23n-1-232n-1 ≤23-233=1207. 综上,|a2n-an|≤1207.15 分(得分点 4)
7/34
❶得步骤分:抓住得分点步骤,“步步为营”,求得满分.如(1)中,归纳猜测得2分; 用数学归纳法证实得3分,第(2)放缩法证实结论得5分等.
殊到普通结论成立问题.所以,能够在数列不等式证实中大显身手.
【例 1】 (满分 15 分)(2018·绍兴检测)已知数列{an}满足,a1=1,an=an1+1-12. (1)求证:23≤an≤1; (2)求证:|an+1-an|≤13; (3)求证:|a2n-an|≤1207.
2/34
满分解答 证明 (1)由已知得 an+1=an+1 12, 又 a1=1,则 a2=23,a3=67,a4=1149, 猜想23≤an≤1.2 分(得分点 1) 下面用数学归纳法证明. ①当 n=1 时,命题显然成立; ②假设 n=k 时,有23≤ak≤1 成立,
12/34
(2)证明 因为 a1>2,可用数学归纳法证明:an>2 对任意 n∈N*恒成立. 于是 an+1-an=a2n-1<0,即{an}是递减数列. 在 Sn≥na1-13(n-1)中,令 n=2, 得 2a1+a21-1=S2≥2a1-13,解得 a1≤3,故 2<a1≤3. 下证:①当 2<a1≤73时, Sn≥na1-13(n-1)恒成立. 事实上,当 2<a1≤73时,由于 an=a1+(an-a1)≥a1+2-73=a1-13,
(3)证明 由(2)可得 an=32n1+1≥32n+132n-1=2523n-1. 所以 Sn≥25+25·231+…+25·23n-1 =651-23n, 故 Sn≥651-23n成立.
高考数学总复习 11-4 数学归纳法(理)但因为测试 新人教B版

高考数学总复习 11-4 数学归纳法(理)但因为测试 新人教B 版1.(2011·威海模拟)在用数学归纳法证明“2n >n 2对从n 0开始的所有正整数都成立”时,第一步验证的n 0等于( )A .1B .3C .5D .7[答案] C[解析] n 的取值与2n,n 2的取值如下表:2.(2011·厦门月考、日照模拟)用数学归纳法证明:“(n +1)·(n +2)·…·(n +n )=2n·1·3·…·(2n -1)”,从“n =k 到n =k +1”左端需增乘的代数式为( )A .2k +1B .2(2k +1) C.2k +1k +1D.2k +3k +1[答案] B[解析] n =k 时,左端为(k +1)(k +2)…(k +k );n =k +1时,左端为[(k +1)+1]·[(k +1)+2]…[(k +1)+(k +1)]=(k +2)(k +3)…(k +k )·(k +k +1)·(k +k +2)=2(k +1)(k +2)(k +3)…(k +k )(2k +1),故左端增加了2(2k +1).3.若f (n )=1+12+13+14+…+16n -1(n ∈N +),则f (1)为( )A .1B.15C .1+12+13+14+15D .非以上答案[答案] C[解析] 注意f (n )的项的构成规律,各项分子都是1,分母是从1到6n -1的自然数,故f (1)=1+12+13+14+15.4.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,则可推得当n =k +1时该命题也成立,现已知n =5时,该命题不成立,那么可以推得( )A .n =6时该命题不成立B .n =6时该命题成立C .n =4时该命题不成立D .n =4时该命题成立[答案] C[解析] ∵“若n =k (k ∈N *)时命题成立,则当n =k +1时,该命题也成立”,故若n =4时命题成立,则n =5时命题也应成立,现已知n =5时,命题不成立,故n =4时,命题也不成立.[点评] 可用逆否法判断. 5.观察下式:1+3=221+3+5=32 1+3+5+7=42 1+3+5+7+9=52……据此你可归纳猜想出的一般结论为( ) A .1+3+5+…+(2n -1)=n 2(n ∈N *) B .1+3+5+…+(2n +1)=n 2(n ∈N *) C .1+3+5+…+(2n -1)=(n +1)2(n ∈N *) D .1+3+5+…+(2n +1)=(n +1)2(n ∈N *) [答案] D[解析] 观察可见第n 行左边有n +1个奇数,右边是(n +1)2,故选D.6.一个正方形被分成九个相等的小正方形,将中间的一个正方形挖去,如图(1);再将剩余的每个正方形都分成九个相等的小正方形,并将中间的一个挖去,得图(2);如此继续下去……则第n 个图共挖去小正方形( )A .(8n-1)个 B .(8n+1)个 C.17(8n-1)个 D.17(8n+1)个 [答案] C[解析] 第1个图挖去1个,第2个图挖去1+8个,第3个图挖去1+8+82个……第n 个图挖去1+8+82+…+8n -1=8n-17个.7.(2011·徐州模拟)用数学归纳法证明命题“当n 为正奇数时,x n+y n能被x +y 整除”,第二步假设n =2k -1(k ∈N +)命题为真时,进而需证n =________时,命题亦真.[答案] n =2k +18.(2010·吉林市检测、浙江金华十校联考)观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,……,则可以猜想:当n ≥2时,有__________________. [答案] 1+122+132+…+1n 2<2n -1n(n ≥2)[解析] 观察式子左边都是自然数的平方的倒数求和,右边分母为左边的项数,分子为项数的2倍减1,故右边表达式为2n -1n.9.已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,…,(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1,a 2,a 3,由此推测数列{a n }的通项公式,并加以证明. [解析] (1)当n ≥3时,x n =x n -1+x n -22.(2)a 1=x 2-x 1=a ,a 2=x 3-x 2=x 2+x 12-x 2=-12(x 2-x 1)=-12a ,a 3=x 4-x 3=x 3+x 22-x 3=-12(x 3-x 2)=14a ,由此推测a n =(-12)n -1a (n ∈N *).证法1:因为a 1=a >0,且a n =x n +1-x n =x n +x n -12-x n =x n -1-x n 2=-12(x n -x n -1)=-12a n -1(n ≥2),所以a n =(-12)n -1a .证法2:用数学归纳法证明:(1)当n =1时,a 1=x 2-x 1=a =(-12)0a ,公式成立.(2)假设当n =k 时,公式成立,即a k =(-12)k -1a 成立.