典型应用题(一)

合集下载

小学数学典型应用题1 :归一问题(含解析)

小学数学典型应用题1 :归一问题(含解析)

小学数学典型应用题1 :归一问题(含解析)归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数解题思路和方法先求出单一量,以单一量为标准,求出所要求的数量。

例1:3头牛4天吃了24千克的草料,照这样计算5头牛6天吃草_____ 千克。

解:1、根据题意先算出1头牛1天吃草料的质量:24÷3÷4=2(千克)。

2、那么5头牛一天吃2×5=10(千克)的草料。

3、那么6天就能吃10×6=60(千克)草料。

例2:5名同学8分钟制作了240张正方形纸片。

如果每人每分钟制作的数量相同,并且又来了2位同学,那么再过15分钟他们又能做_____ 张正方形纸片?解:1、可以先算出5名同学1分钟能制作正方形纸片的数量,240÷8=30(张)。

2、再算出1名同学1分钟制作的数量,30÷5=6(张)。

3、现在有5+2=7(名)同学,每人每分钟做6张,要做15分钟,那么他们能做7×6×15=630(张)正方形纸片。

例3:某车间用4台车床5小时生产零件600个,照这样计算,增加3台同样的车床后,如果要生产6300个零件,需要_____ 小时完成?解:1、4台车床5小时生产零件600个,则每台车床每小时生产零件600÷4÷5=30(个)。

2、增加3台同样的车床,也就是4+3=7(台)车床,7台车床每小时生产零件7×30=210(个)。

3、如果生产6300个零件,需要6300÷210=30(小时)完成。

应用题练习

应用题练习

典型应用题(1)1、一块三角形水田占地1.2公顷,底是400米,高是多少米?2、营南小学食堂第4周前两天用去大米70千克,后三天用去大米125千克,求平均每天用大米多少千克?3、南京地铁一期工程分高架线和地下线两部分,其中高架线长约6.5千米,地下线是高架线的1.6倍,第一期工程全线长多少千米?4、一块正方形的周长是桌布是4.2米,它的面积是多少平方米?5、一个梯形上底是5厘米,下底是8.2厘米,高是4.5厘米,如果在这个梯形中剪去一个最大的三角形,剩下的面积是多少平方厘米?6、一个梯形塑料板面积是240平方厘米,上底35厘米,下底45厘米,高是多少厘米?7、一个停车场规定:停车场一次收费3元;超过1小时,每多停1小时再付1.5元。

司机小黄开走他的车时共交了13.5元停车费,他的车在那最多停了几小时?8、某市出租车的收费标准是:3千米以内收费5元,3千米以外每千米收费1.6元,周六小军从家打车到少年宫共付20.2元,他家到少年宫多少千米?9、一个长方形墙面,长8米,高4.5米。

粉刷这一墙面用了9千克油漆,平均每平方米用油漆多少千克?10、王阿姨用40元买了12.5千克大米,李阿姨买14,5千克同样的大米需要多少元?11、一根1.2米长的钢轨重7.2吨,,平均每米钢轨重多少吨?平均每吨钢轨长多少米?12、一块平行四边形麦田,底是600米,高是300米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块麦田能收到100吨小麦吗?13、一块梯形白菜地,上底是9米,下底是12米,高是18米,如果平均每棵白菜占地9平方分米,这块地里一共有白菜多少棵?14、一面用纸做成的直角三角形小旗,底是12厘米,高是20厘米,做10面这样的小旗,至少需要这种纸多少平方厘米?15、用一块长40厘米、宽30厘米的长方形红布做直角小旗,小旗的两条直角边分别是10厘米和5厘米。

这块布最多可以做多少面这样的小旗?典型应用题(2)1、一个等腰梯形的门牌,上底是16米,下底是22米,高是3米,油漆这块装饰牌(每平方米需要油漆1千克),50千克油漆够不够?2、小华看见远处打闪以后,经过3秒听到雷声,已知雷声在空气中传播的速度是每秒0.33千米,打闪的地方离小华有多远?3、王叔叔开车去农场要行200千米,汽车的油箱里有25千克汽油,每千克汽油可供汽车行驶6.8千米。

