《配方法》解一元二次方程案例

合集下载

用配方法解一元二次方程

用配方法解一元二次方程

用配方法解一元二次方程目标1、理解配方法,会用配方法简单系数的一元二次方程。

2、了解配方法解一元二次方程的基本步骤,即化一元二次方程为一元一次方程重点用配方法解形一元二次方程,使一元二次方程转化为(ax+b)2=k 这样的形式。

难点使用配方法使一元二次方程转换为左边平方右边数的形式。

过程一、导入有这么一个方程,x2+2x-3=0,我们怎么解这个方程呢,能使用前面学过的直接开方法解一元二次方程吗?能不能把这个方程转化为左边完全平方式右边数的形式呢?新知讲解我们学过完全平方式:a2±2ab+b2=(a±b)2,很明显,这个式子左边是整式,右边是一个完全平方式。

本课开始时我们提到的一元二次方程x2+2x-3=0,如果把x2+2x变成一个完全平方式,使其余的数放在等号的右方。

那就回到了我们上一节课学过的直接开平方法解一元二次方程。

把x2+2x的后面加1得x2+2x+1,这是一个完全平方式,即:x2+2x+1=(x+1)2,于是我们得到了一个关于x的完全平方式。

由于加了1,后面要减去1,因此,原方程可以转化为x2+2x+1-1-3=0,前三项是一个完全平方式,后两项合并为-4。

原方程转化为:(x+1)2-4=0。

到这里就把方程转化成了左边平方,右边数字的形式了:(x+1)2=4,这个方程可以用直接开方法求解。

注意,我们添加的数字是x的系数一半的平方。

例1、把下列式子转化成完全平方式。

(1)x2+6x-16= x2+2x___+(____)2-(____)2-16(2)x2-2x-1= x2-2x___+(____)2-(____)2-1解:(1)x2+6x-16= x2+2·x·+()2-()2-16(2)x2-2x-1= x2-2·x·+()2-()2-1例2、根据上例解下列方程(1)x2+6x-16=0 (2)x2-2x-1=0解:(1)x2+6x-16=0等号左边加、减x系数的一半的平方得:x2+2·x·+()2-()2-16=0 前三项写成完全平方式:(x+)2-9-16=0移项得:(x+)2=25用直接开方法得:x+3=±5解得:x1=2, x2=-8解:(2)x2-2x-1=0等号左边加、减x系数的一半的平方得:x2-2·x·+()2-()2-1=0 前三项写成完全平方式:(x-)2-1-1=0移项得:(x-1)2=2用直接开方法得:x-1=±解得:x1=+1, x2=-+1例2、解方程2x2+4x-16=0分析:这个一元二次方程的二次项系数不为“1”,先化为“1”,只需乘以即可,再用配方法解这个一元二次方程。

用配方法解一元二次方程

用配方法解一元二次方程

用配方法解一元二次方程
1.解方程:x2+4x﹣1=0.
【思路点拨】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.
【答案与解析】
解:∵x2+4x﹣1=0
∴x2+4x=1
∴x2+4x+4=1+4
∴(x+2)2=5
∴x=﹣2±
∴x 1=﹣2+,x2=﹣2﹣.
【总结升华】配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
举一反三:
【变式】用配方法解方程.
(1)x2-4x-2=0; (2)x2+6x+8=0. 【答案】(1)方程变形为x2-4x=2.
两边都加4,得x2-4x+4=2+4.
利用完全平方公式,就得到形如(x+m)2=n的方程,即有(x-2)2=6.
解这个方程,得x-2=或x-2=-.
于是,原方程的根为x=2+或x=2-.
(2)将常数项移到方程右边x2+6x=-8.
两边都加“一次项系数一半的平方”=32,得x2+6x+32=-8+32,
∴ (x+3)2=1.
用直接开平方法,得x+3=±1,
∴ x=-2或x=-4.。

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

《一元二次方程——用配方法求解一元二次方程》数学教学PPT课件(3篇)

知2-讲
(2) 移项,得
2x2-3x=-1.
x2
二次项系数化为1,得
3
1
x .
2
2
2
2
3
1 3
3
x x .
2
2 4
4
2
配方,得
2
3
1

x

=
.