那么当n =k +1时,a k +1=x k +2-x k +1=x k +1+x k 2-x k +1=-12(x k +1-x k )=-12a k =-12(-12)k -1a =(-12)(k +1)-1a ,公式仍成立,根据(1)和(2)可知,对任意n ∈N *,公式a n =(-12)n -1a 成立.10.已知正项数列{a n }中,对于一切的n ∈N *均有a 2n ≤a n -a n +1成立. (1)证明:数列{a n }中的任意一项都小于1; (2)探究a n 与1n的大小,并证明你的结论.[解析] (1)由a 2n ≤a n -a n +1得a n +1≤a n -a 2n . ∵在数列{a n }中a n >0,∴a n +1>0, ∴a n -a 2n >0,∴0<a n <1,故数列{a n }中的任何一项都小于1. (2)解法1:由(1)知0<a n <1=11,那么a 2≤a 1-a 21=-⎝ ⎛⎭⎪⎫a 1-122+14≤14<12,由此猜想:a n <1n .下面用数学归纳法证明:当n ≥2,n ∈N 时猜想正确. ①当n =2时,显然成立;②假设当n =k (k ≥2,k ∈N)时,有a k <1k ≤12成立.那么a k +1≤a k -a 2k =-⎝ ⎛⎭⎪⎫a k -122+14<-⎝ ⎛⎭⎪⎫1k -122+14=1k -1k 2=k -1k 2<k -1k 2-1=1k +1,∴当n =k +1时,猜想也正确. 综上所述,对于一切n ∈N *,都有a n <1n.解法2:由a 2n ≤a n -a n +1, 得0<a k +1≤a k -a 2k =a k (1-a k ), ∵0<a k <1,∴1a k +1≥1a k 1-a k =1a k +11-a k,∴1a k +1-1a k ≥11-a k>1. 令k =1,2,3,…,n -1得: 1a 2-1a 1>1,1a 3-1a 2>1,…,1a n -1a n -1>1,∴1a n >1a 1+n -1>n ,∴a n <1n.11.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(a ≠1,n ∈N +),在验证n =1成立时,左边的项是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3[答案] C[解析] 左边项的指数规律是从第2项起指数为正整数列,故n =1时,应为1+a +a 2. 12.凸k 边形内角和为f (k ),则凸k +1边形的内角和f (k +1)=f (k )+________. [答案] π[解析] 将k +1边形A 1A 2…A k A k +1的顶点A 1与A k 连接,则原k +1边形分为k 边形A 1A 2…A k与三角形A 1A k A k +1,显见有f (k +1)=f (k )+π.13.(2010·南京调研)已知:(x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n(n ≥2,n ∈N *).(1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n =a 22n -3,T n =b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n n +1n -13.[解析] (1)当n =5时,原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n=[2+(x -1)]n,所以a 2=C 2n ·2n -2b n =a 22n -3=2C 2n =n (n -1)(n ≥2)①当n =2时.左边=T 2=b 2=2, 右边=22+12-13=2,左边=右边,等式成立.②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k k +1k -13成立那么,当n =k +1时, 左边=T k +b k +1=k k +1k -13+(k +1)[(k +1)-1]=k k +1k -13+k (k+1)=k (k +1)⎝ ⎛⎭⎪⎫k -13+1=k k +1k +23=k +1[k +1+1][k +1-1]3=右边.故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n n +1n -13.14.已知f (x )=a 1x +a 2x 2+…+a n x n(n 为正偶数)且{a n }为等差数列,f (1)=n 2,f (-1)=n ,试比较f ⎝ ⎛⎭⎪⎫12与3的大小,并证明你的结论. [解析] 由f (1)=n 2,f (-1)=n 得,a 1=1,d =2.∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12+3⎝ ⎛⎭⎪⎫122+5⎝ ⎛⎭⎪⎫123+…+(2n -1)· ⎝ ⎛⎭⎪⎫12n, 两边同乘以12得,12f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122+3⎝ ⎛⎭⎪⎫123+…+(2n -3)⎝ ⎛⎭⎪⎫12n +(2n -1)⎝ ⎛⎭⎪⎫12n +1,两式相减得,12f ⎝ ⎛⎭⎪⎫12=12+2⎝ ⎛⎭⎪⎫122+2⎝ ⎛⎭⎪⎫123+…+2⎝ ⎛⎭⎪⎫12n -(2n -1)⎝ ⎛⎭⎪⎫12n +1=12+12⎝ ⎛⎭⎪⎫1-12n -11-12-(2n-1)12n +1.∴f ⎝ ⎛⎭⎪⎫12=3-2n +32n <3. 15.证明:当n ∈N *时,1+12+13+…+1n >ln(n +1).[证明] (1)当n =1时,由于ln2<ln e =1,故不等式成立. (2)假设当n =k (k ∈N *)时不等式成立. 则1+12+13+…+1k>ln(1+k ).则当n =k +1时,1+12+13+…+1k +1k +1>1k +1+ln(k +1).要证不等式成立,只需证明ln(k +2)<1k +1+ln(k +1)成立. 要证明此不等式成立只需证明 1k +1>ln(k +2k +1)=ln(1+1k +1). 下面构造函数f (x )=ln(1+x )-x (x >0). ∵f ′(x )=11+x -1=-x 1+x<0,∴f (x )=ln(1+x )-x 在(0,+∞)上是减函数, ∴f (x )<f (0), 即ln(1+x )<x . 令x =1k +1得ln(1+1k +1)<11+k. 即不等式ln(k +2)<1k +1+ln(1+k )成立, 所以1+12+13+…+1k +1k +1>ln(k +2)成立.由(1)、(2)可知对n ∈N *,不等式1+12+13+ (1)>ln(n +1)成立.