2020年小升初数学专题复习训练—拓展与提高:典型应用题(1)(知识点总结+同步测试) 通用版

2020年小升初数学专题复习训练—拓展与提高:典型应用题(1)(知识点总结+同步测试) 通用版

A.3
B.4
C.9
7.弟弟原来有 5 本故事书,哥哥给弟弟 3 本后,哥哥的本数是弟弟的 2 倍,哥哥原来有( )本书.
A.7
B.16
C.19
D.14
8.哥哥的钱数是妹妹的两倍,如果哥哥拿 4 元钱给妹妹,那么兄妹俩的钱数就一样多.妹妹原来有( )
元钱.
A.2
B.4
C.8
D.16
二.填空题(共 8 小题)
【命题方向】
例 1:如果把一根木料锯成 3 段要用 9 分,那么用同样的速度把这根木料锯成 4 段,要用 13.5 分. 分析:这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成 3 段, 要锯 2 次,锯成 4 段要锯 3 次, 那么本题就可以改成,锯 2 次要 9 分钟,那么锯 3 次要几分钟?先求锯 1 次要几分钟,用除法 即 9÷2=4.5(分),再求锯 3 次要几分钟,用乘法,即 4.5×3=13.5(分)
解:(8+16)÷(3-1) =24÷2 =12(千克) 12+8=20(千克) 答:两桶油原来各有 20 千克. 点评:本题考查了差倍问题,关键是得出 48 千克时是甲桶取出后的 2 倍.
同步测试
一.选择题(共 8 小题) 1.王大伯今年栽了桃树和梨树(如图),算一算他今年栽的果树中有梨树(
)棵.
三.和倍问题
【知识点归纳】
公式: 两数和÷份数和=小数 小数×倍数=大数 或 两数和-小数=大数 和倍问题的特点是利用大小两个数的和与它们的倍数关系,求大小两个数各是多少的应用题,
解答和倍应用题的最好助手是,采用画线段图的方法来表示两种量间的数量关系,以便找到解 题的途径.
【命题方向】

一些典型的应用题

一些典型的应用题

应用题一、行程问题1、某校组织学生排队去春游,步行速度为每秒1米,队尾的王老师以每秒2.5米的速度赶到排头,然后立即返回队尾,共用10秒,求队伍的长度是多少米?、解:速度差=2.5-1=1.5米/秒速度和=1+2.5=3.5米/秒设队伍长度为a米a/1.5+a/3.5=105a=3.5x1.5x10a=10.5米或者这样做第一次追及问题,第二次相遇问题速度比=1.5:3.5=3:7我们知道,路程一样,速度比=时间的反比因此整个过程,追及用的时间=10x7/10=7秒那么队伍长度=1.5x7=10.5米2、两列火车从甲乙两地同时相对开出,4小时后在距中点48千米的地方相遇,一直慢车是快车的5/7,他们的速度分别是?甲乙相距?解:已知慢车和快车的速度比为5:7那么相遇时,慢车行了全程的5/12快车行了全程的7/12那么全程=48/(1/2-5/12)=576千米两车的速度和=576/4=144千米/小时慢车速度=144x5/12=60千米/小时快车速度=144x7/12=84千米/小时3、在一个圆形跑道上,甲从A点,乙从B点同时出发反向而行,6分钟后两人相遇,再过4分钟甲到B点,又过8分钟两人再次相遇,甲、乙环形一周各需多少分钟?解:解:将全部路程看作单位1第一次相遇后,再一次相遇,行驶的路程是1那么相遇时间=4+8=12分钟甲乙的速度和=1/12也就是每分钟甲乙行驶全程的1/126分钟行驶全程的1/12×6=1/2也就是说AB的距离是1/2那么6+4=10分钟甲到达B,所以甲的速度(1/2)/10=1/20甲环形一周需要1/(1/20)=20分钟乙的速度=1/12-1/20=1/30乙行驶全程需要1/(1/30)=30分钟4、某学校组织学生去100千米以外的夏令营.汽车只能坐一半人,另一半人步行,先坐车的人在途中某处下车步行,汽车则立刻回去接步行的另一半人,已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间).要使大家下午5点到达,需何时出发?设一半人步行的距离是X,因为二批人是同时出发又同时到达,所以,另一批人的步行距离也是X,那么二批人的乘车距离是:100-X 车从第一批人下车处到回来与第二批人相遇的距离是:100-2X车从出发到与第二批人相遇的时间与第二批人步行的时间相同,所以:[100-X+(100-2X)]/20=X/4X=25即步行距离是25千米,乘车距离是75千米所用时间是:25/4+75/20=10小时那么要在下午5点到,则应该在上午7点出发5、甲,乙两辆汽车同时从东站开往西站,甲车每小时比乙车多性12千米。