4
16

3
1
x ,
4
4
由此可得
x1 1, x2
1
2
知2-讲
(3)移项,得
(1)当p>0时,方程(Ⅱ)有两个不等的实数根
x1=-n-
p ,x
2=-n+
p;
(2)当p=0时,方程(Ⅱ)有两个相等的实数根
x1=x2=-n;
(3)当p<0时,因为对任意实数x,都有(x+n)2≥0,
所以方程(Ⅱ)无实数根.
知2-练
1 用配方法解下列方程,其中应在方程左右两边同时 加上4的
是(
)
12.在实数范围内定义一种新运算“※”,其规则为a※b=a2-b2,根据这个规则求方程( 2x1 )※( -4 )=0的解.
解:根据新定义得( 2x-1 )2-( -4 )2=0,
即( 2x-1 )2=( -4 )2,
5
3
∴2x-1=±4,∴x1=2,x2=-2.
-41-
第二章
2.2 用配方法求解一元二次方程
2
3
1
A.x,-4
B.2x,-2
3
3
C.2x,D.x,2
2
C )
10.已知关于x的多项式-x2+mx+4的最大值为5,则m的值为( B )

用配方法解一元二次方程

用配方法解一元二次方程

以上解法中,为什么在方程 x 6 x 4
2
两边加9 ? 加其他数行吗? 像上面那样,通过配成完全平方形式来解一 元二次方程的方法叫做
配方法解一元二次方程

2
a 的形式.(a为非负常数)
解一元二次方程的基本思路
二次方程 一次方程(降次)
把原方程转化为(x+a)2=b的形 式 (其中a、b是常数)
a2+2ab+b2=(a+b)2
反过来:
(a+b)2=a2+2ab+b2
你能填上适当的数使其构成完全平方吗?
(1) x
2
2 2 1 2 x _____ 1 ( x ___)
2 2 (2) x 8 x _____ 4 4 ( x ___) 2 5 2 2 5 (3) y 5 y _____ ( y ___) 2 2 2 2 2 1 1 1 (4) y y ____ ( y ___) 4 2 4 2
-1 8.若a2+2a+b2-6b+10=0,则a= 。
,3 b=
1.一般地,对于形如x2=a(a≥0)的方程, 根据平方根的定义,可解得 x a ,x a 1 2 这种解一元二次方程的方法叫做直接开平方 法.
2.把一元二次方程的左边配成一个完全平方 式,然后用开平方法求解,这种解一元二次方程的 方法叫做配方法. 注意:配方时, 等式两边同时加上的是一次项 系数一半的平方.
x 6x 4 0
2
移项 2
两边加上32,使左边配成 完全平方式
2
x 6 x 3 4 3
2 2
左边写成完全平方的形式

用配方法解一元二次方程的方法总结

用配方法解一元二次方程的方法总结

用配方法解一元二次方程的方法总结:大家知道,解一元二次方程的方法很多,有直接开平分法,配方法,公式法和因式分解法等。

其中,配方法是解一元二次方程很好的方法,下面我就分情况对此方法进行讲解。

(一)二次项系数为1的情况:例:用配方法解方程x²-2x-3=0解:x²-2x-3=0,移项,得x²-2x=3,配方,得x²-2x+1²=3+1²,即(x-1)²=4,x -1=±2,x=3或x=-1(二)二次项系数为非1的正数的情况:例:用配方法解方程3x²+6x-24=0解:3x²+6x-24=0,3(x²+2x)-24=0,移项,得3(x²+2x)=24,配方,得3(x²+2x+1²)=24+3×1²,即3(x+1)²=27,即(x+1)²=9,x+1=±3,x=2或x=-4(三)二次项系数为负数的情况:例:用配方法解方程-2x²+4x+6=0解:-2x²+4x+6=0,-2(x²-2x)+6=0,移项,得-2(x²-2x)=-6,配方,得-2(x²-2x+1²)=-6-2×1²,即-2(x-1)²=-8,即(x-1)²=4,x-1=±2,x=3或x=-1综上所述:用配方法解一元二次方程的思路如下:(1)化二次项系数为1。