[点评] 利用数学归纳法证明涉及与指数式、对数式有关的不等式时,在由n =k 证明n =k +1时,可以通过构造函数,利用函数的单调性得到需要证明的不等式,这是近年来函数、不等式、数学归纳法结合在一起综合考查的热点问题,要加深对此法的理解与应用.1.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图,其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,第四个图有37个蜂巢,按此规律,以f (n )表示第n 幅图的蜂巢总数,则f (6)=( )A .53B .73C .91D .97[答案] B[解析] f (1)=1×6-6+1;f (2)=2×6-6+f (1); f (3)=3×6-6+f (2); f (4)=4×6-6+f (3);… f (n )=n ×6-6+f (n -1).以上各式相加得f (n )=(1+2+3+…+n )×6-6n +1=3n 2-3n +1,∴f (6)=3×62-3×6+1=73.2.在应用数学归纳法证明凸n 边形的对角线为12n (n -3)条时,第一步检验第一个值n 0等于( )A .1B .2C .3D .4[答案] C[解析] 因为凸n 边形的边数最少为3,故验证的第一个值n 0=3.3.(2010·辽宁沈阳质检)用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10 [答案] B[解析] 等式左端=1+12+14+…+12n -1=1-12n 1-12=2-12n -1,将选项中的值代入验证可知n 的最小值为8.4.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”.那么,下列命题总成立的是( )A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立 B .若f (5)≥25成立,则当k ≤5时,均有f (k )≥k 2成立 C .若f (7)<49成立,则当k ≥8时,均有f (k )>k 2成立 D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立 [答案] D[解析] 对于A ,f (3)≥9,加上题设可推出当k ≥3时,均有f (k )≥k 2成立,故A 错误. 对于B ,要求逆推到比5小的正整数,与题设不符,故B 错误. 对于C ,没有奠基部分,即没有f (8)≥82,故C 错误.对于D ,f (4)=25≥42,由题设的递推关系,可知结论成立,故选D. 5.(2011·济南模拟)用数学归纳法证明1+2+3+…+n 2=n 4+n 22时,当n =k +1时,左端应在n =k 的基础上加上( )A .k 2+1B .(k +1)2C.k +14+k +122D .(k 2+1)+(k 2+2)+…+(k +1)2[答案] D6.(2011·湖南理,22)已知函数f (x )=x 3,g (x )=x +x . (1)求函数h (x )=f (x )-g (x )的零点个数,并说明理由;(2)设数列{a n }(n ∈N *)满足a 1=a (a >0),f (a n +1)=g (a n ),证明:存在常数M ,使得对于任意的n ∈N *,都有a n ≤M .[解析] (1)由h (x )=x 3-x -x 知,x ∈[0,+∞),而h (0)=0,且h (1)=-1<0,h (2)=6-2>0,则x =0为h (x )的一个零点,且h (x )在(1,2)内有零点.因此h (x )至少有两个零点.解法1:h ′(x )=3x 2-1-12x - 12 ,记φ(x )=3x 2-1-12x - 12 ,则φ′(x )=6x +14x - 32.当x ∈(0,+∞)时,φ′(x )>0,因此φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.又因为φ(1)>0,φ(33)<0,则φ(x )在(33,1)内有零点,所以φ(x )在(0,+∞)内有且只有一个零点.记此零点为x 1,则当x ∈(0,x 1)时,φ(x )<φ(x 1)=0;当x ∈(x 1,+∞)时,φ(x )>φ(x 1)=0.所以当x ∈(0,x 1)时,h (x )单调递减,而h (0)=0,则h (x )在(0,x 1]内无零点;当x ∈(x 1,+∞)时,h (x )单调递增,则h (x )在(x 1,+∞)内至多只有一个零点,从而h (x )在(0,+∞)内至多只有一个零点.综上所述,h (x )有且只有两个零点.解法2:由h (x )=x (x 2-1-x - 12),记φ(x )=x 2-1-x- 12,则φ′(x )=2x +12x - 32.当x ∈(0,+∞)时,φ′(x )>0,从而φ(x )在(0,+∞)上单调递增,则φ(x )在(0,+∞)内至多只有一个零点.因此h (x )在(0,+∞)内也至多只有一个零点.综上所述,h (x )有且只有两个零点.(2)记h (x )的正零点为x 0,即x 30=x 0+x 0. ①当a <x 0时,由a 1=a ,即a 1<x 0.而a 32=a 1+a 1<x 0+x 0=x 30,因此a 2<x 0,由此猜测:a n <x 0,下面用数学归纳法证明. a .当n =1时,a 1<x 0显然成立.b.假设当n=k(k≥1)时,a k<x0成立,则当n=k+1时,由a3k+1=a k+a k<x0+x0=x30知,a k+1<x0.因此,当n=k+1时,a k+1<x0成立.故对任意的n∈N*,a n<x0成立.②当a≥x0时,由(1)知,h(x)在(x0,+∞)上单调递增,则h(a)≥h(x0)=0,即a3≥a +a,从而a32=a1+a1=a+a≤a3,即a2≤a.由此猜测:a n≤a,下面用数学归纳法证明.a.当n=1时,a1≤a显然成立.b.假设当n=k(k≥2)时,a k≤a成立,则当n=k+1时,由a3k+1=a k+a k≤a+a≤a3知,a k+1≤a.因此,当n=k+1时,a k+1≤a成立.故对任意的n∈N*,a n≤a成立.综上所述,存在常数M=max{x0,a},使得对于任意的n∈N*,都有a n≤M.。
【新人教】高考数学总复习专题训练数列、极限和数学归纳法