六年级数学应用题典型例题

六年级数学应用题典型例题

六年级数学应用题典型例题在六年级数学中有的应用题题目由于具有特殊的结构,因而可以用特定的步骤和方法来解答,这样的应用题通常称为典型应用题。

店铺在此整理了六年级数学应用题典型例题,供大家参阅,希望大家在阅读过程中有所收获!六年级数学分数与百分数应用题典型例题(一)求一个数是另一个数的百分之几这类问题的结构特征是,已知两个数量,所求问题是这两个量间的百分率。

求一个数是另一个数的百分之几与求一个数是另一个数的几倍或几分之几的实质是一样的,只不过计算结果用百分数表示罢了,所以求一个数是另一数的百分之几时,要用除法计算。

解题的一般规律是:设a、b是两个数,当求a是b的百分之几时,列式是a÷b。

解答这类应用题时,关键是理解问题的含意。

例题如下:养猪专业户李阿姨去年养猪350头,今年比去年多养猪60头,今年比去年多养猪百分之几?思路分析:问题的含义是:今年比去年多养猪的头数是去年养猪头数的百分之几。

所以应用今年比去年多养猪的头数去÷去年养猪的头数,然后把所得的结果转化成百分数。

(二) 求一个数的几分之几或百分之几求一个数的几分之几或百分之几是多少,都用乘法计算。

解答这类问题时,要从反映两个数的倍数关系的那个已知条件入手分析,先确定单位“1”,然后确定求单位“1”的几分之几或百分之几。

(三)已知一个数的几分之几或百分之几是多少,求这个数这类应用题可以用方程来解,也可以用算术法来解。

用算术方法解时,要用除法计算。

解答这类应用题时,也要反映两个数的倍数关系的已知条件入手分析:先确定单位“1”,再确定单位“1”的几分之几或百分之几是多少。

一些稍难的应用题,可以画图帮助分析数量关系。

(四) 工程问题工程问题是研究工作效率、工作时间和工作总量的问题。

这类题目的特点是:工作总量没有给出实际数量,把它看做“1”,工作效率用来表示,所求问题大多是合作时间。

例题如下:一件工程,甲工程队修建需要8天,乙工程队修建需要12天,两队合修4天后,剩下的任务,有乙工程队单独修,还需几天?思路分析:把一件工程的工作量看作“1”,则甲的工作效率是1/8,乙的工作效率是1/12。

小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小学数学典型应用题(一)归一问题

小学数学典型应用题(一)归一问题
• 归一,指的是解题思路。归一应用题的特 【点数是量关先系】求出一份是多少。归一应用题有正 总正归量归一÷一份:应数1份=数用1份量题×数所量和占份反数=归所一求几应份的用数量题。在求出一份 反是归多一:少总量的÷(基总量础÷上份数,)=再所求求份出数 几份是多少,这 【类解应题思用路和题方法叫】做先求正出单归一量一,应以单用一量题为标;准,在求求出所出要求一的数份量。 是多少的基础上,再求出有这样的几份, 这类应用题叫做反归一. 应用题。根据“求一
.
1、归一问题 7、相遇问题 13、时钟问题 2、归总问题 8、追及问题 14、盈亏问题
19、“牛吃草”问题 25、构图布数问题
20、鸡兔同笼问题
26、幻方问题
3、和差问题 9、植树问题 15、工程问题
21、方阵问题
27、抽屉原则问题
4、和倍问题 10、年龄问题 16、正反比例问题 22、商品利润问题
• 解:先求1辆卡车一次能运货物多少吨, 再求增加6辆后,能运货物多少吨。 这是一道正归一应用题。
• 综合算式:

192÷24×(24+6)=240吨
.
• 例5、 张师傅计划加工552个零件。前5天加 工零件345个,照这样计算,这批零件还要 几天加工完?(这是一道反归一应用题。)
• 列综合算式: • ( 552-345) ÷( 345÷5)=3(天) • 或 552 ÷ ( 345÷5)-5=3(天)
路: • 3×5=15 • 最后求要增加多少人。.
例9、用两台水泵抽水。先用小水泵抽6小时, 后用大水泵抽8小时,共抽水624立方米。已 知小水泵5小时的抽水量等于大水泵2小时的 抽水量。求大小水泵每小时各抽水多少立方 米?
• 解法一: 根据“小水泵5小时的抽水量等