(2)移项:使方程左边为二次项和一次项,右边为常数项。

(3)配方:方程两边都加上一次项系数一半的平方,原方程变为(x+m)²=p的形式。

(4)直按开平方:求出方程的解。

同学们:看完我的讲述,用配方法解一元二次方程,你们学会了吗?。

配方法解一元二次方程公开课课件

配方法解一元二次方程公开课课件
配方法解一元二次方程公开课
情境导入:
读诗词解题:(通过列方程,算出周瑜去世时的年龄。)
大江东去浪淘尽,千古风流数人物。 而立之年督东吴,早逝英年两位数。 十位恰小个位三,个位平方与寿符。 哪位学子算得快,多少年华属周瑜?
解:设个位数字为x,十位数字为x-3 x2=10(x-3)+x x2-11x+30=0
(3)配方(4)开平方(5)写出方程的解
作业:课本第38页习题第2题
思考题:1.已知x是实数,求y=x2-4x+5的最小值.
2.已知x2+y2-4x+8y+20=0,灵活应用配方法求x+y的值.
方程两边都除以-5,得
t2-3t=-2
配方,得
t2
3t
3
2
2
3
2
2
2
t
3
2
1Hale Waihona Puke 2 4t 3 1 22
t1 2,t2 1
习题训练 解下列方程 1) x2-3x+1=0 2)2x2+6=7x 3)3x2-9x+2=0
用配方法解一元二次方ax2+bx+c=0(a≠0)的步骤:
(1)化二次项系数为1:方程两边同时除以二次项 系数 (2)移项:把常数项移到方程的右边 (3)配方:方程两边都加上一次项系数一半的 平方
2
2
想一想如何解方程x2 6x 4 0?
x2 6x 4 0
移项
x2 6x 4
两边加上32,使左边配成完全平方式
x2 6x 32 4 32
左边写成完全平方的形式
(x 3)2 5
开平方
变成了(x+h)2=k 的形式

《用配方法求解一元二次方程》一元二次方程PPT课件(第2课时)

《用配方法求解一元二次方程》一元二次方程PPT课件(第2课时)
3
9

3
3
3
2
4
5
两边开平方,得 x
3
3
1
所以 x1 , x2 3
3
例2 如图,一块矩形土地,长是48 m,宽是24 m,现要在它
的中央划一块矩形草地(空白部分),四周铺上花砖路,路面宽
5
都相等,草地面积占矩形土地面积的 ,求花砖路面的宽.
9
【方法指导】若设花砖路面宽为x m,
度h(m)与时间t(s)满足关系:h=15t-5t2,小球何时能达
到10 m的高度?
解:根据题意得15t-5t2=10;
方程两边都除以-5,得
t2-3t=-2;
配方,得
t
3
3
2
2
-3t+2 =-2+2 ;


2Leabharlann 32 131

t-2 = ;t- =± ;
3 7
2± 2
,∴x1=
3
7
3
7
-2

,x
=______.
2
2
2
2
一般地,如果一个一元二次方程通过配方转化成
(x+n)2=p.
①当p>0时,则 x n p
x1 n p ,
,方程的两个根为
x2 n p
②当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为
即(x-18)2=196.
两边开平方,得x-18=±14.
即x-18=14,或x-18=-14.
所以x1=32(不合题意,舍去),x2=4.
故花砖路面的宽为4 m.
例3 试用配方法说明:不论k取何实数,多项式

21.2.1用配方法解一元二次方程(教案)

21.2.1用配方法解一元二次方程(教案)
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过配方法解一元二次方程的过程,使学生理解数学逻辑推理的重要性,提高他们在解决问题时的逻辑思维能力。
2.增强学生的数学建模素养:让学生在实际问题中运用配方法求解一元二次方程,培养他们将现实问题转化为数学模型的能力,从而提高解决实际问题的数学素养。
其次,在新课讲授环节,我发现学生们在理解配方法的原理和步骤上存在一定困难。虽然我通过详细的解释和举例来说明,但仍有部分学生感到困惑。在以后的教学中,我需要更加关注学生的反馈,针对他们的疑难点进行有针对性的讲解和练习。同时,可以增加一些互动环节,让学生在课堂上及时提问,以便于我了解他们的掌握情况。
在实践活动和小组讨论环节,学生们表现得相当积极。他们能够将所学知识应用到实际问题中,并通过小组合作解决问题。这一点让我感到很欣慰。但同时我也注意到,有些小组在讨论过程中出现了偏离主题的现象,导致讨论效果不佳。针对这个问题,我需要在今后的教学中加强对学生讨论方向的引导,确保讨论能够紧紧围绕主题进行。
21.2.1用配方法解一元二次方程(教案)
一、教学内容
本节课选自九年级数学教材《代数与方程》第21章第2节,主题为“21.2.1用配方法解一元二次方程”。教学内容主要包括以下两个方面:
1.掌握配方法解一元二次方程的步骤,并能熟练运用该方法解决实际问题。
2.了解配方法的原理,理解为何配方法可以求解一元二次方程。
a.将一元二次方程的一般形式ax^2 + bx + c = 0转换为完全平方形式。
b.利用完全平方公式解出方程的根。
c.分析解的实际情况,如重根、无解等。
(2)运用配方法解决实际问题:学生需学会将实际问题抽象为一元二次方程,然后运用配方法求解,例如以下例题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《配方法》解一元二次方程教学案例教学目标【知识与技能】使学生会用配方法解数学系数的一元二次方程。