数列、极限和数学归纳法安徽理(11)如图所示,程序框图(算法流程图)的输出结果是____________ (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (18)(本小题满分12分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .(本小题满分13分)本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力. 解:(I )设221,,,+n l l l 构成等比数列,其中,100,121==+n t t 则,2121++⋅⋅⋅⋅=n n n t t t t T ①, ,1221t t t t T n n n ⋅⋅⋅⋅=++ ②①×②并利用得),21(1022131+≤≤==+-+n i t t t t n i n.1,2lg ,10)()()()()2(2122112212≥+==∴=⋅⋅⋅⋅=+++++n n T a t t t t t t t t T n n n n n n n n(II )由题意和(I )中计算结果,知.1),3tan()2tan(≥+⋅+=n n n b n另一方面,利用,tan )1tan(1tan )1tan())1tan((1tan kk kk k k ⋅++-+=-+=得.11tan tan )1tan(tan )1tan(--+=⋅+kk k k 所以∑∑+==⋅+==231tan )1tan(n k n k k n k k b S23tan(1)tan tan(3)tan3(1)tan1tan1n k k k n n +=+-+-=-=-∑安徽文(7)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L (A ) 15 (B) 12 (C ) -12 (D) -15(7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论;法二:12349103a a a a a a +=+==+= ,故a a a 1210++=3⨯5=15L .故选A. 北京理11.在等比数列{}n a 中,若112a =,44a =-,则公比q =________;12||||||n a a a +++= ________.【解析】112a =,442a q =-⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- 。
高考一轮复习练习: 数学归纳法

1.应用数学归纳法证明凸n 边形的对角线条数f (n )=12n (n -3)(n ≥3).证明:①当n =3时,三角形没有对角线,f (3)=0,又f (3)=12×3×(3-3)=0,命题成立.②假设当n =k (k ≥3)时命题成立,即凸k 边形A 1A 2…A k 有f (k )=12k (k -3)条对角线,再加一个顶点A k +1,构成凸k +1边形,则增加了k -2条对角线,又原来的边A 1A k 变成了对角线,故对角线增加了k -1条,即凸k +1边形有f (k +1)=12k (k-3)+k -1=12(k 2-3k +2k -2)=12(k 2-k -2)=12(k +1)[(k +1)-3]条对角线,可知当n =k +1时,命题成立,综合①②可知命题对于n ≥3的自然数n 都成立.2.是否存在一个等差数列{a n },使得对任何正整数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立,并证明你的结论.解析:将n =1,2,3分别代入等式得方程组:⎩⎪⎨⎪⎧ a 1=6,a 1+2a 2=24,a 1+2a 2+3a 3=60,解得a 1=6,a 2=9,a 3=12,设等差数列{a n }的公差为d ,则d =3,从而a n =3n +3.故存在一个等差数列a n =3n +3,使得当n =1,2,3时,等式成立.下面用数学归纳法证明结论成立.①当n =1时,结论显然成立.②假设n=k(k≥1,且k∈N*)时,等式成立,即a1+2a2+3a3+…+ka k=k(k+1)(k+2).那么当n=k+1时,a1+2a2+3a3+…+ka k+(k+1)a k+1=k(k+1)(k+2)+(k+1)[3(k+1)+3]=(k+1)(k2+2k+3k+6)=(k+1)(k+2)(k+3)=(k+1)[(k+1)+1][(k+1)+2].∴当n=k+1时,结论也成立.由①②知存在一个等差数列a n=3n+3,使得对任何正整数n,等式a1+2a2+3a3+…+na n=n(n+1)(n+2)都成立.3.已知数列{a n},a n≥0,a1=0,a2n+1+a n+1-1=a2n.求证:当n∈N*时,a n<a n+1.证明:(1)当n=1时,因为a2是方程x2+x-1=0的正根,所以a1<a2.(2)假设当n=k(k∈N*,k≥1)时,0≤a k<a k+1,因为a2k+1-a2k=(a2k+2+a k+2-1)-(a2k+1+a k+1-1)=(a k+2-a k+1)(a k+2+a k+1+1)>0,所以a k+1<a k+2,即当n=k+1时,a n<a n+1也成立.根据(1)和(2),可知a n<a n+1对任意n∈N*都成立.4.已知a>0,b>0,n>1,n∈N*.用数学归纳法证明:a n+b n2≥(a+b2)n.证明:(1)当n=2时,左边-右边=a2+b22-(a+b2)2=(a-b2)2≥0,不等式成立.(2)假设当n =k (k ∈N *,k >1)时,不等式成立,即a k +b k 2≥(a +b 2)k .因为a >0,b >0,k >1,k ∈N *,所以(a k +1+b k +1)-(a k b +ab k )=(a -b )·(a k -b k )≥0, 于是a k +1+b k +1≥a k b +ab k .当n =k +1时,(a +b 2)k +1=(a +b 2)k ·a +b 2≤a k +b k 2·a +b 2=a k +1+b k +1+a k b +ab k 4≤a k +1+b k +1+a k +1+b k +14=a k +1+b k +12, 即当n =k +1时,不等式也成立.综合(1),(2)知,对于a >0,b >0,n >1, n ∈N *,不等式a n +b n 2≥(a +b 2)n 总成立.。
高考数学专题复习题:数学归纳法

高考数学专题复习题:数学归纳法一、单项选择题(共6小题)1.利用数学归纳法证明不等式1111()2321nf n ++++<- (2n ≥,且*n ∈N )的过程,由n k =到1n k =+时,左边增加了()A .12k -项B .2k 项C .1k -项D .k 项2.用数学归纳法证明:()()()1221121n n n ++++=++ ,在验证1n =成立时,左边所得的代数式是()A .1B .13+C .123++D .1234+++3.用数学归纳法证明等式()()()3412332n n n +++++++= ()N,1n n ∈≥时,第一步验证1n =时,左边应取的项是()A .1B .12+C .123++D .1234+++4.用数学归纳法证明:11112321n n ++++<- ,()N,1n n ∈≥时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是()A .2k B .21k -C .12k -D .21k +5.