一元二次方程应用题1

一元二次方程应用题1

一元二次方程应用题1一、典型例题1、学校举行拔河友谊赛,采用单循环赛形式(即每两个队要比赛一场),计算下来共要比赛10场,问共有多少个队报名参赛?2、中国内地部分养鸡场突发禽流感疫情,某养鸡场中、一只带病毒的小鸡经过两天的传染后、鸡场共有169只小鸡遭感染患病,在每一天的传染中平均一只鸡传染了几只小鸡?3、要在长32m,宽20m的长方形绿地上修建宽度相同的3条道路,剩下六块绿地面积共570m2,问道路宽应为多少?4、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?5、某花圃用花盆培育某种花苗,经过实验发现每盆的盈利于每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?6、永华商城销售某种商品,每件进货20元,市场调查表明,当销售价为30元时,一天能售出100件,而当销售价每台上涨2元,平均每台的销售量就减少10件,商城要使这种商品的销售利润平均每天达到1120元,每件定价应是多少元?7、现有一块矩形钢板ABCD ,长AD=7.5dm ,宽AB=5dm ,采用如图1的方式在这块钢板上截除两个正方形得到如图2所示的模具,模具橫纵方向的长柄等宽(即BE=DF ).若模具的面积等于原矩形钢板的面积的一半,求模具长柄的宽。

(参考数据:2≈1.41,结果精确到0.1dm )8、世博会中国国家馆的平面示意图如图,其外框是一个大正方形,中间四个全等的小正方形(阴影部分)是支撑展馆的核心筒,标记了字母的五个全等的正方形是展厅,已知核心筒的边长比展厅的边长的一半多一米,外框的面积刚好是四个核心筒面积和的9倍,求核心筒的边长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题--典型应用题(一)应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

(一)归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

归一问题是一类典型应用题.这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题.解答归一问题的方法,叫做归一法.归一问题可以分为两种:一种是求总量的,叫做正归一问题;另一种是求份数的,叫做反归一问题.归一问题在日常生活和生产中经常遇到.【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)例题解析:1. 加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加_____人.2. 一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.3. 某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.4. 某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高 .这样_____天完成.5.某工厂一个车间,原计划20人4天做1280个零件,刚要开始生产,又增加了新任务,在工作效率相同的情况下,需要15个人7天才能全部完成,问增加了多少个零件?综合算式(1280÷20÷4)×15×7-1280=4006.某农场收割麦子,计划18人每天6小时15天收割完,后来为了加快速度,实际每天增加了9人,并且工作时间增加了2小时,实际比原计划提前了几天完成这项任务?综合算式15-18×6×15÷(18+9)÷(6+2)=7.5(天)7.一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?分析要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

解:①进水速度:480÷8=60(吨/小时)②排水速度:480÷6=80(吨/小时)③排空全池水所需的时间:480÷(80-60)=24(小时)列综合算式:480÷(480÷6-480÷8)=24(小时)练习:1.某车间要加工一批零件,原计划由18人,每天工作8小时,7.5天完成任务.由于缩短工期,要求4天完成任务,可是又要增加6人.求每天加班工作几小时?2.某工程队施工时,欲将一个池塘的水排完,若用15台抽水机,并且每天抽水8小时,则7日可排水1260吨;若每天抽水12小时,要求14天排水7560吨,则应需几台抽水机?综合式: 7560÷[1260÷15÷(8×7)×(12×14)]=30(台3.光华机械厂一个车间,原计划15人3天做900个零件,生产开始后,又增加一批任务,在工作效率相同下,要10个人8天完成,问增加了几个零件?4.王老师带了30元钱去文具店买钢笔和圆珠笔。