【过程与方法】经历列方程解决实际问题的过程,体会配方法和推导过程,熟练地运用配方法解一元二次方程,渗透转化思想,掌握一些转化的技能。

【情感、态度与价值观】通过配方法的探索活动,培养学生勇于探索的良好学习习惯,感受数学的严谨性以及数学结论的确定性。

教学重点难点【重点】用配方法解一元二次方程 【难点】配方的过程教学过程设计(一)创设情境 导入新课导语一(1)你能解哪些一元二次方程?(2)你会解下列一元二次方程吗?你是怎么做的?(3)解方程x 2+12x-15=0的困难在哪里?你能将方程x 2+12x-15=0转化为上面方程的形式吗?导语二 1、用配方法解一元二次方程的一般步骤是什么? 2、将下列各式配成完全平方式。

(1)a 2+12a+ 62=(a+ 6 )2; (2)x 2- x +41=(x+ 21)2;3、若4x 2-mx+9是一个完全平方式,那么m 的值是 ±12 。

导语三 为了响应国家“退耕还林”的号召,改变水土流失严重的状况,2007年某市退耕还林1600亩,计划2009年退耕还林1936亩,则这两种平均每年退耕还林的增长率是多少?你能用所学过的一元二次方程知识解决这个问题?[设这两年的年平均增长率为x ,则1600(1+x)2=1936,解得x=10%,x 2=-210%(舍),即平均每年退耕还林的增长率为10%](二)合作交流 解读探究 1、配方法[问题]要使一块矩形场地的长比宽多6m ,并且面积为16m 2,场地的长和宽应各是多少个?(注:这是一个比较简单的几何题,学生经过思考,不难得出答案,请一位同学回答,教师演示答案。

)即:设场地宽xm ,长(x+6)m 。

根据矩形面积为16m 2,列方程x(x+6)=16,即x 2+6x-16=0 (注:本题选择以解决问题作为本节课的开端,有益于培养学生的应用意识。

)(思考)怎样解方程x 2+6x-16=0?对比这个方程与前面讨论过的方程x 2+6x+9=2,可以发现方程x 2+6x+9=2的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x-16=0不具有上述形式,直接降次有困难,能设法把x 2+6x-16=0化为具有上述形式的方程吗?(注:教师提出问题,学生思考、讨论发表意见,同时教师要引导学生发现问题的关键;若要解方程x 2+6x-16=0,只要将其符号左边转化为一个完全平方式——配方,而配方的关键是常数项的选择,学生找出常数项,教师演示配方的过程,完成方程由不可解到可解的转化,师生完成后续步骤。

)移 项9(即(26)2)使左边配成2的形式像上面那样,通过配成完全平方形式来解一元二次方程的方法,叫做配方法,可以看出,配方是为了降次,把一个一元二次方程转化成两个一元一次方程来解。

2、用配方法解一元二次方程的一般做法(1)移项,使方程左边为二次项、一次项,右边为常数项; (2)方程的两边都除以二次项系数,将二次项系数化为1;(3)配方,方程两边都加上一次项系数一半的平方,使方程左边为一个完全平方式,右边是一个常数的形式;(4)如果右边是非负数,两边直接开平方,解这个一元二次方程。

(三)应用迁移 巩固提高类型之一 用配方法解一元二次方程【例1】解下列方程(注:学生练习,教师巡视,适当辅导。

) (1)x 2-10x+24=0; (2)(2x-1)(x+3)=5; (3)3x 2-6x+4=0 解:(1)移项,得x 2-10x=-24 配方,得x 2-10x+25=-24+25, 由此可得(x-5)2=1, x-5=±1, ∴x 1=6,x 2=4(2)整理,得2x 2+5x-8=0。