已知n 为正偶数,用数学归纳法证明1111111122341242n n n n ⎛⎫-+-+⋅⋅⋅+=++⋅⋅⋅+ ⎪-++⎝⎭时,若已假设n k =(2k ≥,k 为偶数)时命题为真,则还需要再证()A .1n k =+时等式成立B .2n k =+时等式成立C .22n k =+时等式成立D .()22n k =+时等式成立6.现有命题()()()11*1112345611442n n n n n ++⎛⎫-+-+-++-=+-+∈ ⎪⎝⎭N ,用数学归纳法探究此命题的真假情况,下列说法正确的是()A .不能用数学归纳法判断此命题的真假B .此命题一定为真命题C .此命题加上条件9n >后才是真命题,否则为假命题D .存在一个无限大的常数m ,当n m >时,此命题为假命题二、多项选择题(共2小题)7.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++8.用数学归纳法证明不等式11111312324++++>++++ n n n n n 的过程中,下列说法正确的是()A .使不等式成立的第一个自然数01n =B .使不等式成立的第一个自然数02n =C .n k =推导1n k =+时,不等式的左边增加的式子是()()12122k k ++D .n k =推导1n k =+时,不等式的左边增加的式子是()()12223k k ++三、填空题(共2小题)9.在运用数学归纳法证明()121*(1)(2)n n x x n +-+++∈N 能被233x x ++整除时,则当1n k =+时,除了n k =时必须有归纳假设的代数式121(1)(2)k k x x +-+++相关的表达式外,还必须有与之相加的代数式为________.10.用数学归纳法证明:()()122342n n n -+++++= (n 为正整数,且2n )时,第一步取n =________验证.四、解答题(共2小题)11.用数学归纳法证明:()*11111231n n n n +++>∈+++N .12.数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立.证明分为下面两个步骤:①证明当0n n =(0n ∈N )时命题成立;②假设n k =(k ∈N ,且0k n ≥)时命题成立,推导出在1n k =+时命题也成立.用模取余运算:mod a b c =表示“整数a 除以整数b ,所得余数为整数c ”.用带余除法可表示为:被除数=除数×商+余数,即a b r c =⨯+,整数r 是商.举一个例子7321=⨯+,则7mod31=;再举一个例子3703=⨯+,则3mod 73=.当mod 0a b =时,则称b 整除a .从序号分别为0a ,1a ,2a ,3a ,…,na 的1n +个人中选出一名幸运者,为了增加趣味性,特制定一个遴选规则:大家按序号围成一个圆环,然后依次报数,每报到m (2m ≥)时,此人退出圆环;直到最后剩1个人停止,此人即为幸运者,该幸运者的序号下标记为()1,f n m +.如()1,0f m =表示当只有1个人时幸运者就是0a ;()6,24f =表示当有6个人而2m =时幸运者是4a ;()6,30f =表示当有6个人而3m =时幸运者是0a .(1)求10mod3;(2)当1n ≥时,()()()()1,,mod 1f n m f n m m n +=++,求()5,3f ;当n m ≥时,解释上述递推关系式的实际意义;(3)由(2)推测当1212k k n +≤+<(k ∈N )时,()1,2f n +的结果,并用数学归纳法证明.。
数学归纳法 (新教材新高考)-高中数学精讲

专题7.6 数学归纳法1.(2021·全国高三专题练习(理))用数学归纳法证明等式时,从到等式左边需增添的项是( )A .B .C .D .2.(2020·全国高三专题练习)已知n 为正偶数,用数学归纳法证明1-+…+=2时,若已假设n=k (k ≥2,k 为偶数)时命题成立,则还需要用归纳假设证( )A .n=k+1时等式成立B .n=k+2时等式成立C .n=2k+2时等式成立D .n=2(k+2)时等式成立3.(2020·全国高三专题练习(理))用数学归纳法证明不等式“1+++…+<n (n ∈N *,n ≥2)”时,由n =k (k ≥2)时不等式成立,推证n =k +1时,左边应增加的项数是( )A .2k -1B .2k -1C .2kD .2k +14.(2021·全国高三专题练习(理))用数学归纳法证明不等式时,可将其转化为证明( )A .B .C .D .5.(2019·浙江高二月考)利用数学归纳法证明“” 的过程中,练基础123(21)(1)(21)n n n +++++=++ n k =1n k =+22k +[]2(1)1k ++[(22)(23)]k k +++[][](1)12(1)1k k ++++111234+-1-1n 111 (24)2n n n ⎛⎫+++ ⎪++⎝⎭1213121n -()*1114,21225n N n n n n ∈+++≤≥++ ()*11141,2122521n n n n n n N +++≤+∈≥+++ ()*14,2122521111n n n n n n N +++≤∈-≥+++ ()*114,21225211N n n n n n n +++≤∈+≥++ ()*11141,212252N n n n n n n+++≤∈-≥++ 1111...(,1)2321n n n N n *++++<∈>-由假设“”成立,推导“”也成立时,左边应增加的项数是( ) A .B .C .D .6.(2020·上海徐汇区·高三一模)用数学归纳法证明能被整除时,从到添加的项数共有__________________项(填多少项即可). 7.(2019·湖北高考模拟(理))已知正项数列满足,前项和满足,则数列的通项公式为______________.8.(2019届江苏省扬州市仪征中学摸底)已知正项数列{a n }中,a 1=1,a n +1=1+a n1+a n (n ∈N ∗)用数学归纳法证明:a n <a n +1(n ∈N ∗).9.(2021·全国高三专题练习)数列满足.(1)计算,并猜想的通项公式; (2)用数学归纳法证明(1)中的猜想.10.(2021·全国高三专题练习(理))已知数列{a n}满足:,点在直线上.(1)求的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明(1)中你的猜想.1.(2021·全国)已知数列满足,,则当时,下列判断一定正确的是()A .B .C .D .2.