他买了3支钢笔和5支圆珠笔后,剩下的钱再买2支圆珠笔差4角,再买2支钢笔还差2元。

每支钢笔多少元?5.西北村预定由10个村民16天开垦一片荒地,开工4天后,增加10人,若每小时村民的工作效率不变,完成预定的开荒任务可以提前多少天?6.用12.7元钱正好能买3支钢笔、4支圆珠笔;如果买4支钢笔,3支圆珠笔还缺1.2元,每支钢笔、圆珠笔各是多少元?7、某学校买5台普通书写台灯和3台调光书写台灯共用147.5元.如果1台调光台灯换回2台普通书写台灯要花7.3元,每台普通书写台灯多少元?8.有54位解放军战士,要把21桶油送到18千米外的工厂,两人抬一桶,大家轮流休息。

求平均每人抬多少千米?9.用一个杯子向一个空瓶子里倒水,如果倒进3杯水,连瓶共重440千克;如果倒进5杯水,连瓶共重600千克;问:一杯水重多少千克?一个瓶重多少千克?10.学校足球队18人合影留念,照6寸照片印3张价格是3元,另外加印每张1元,如果每人得一张,平均每人要交多少钱?11.商场运来480双运动鞋,分别装在2个铁箱、3个木箱、8个纸箱里。

如果四个纸箱同一个铁箱的运动鞋一样多,而3个木箱里的运动鞋刚好能涌个铁箱装完,那么每个纸箱装运动鞋多少双?12.师徒共同加工840个零件,师傅先做9天,再由徒弟做两天,则可以完成任务;如果徒弟先做6天,师傅再做6天,也能完成任务。

求徒弟加工多少个零件?13.甲、乙、丙三人买了8个面包,平分着吃。

甲付了5个面包的钱,乙付了三个面包的钱,丙没有付钱.等吃完后一算,丙应该拿出八角钱.问甲、乙应收回多少钱(以角为单位)?【应收回7角钱,乙应收回1角钱】(二)归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】 1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例题解析:1.服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套? 2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)2.小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页? 24×12=288(页)(2)小明几天可以读完《红岩》? 288÷36=8(天)列成综合算式 24×12÷36=8(天)3.食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克? 50×30=1500(千克)(2)这批蔬菜可以吃多少天? 1500÷(50+10)=25(天)列成综合算式 50×30÷(50+10)=1500÷60=25(天)4.一辆汽车每小时行60千米,5小时可以达到目的地,若要提前1小时到达,每小时应行驶多少千米?5.学校食堂管理员去农贸市场买鸡蛋,原计划每千克6元的鸡蛋买70千克,结果鸡蛋价格下调,用这笔钱多买了5千克的鸡蛋。

问鸡蛋价格下调后每千克是多少元?解答:这个应用题是归总问题。

题目要求鸡蛋价格下调后每千克的单价,首先要求出的是以每千克6元的鸡蛋原价去购买70千克鸡蛋的总价格,这是本题目的“总量”,也是求解问题的标准。

不难求出,每千克6元,70千克的鸡蛋总价是6×70=420元,鸡蛋价格下调后,用这笔420元的钱多购买了5千克鸡蛋,也就是买了70+5=75千克鸡蛋。

那么下调后的鸡蛋的价格就容易求解出来了,即每千克的单价为420÷75=5.6元。

(6×70)÷(70+5)=420÷75=5.6(元)6.18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完?解答:求解这道应用题,首先要计算出搬运这堆砖的工作总量。

因为题目中没有提到搬多少块砖或砖重多少千克,所以这堆砖的总工作量不能用块数或重量来表示。

我们可以把每个人每小时的工作量看作“1”,就可以得出这堆砖的总工作量相当于:1×18×8=144,那么18人搬运2小时以后所剩下的工作量是144-1×18×2=108,剩下的搬砖工作量由12人(调走6人)去完成,还需要108÷[ 1×(18-6)]=9小时(1×18×8-1×18×2)÷[1×(8-6)]=(144-36)÷(1×12)=108÷12=9(小时)技法:归总问题的解题思路是先要找出“总量”,再根据题目的其他条件求出结果,这个“总量”是指总产量、总路程、工作总量、物品的总价等。

练习:1、电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台?2、某厂每天节煤76千克,如果每6千克煤可以发电13度,照这样计算,该厂9月份节约的煤可发电多少度?3、某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该由32人工作,限4天内完成,每天需工作几小时?4、学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买1200本的钱。

由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本?5、某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工?(三)和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷ 2小数=(和-差)÷ 2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例题解析:1.甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)2.长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

相关文档
最新文档