移项,得2x 2+5x=8二次项系数化为1得x 2+25x=4,配方,得222)45(4)45(25+=++x x (x+45)2=1689,由此可得x+45=±489,x 1=4895+-, x 2=4895--(3)移项,得3x 2-6x=-4二次项系数化为1,得x 2-2x=-34,配方,得x 2-2x+12=-34+12,(x-1)2=-31因为实数的平方不会是负数,所以x 取任何实数时,(x-1)2都是非负数,上式都不成立,即原方程无实数根。

(注:本次活动,教师应重点关注:1、学生对待解问题和已解问题的对比、分析能力;2、给予学生一定的时间去思考,争取让学生自主得出结论;3、鼓励学生大胆猜想,勇于发表见解)。

[做一做] 解下列方程:(1)x 2-8x+1=0; (2)2x 2+1=3x ; (3)4x 2-6x-3=0【分析】(1)把x 2-8x+1=0移项,得x 2-8x=-1,两边都加一次项系数的一半的平方,得x 2-8x+42=-1+42,即(x-4)2=15,再开平方即可求出方程的解。

(2)先移项化为2x 2-3x+1=0,再方程两边同时除以2,得x 2-23x+21=0,再移项,配方。

(3)两边同时除以4,把二次项系数化为1,再移项,配方。

[特别提示](1)配方法的含义是把方程的一边配方化为一个完全平方式,另一边经为非负数,然后用开平方法求解。

(2)配方的关键是“方程两边加上一次项系数一半的平方”类型之二 二次三项式的配方【例2】填空:(1)x 2+6x+_______=(x+3)2;(2)x 2-5x+______=(x-______)2; (3)x 2+34x+______=(x+32)2;(4)x 2+px+______=(x+______)2。

(学生练习,教师巡视,适当辅导,然后由学生回答,师生一起纠正,然后归纳。

)【归纳】左边常数项是一次项系数的一半的平方,右边是一次项系数的一半。

【答案】(1)32;(2)(25)225;(3)(32)2;(4)(2P )22P .【例3】用配方法将下列各式化为a(x+h)2+k 的形式。

(1)-3x 2-6x+1;(3)32y 2+31y+2;(3)0.4x 2-0.8x-1.解:(1)-3x 2-6x+1=-3(x 2+2x-31)=-3(x 2+2x+12-12-31)= -3[(x+1)2-34]=-3(x+1)2+4(2)]3)41()41(21[32)321(322313222222--++=-+=-+y y y y y y =2449)41(32]1649)41[(3222-+=-+y y .(3)0.4x 2-0.8x-1=0.4(x 2-2x-2.5)=0.4[(x 2-2x+12)-12-2.5] =0.4(x-1)2-1.4【点评】化二次三项式ax 2+bx+c(a ≠0)为a(x+h)2+k 形式分以下几个步骤。

(1)提取二次项系数使括号内的二次项系数为1.(2)配方:在括号内加上一次项系数一半的平方,同时减去一次项系数一半的平方。

(3)化简、整理(4)本例题既让学生巩固配方法,又为后面学习二次函数打下基础。

(四)总结反思 拓展升华[总结]1.本节学习的数学知识是用配方法解一元二次方程。

2.本节学习的数学方法是①转化思想.②根据实际问题建立数学模型。

[反思]用配方法解一元二次方程的一般步骤是什么?【分析】(1)把二次项系数化为1;方程的两边同时除以二次项系数。

(2)移项,使方程左边为二次项和一次项,右边为常数项。

(3)配方:方程的两边都加上一次项系数一半的平方,把方程化为(x+a)2=b 的形式。

(4)用直接开平方法解变形的方程(x+a)2=b 的形式。

[拓展]用配方法证明:多项式2x4-4x2-1的值总大于x4-2x2-4的值。

【分析】欲证2x4-4x2-1>x4-2x2-4,即证(2x4-4x2-1)-(x4-2x2-4)>0,只要算出(2x4-4x2-1)-(x4-2x2-4)值的大小即可。

证明:(2x4-4x2-1)-(x4-2x2-4)=x4-2x2+3=(x2)2-2x2+1+2=(x2-1)2+2>0【点评】比较A,B两数的大小,常用作差法。

当A-B>0,则A>B;当A-B=0,则A=B;当A-B<0,则A<B.(五)本节课的设计理念鼓励学生从事观察、应用、推理等活动,帮助学生有意识地积累数学应用的经验,教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察——想象——应用——归纳(有条理地表达)”的过程,使学生在直观的基础上学习归纳,促进学生形成科学地、能动地认识世界的良好品质。

相关文档
最新文档