(2021·浙江高三专题练习)已知数列,满足,,则() A . B .n k =1n k =+k 1k +2k 21k +()2511222n n N -*++++∈ 31k 1k +{}n a 11a =n n S 214(3)(2,)n n S a n n N *-=+∈≥{}n a n a ={}n a ()*2N n n S n a n =-∈123a a a 、、n a 11a =*1(,)()n n a a n N +∈21y x =+234,,a a a 练提升{}n a ()*1n n nna a n N a +=+∈10a >2n ≥1n a n <+211n n n n a a a a +++-<-n a n ≥1n a n ≥+{}n a ()101a a a =<<()()()*11ln 1n n n a a a n N ++=+∈110n n a a n+<<<110n n a a n+<<<C .D . 3.(2020·浙江省桐庐中学)数列满足,,则以下说法正确的个数()①;②; ③对任意正数,都存在正整数使得成立; ④. A .1B .2C .3D .44.(2021·全国高三其他模拟(理))已知数列满足:,,前项和为(参考数据:,,则下列选项错误的是( ).A .是单调递增数列,是单调递减数列B .C .D .5.(2021·上海市建平中学高三开学考试)有限集的全部元素的积称为该数集的“积数”,例如的“积数”为2,的“积数”为6,的“积数”为,则数集的所有非空子集的“积数”的和为___________.6.(2021·浙江高三期末)已知数列满足,前项和为,若,且对任意的,均有,,则_______;______.7.(2020·江苏南通·高三其他)数列的前n 项和为,记,数列满足,,且数列的前n 项和为. 110n n a a n+<<<110x n a a n+<<<{}n a ()2*1n n n a a a n N +=-+∈110,2a ⎛⎫∈ ⎪⎝⎭10n n a a +<<22221231n a a a a a ++++< b m 12311111111mb a a a a ++++>---- 11n a n <+{}n a 10a =()()1ln 1n an n a e a n *+=+-∈Nn n S ln 20.693≈ln 3 1.099≈{}21n a -{}2n a 1ln 3n n a a ++≤2020670S <212n n a a -≤S {}2{}2,31111,,,,23n ⎧⎫⋅⋅⋅⎨⎬⎩⎭1!n *1,22021,M x x n n N n ⎧⎫==≤≤∈⎨⎬⎩⎭{}n a 0n a >n n S 33a =*k N ∈211222k a k a -+=21222log 1k k a a +=+1a =20S ={}n a n R 11nn i S i==∑{}n b 11b a =()12n n n n R b S a n n-=+≥{}n b n T(1)请写出,,满足的关系式,并加以证明; (2)若数列通项公式为,证明:. 8.(2020届浙江省“山水联盟”高三下学期开学)已知等比数列的公比,且,是,的等差中项,数列满足:数列的前项和为.(1)求数列、的通项公式; (2)数列满足:,,证明 9.(2020届浙江省嘉兴市3月模拟)设数列的前项和为,已知,,成等差数列,且,.(1)求数列的通项公式;(2)记,,证明:,. 10.已知点P n (a n ,b n )满足a n +1=a n .b n +1,b n +1=b n1−4a 2n(n ∈N ∗),且点P 1的坐标为(−1,1).(1)求过点P 1,P 2的直线的方程;(2)试用数学归纳法证明:对于n ∈N ∗,点P n 都在(1)中的直线l 上.1.(2020·全国高考真题(理))设数列{a n }满足a 1=3,. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .2.(2017浙江)已知数列满足:,. 证明:当时 (Ⅰ); (Ⅱ); n R n S n T {}n a 112n n a -=22ln n T n <+{}n a 1q >23414a a a ++=31a +2a 4a {}n b {}n n a b ⋅n 2n n ⋅{}n a {}n b {}n c 13c =*1,n n n n b c c n N c +=+∈*12(2),2n n n c c c n N +++⋅⋅⋅+>∈{}n a n n S 1a n a n S 542a S =+*n N ∈{}n a 2nn na b S =*n N ∈()12314421n n b b b +++≤-- *n N ∈练真题134n n a a n +=-{}n x 11x =11ln(1)n n n x x x ++=++()n ∈*N n ∈*N 10n n x x +<<1122n n n n x x x x ++-≤(Ⅲ). 3.(湖北省高考真题) 已知数列的各项均为正数,,e 为自然对数的底数.(Ⅰ)求函数的单调区间,并比较与e 的大小;(Ⅱ)计算,,,由此推测计算的公式,并给出证明;(Ⅲ)令,数列,的前项和分别记为,, 证明:. 4.(2021·全国高三专题练习)设数列{a n }满足a 1=3,. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .5.(江苏省高考真题)已知函数,设为的导数,.(Ⅰ)求的值;(2)证明:对任意的,等式成立.6.(2021·上海普陀区·高三其他模拟)如图,曲线与直线相交于,作交轴于,作交曲线于,……,以此类推.(1)写出点和的坐标; (2)猜想的坐标,并用数学归纳法加以证明.121122n n n x --≤≤{}n a 1(1()nn n b n a n n +=+∈N ()1e xf x x =+-1(1)n n+11b a 1212b ba a 123123b b b a a a 1212n n b b b a a a 112()nn n c a a a = {}n a {}n c n n S n T e n n T S <134n n a a n +=-0sin ()(0)x f x x x =>()n f x 1()n f x -n *∈N ()()122222f f πππ+n *∈N ()()1444n n nf f -πππ+=():10C xy x =>:l y x =1A 11A B l ⊥x 1B 12B A //l C 2A 123,,A A A 123,,B B B ()n A n N*∈。
高三数学数学归纳法练习题及答案

高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。
通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。
在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。
下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。
练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。
假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
然后,我们需要证明当n=k+1时,等式也成立。
即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。
根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。
我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。
将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。
由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。
化简该式子: k(k + 1) + 2(k+1)。
再进一步化简: (k+1)(k + 2) / 2。
可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。
因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。
练习题二:证明:对于任意正整数n,2^n > n^2。
答案二:同样使用数学归纳法进行证明。
首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。
假设当n=k时,2^k > k^2 成立。
数学归纳法高考试题汇编

数学归纳法高考试题汇编1.(2017浙江)已知数列{}n x 满足:11x =,11ln(1)n n n x x x ++=++()n ∈*N .证明:当n ∈*N 时(Ⅰ)10n n x x +<<;(Ⅱ)1122n n n n x x x x ++-≤;(Ⅲ)121122n n n x --≤≤. 2.(2015湖北) 已知数列{}n a 的各项均为正数,1(1)()n n n b n a n n +=+∈N ,e 为自然对数的底数.(Ⅰ)求函数()1e x f x x =+-的单调区间,并比较1(1)n n +与e 的大小;(Ⅱ)计算11b a ,1212b ba a ,123123b b b a a a ,由此推测计算1212nnb b b a a a 的公式,并给出证明; (Ⅲ)令112()nn n c a a a =,数列{}n a ,{}n c 的前n 项和分别记为n S ,n T , 证明:e n n T S <.3.(2014江苏)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(Ⅰ)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.4.(2014安徽)设实数0>c ,整数1>p ,*N n ∈. (Ⅰ)证明:当1->x 且0≠x 时,px x p+>+1)1(;(Ⅱ)数列{}n a 满足pc a 11>,pn n n a pc a p p a -++-=111,证明:p n n c a a 11>>+. 5.(2014重庆)设111,(*)n a a b n N +==+∈(Ⅰ)若1b =,求23,a a 及数列{}n a 的通项公式;(Ⅱ)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n N ∈成立?证明你的结论.6.(2012湖北)(Ⅰ)已知函数()(1)rf x rx x r =-+-(0)x >,其中r 为有理数,且01r <<. 求()f x 的最小值;(Ⅱ)试用(Ⅰ)的结果证明如下命题:设120,0a a ≥≥,12,b b 为正有理数. 若121b b +=,则12121122b b a a a b a b ≤+;(Ⅲ)请将(Ⅱ)中的命题推广到一般形式,并用数学归纳法.....证明你所推广的命题. 注:当α为正有理数时,有求导公式1()x x ααα-'=.7.(2011湖南)已知函数3()f x x =,()g x x =+(Ⅰ)求函数()()()h x f x g x =-的零点个数,并说明理由;(Ⅱ)设数列{n a }(*n N ∈)满足1(0)a a a =>,1()()n n f a g a +=,证明:存在常数M ,使得对于任意的*n N ∈,都有n a ≤ M .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习题库高考数学归纳法
一.选择题
1.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x +y整除”,在第二步时,正确的证法是( ). A.假设n=k(k∈N +),证明n=k+1命题成立 B.假设n=k(k是正奇数),证明n=k+1命题成立 C.假设n=2k+1(k∈N+),证明n=k+1命题成立 D.假设n=k(k是正奇数),证明n=k+2命题成立解析
A.B.C中,k+1不一定表示奇数,只有D中k为奇数,k+2为奇数. 答案 D
2.用数学归纳法证明“2n>n2+1 对于n≥n0 的正整数 n 都成立”时,第一步证明中的起始值 n0 应取( )
A.2
B.3
C.5
D.6 解析分别令 n0=2,3,5, 依次验证即可. 答案 C
3.对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即<k+1,则当n=k+1时,=<==(k+1)+1,∴当n=k+1时,不等式成立,则上述证法( ). A.过程全部正确 B.n=1验得不正确C.归纳假设不正确 D.从n=k到n=k+1的推理不正确解析在n =k+1时,没有应用n=k时的假设,不是数学归纳法. 答案 D
4.利用数学归纳法证明“1+a+a2+…+an+1=(a≠1,
n∈N*)”时,在验证n=1成立时,左边应该是( )
A1 B1+a C1+a+a2 D1+a+a2+a3 解析当n=1时,左边
=1+a+a2,故选C. 答案 C
5.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上( ). A.k2+1 B.(k+1)2 C. D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2 解析∵当n=k时,左侧=1+2+3+…+k2,当n=k+1时,左侧=1+2+3+…+k2+
(k2+1)+…+(k+1)2,∴当n=k+1时,左端应在n=k的基
础上加上 (k2+1)+(k2+2)+(k2+3)+…+(k+1)
2. 答案 D
6.下列代数式(其中k∈N*)能被9整除的是( )
A.6+6·7k
B.2+7k-1
C.2(2+7k+1)
D.3(2+7k)
解析
(1)当k=1时,显然只有3(2+7k)能被9整除.
(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36. 这就是说,k=n+1时命题也成立. 由
(1)
(2)可知,命题对任何k∈N*都成立. 答案 D
7.用数学归纳法证明1-+-+…+-=++…+,则当n=k+1时,左端应在n=k的基础上加上( ). A. B.- C.- D.+解析∵当n=k时,左侧=1-+-+…+-,当n=k+1时,
左侧=1-+-+…+-+-. 答案 C
二.填空题
8.对大于或等于2的自然数 m的n 次方幂有如下分解方式:22=1+3,32=1+3+5,42=1+3+5+7;23=3+5,33=7+9+11,43=13+15+17+19. 根据上述分解规律,若n2=1+3+5+…+19, m3(m∈N*)的分解中最小的数是21,则m+n的值为
________. 解析依题意得 n2==100, ∴n=10. 易知 m3=21m +×2, 整理得(m-5)(m+4)=0, 又m∈N*, 所以 m=5, 所以m +n=15. 答案15
9.用数学归纳法证明:++…+=;当推证当n=k+1等式也成立时,用上归纳假设后需要证明的等式是 . 解析当n=k+1时,++…++=+故只需证明+=即可. 答案+=10.如下图,在杨辉三角形中,从上往下数共有n(n∈N*)行,在这些数中非1的数字之和是________________.111121133114641 … 解析所有数字之和Sn=20+2+22+…+2n-1=2n-1,除掉1的和2n-1-(2n-1)=2n-2n. 答案2n-2n11.在数列{an}中,a1=且Sn=n(2n-1)an,通过计算a2,a3,a4,猜想an的表达式是________. 解析当n=2时,a1+a2=6a2,即a2=a1=;当n=3时,a1+a2+a3=15a3,即a3=(a1+a2)=;当n=4
时,a1+a2+a3+a4=28a4,即a4=(a1+a2+a3)=. ∴a1==,a2==,a3==,a4=,故猜想an=. 答案 an=12.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真. 解析∵n为正奇数,假设n=2k-1成立后,需证明的应为n=2k+1时成立. 答案2k+1
三.解答题13.用数学归纳法证明下面的等式12-22+32-42+…+(-1)n-1·n2=(-1)n-
1.证明
(1)当n=1时,左边=12=1,右边=(-1)0·=1,∴原等式成立.
(2)假设n=k(k∈N*,k≥1)时,等式成立,即有12-22+32-42+…+(-1)k-1·k2 =(-1)k-
1.那么,当n=k+1时,则有12-22+32-42+…+(-1)k -1·k2+(-1)k(k+1)2 =(-1)k-1+(-1)k·(k+1)2 =(-1)k·[-k+2(k+1)] =(-1)k,∴n=k+1时,等式也成立,由
(1)
(2)得对任意n∈N*有12-22+32-42+…+(-1)n-1·n2=(-1)n-
1.14.已知数列{an}中,a1=a(a>2),对一切n∈N*,an>0,an+1=. 求证:an>2且an+1<an. 证明法一∵an+1=>0,∴an>1,∴an-2=-2=≥0,∴an≥
2.若存在ak=2,则ak-1=2,由此可推出ak-2=2,…,a1=2,与a1=a>2矛盾,故an>
2. ∵an+1-an=<0,∴an+1<an. 法二
(用数学归纳法证明an>2)
①当n=1时,a1=a>2,故命题an>2成立;②假设n=
k(k≥1且k∈N*)时命题成立,即ak>2,那么,ak+1-2=-2=>0. 所以ak+1>2,即n=k+1时命题也成立. 综上所述,命题an>2对一切正整数成立. an+1<an的证明同上.15.已知数列{an}中,a1=1,an+1=c-.
(1)设c=,bn=,求数列{bn}的通项公式;
(2)求使不等式an<an+1<3成立的c的取值范围. 解析
(1)an+1-2=--2=,==+2,即bn+1=4bn+
2. bn+1+=4,又a1=1,故b1==-1,所以是首项为-,公比为4的等比数列, bn+=-×4n-1,bn=--.
(2)a1=1,a2=c-1,由a2>a1,得c>
2. 用数学归纳法证明:当c>2时,an<an+
1.(ⅰ)当n=1时,a2=c->a1,命题成立;(ⅱ)设当n=k(k≥1且k∈N*)时,ak<ak+1,则当n=k+1时, ak+2=c ->c-=ak+
1.故由(ⅰ)(ⅱ)知当c>2时,an<an+
1.当c>2时,因为c=an+1+>an+,所以a-can+1<0有解,所以<an<,令α=,当2<c≤时,an<α≤
3. 当c>时,α>3,且1≤an<α,于是α-an+1=(α-an)<(α-an)<(α-an-1)<...(α-1). 当n>log3时,α-an+1<α-3,an+1>3,与已知矛盾. 因此c>不符合要求. 所以c的取值范围是.16.是否存在常数a.b.c使等式12+22+32+...+n2+(n-1)2+...+22+12=an(bn2+c)对于一切n∈N*都成立,若存在,求出a.b.c并证明;若不存在,试说明理由. 解析假设存在a.b.c使12+22+32+...+n2+(n-1)2+ (22)
12=an(bn2+c)对于一切n∈N*都成立. 当n=1时,a(b+c)=1;当n=2时,2a(4b+c)=6;当n=3时,3a(9b+c)=19. 解方程组解得证明如下:①当n=1时,由以上知存在常数a,b,c使等式成立. ②假设n=k(k∈N*)时等式成立,即12+22+32+…+k2+(k-1)2+…+22+12=k(2k2+1);当n=k+1时,12+22+32+…+k2+(k+1)2+k2+(k-1)2+…+22+12 =k(2k2+1)+(k+1)2+k2 =k(2k2+3k+1)+(k+1)2 =k(2k +1)(k+1)+(k+1)2 =(k+1)(2k2+4k+3)
=(k+1)[2(k+1)2+1]. 即n=k+1时,等式成立. 因此存在a=,b=2,c=1使等式对一切n∈N*都成立.。