一级水处理设计计算
水处理设计常用计算

水处理设计常用计算计计算等。
下面将分别介绍这些计算的具体方法和公式。
1.流量计算流量计算是水处理设计中最基础、最常用的计算之一、根据给定的污水处理量或饮用水需求量,可以通过以下公式计算出管道的设计截面尺寸和水泵的需求功率等参数。
1.1.管道截面积计算在水处理系统中,流量通常通过管道输送。
为了确保管道能够满足给定的流量要求,需要计算管道的截面积。
根据管道的水流速度和流量要求,可以使用以下公式计算管道的截面积:A=Q/V其中,A是管道的截面积,Q是流量,V是流速。
1.2.水泵功率计算当流量超过一定数值时,需要使用水泵来提供足够的压力和流量。
水泵的功率可以通过以下公式计算:P=(Q×ρ×H)/η其中,P是水泵的功率,Q是流量,ρ是水的密度,H是扬程,η是水泵的效率。
2.化学计量计算在水处理设计中,经常需要用到化学计量计算。
这种计算主要用于计算化学药剂的投加量,以满足水质标准的要求。
以下是一些常用的化学计量计算方法:2.1.化学药剂计量计算在给定的流量和目标浓度下,可以通过以下公式计算出化学药剂的投加量:D=Q×C/η其中,D是化学药剂的投加量,Q是流量,C是化学药剂的目标浓度,η是投加系统的投加率。
2.2.化学药剂的稀释计算有时需要将高浓度药剂稀释为目标浓度以满足投加要求。
稀释液体的计算可以使用以下公式:V2=(C1×V1)/C2其中,V1和C1分别是初始溶液的体积和浓度,V2和C2分别是目标溶液的体积和浓度。
3.沉淀池设计计算沉淀池是污水处理系统中用于去除悬浮颗粒的设备。
以下是沉淀池设计中常用的计算方法:3.1.沉降速度计算沉淀池通过引入沉降作用使悬浮颗粒沉淀到底部。
沉淀速度可以通过以下公式计算:Vd=(g×(ρp-ρw)×d^2)/(18×μ)其中,Vd是沉淀速度,g是重力加速度,ρp是颗粒的密度,ρw是水的密度,d是颗粒的直径,μ是水的黏度。
水处理计算公式范文

水处理计算公式范文水处理计算公式是用于计算水处理过程中的各种参数和指标的数学公式。
水处理是一系列的物理、化学或生物过程,旨在改善水的质量,使其适用于特定的用途,如饮用水、工业用水、农业用水等。
下面将介绍几个常用的水处理计算公式。
1.清洗水需求量(CWR)计算公式:CWR=[(Q×T)/C]×100其中,CWR为清洗水需求量(L),Q为每分钟进水流量(L/min),T 为清洗时间(min),C为清洗浓度(%)。
清洗水需求量是在水处理过程中,为了清洗设备而需要的水量。
通过计算清洗水需求量,可以合理规划清洗水的使用量。
2. 混凝剂(coagulant)投加量计算公式:C=(V×M)/Q其中,C为混凝剂投加量(mg/L),V为混凝剂体积(mL),M为混凝剂质量(mg),Q为水样体积(L)。
混凝剂投加量的计算公式是为了确定混凝剂的适当投加量,以达到最佳的混凝效果。
混凝剂通常用于去除水中的悬浮物、胶体等杂质。
3. 净水效率(water treatment efficiency)计算公式:E = [(Cin –Cout) / Cin] × 100其中,E为净水效率(%),Cin为进水浓度(mg/L),Cout为出水浓度(mg/L)。
净水效率是衡量水处理过程中去除污染物的能力的指标。
通过计算净水效率可以评估水处理过程的效果,并进行相应的调整和改进。
4.消毒剂剂量计算公式:D=(C×V)/Q其中,D为消毒剂剂量(mg/L),C为消毒剂浓度(mg/L),V为消毒剂体积(mL),Q为水样体积(L)。
消毒剂剂量的计算公式是为了确定适当的消毒剂投加量,以达到对水中的病原体进行有效灭活的目的。
5. 溶解氧浓度(dissolved oxygen concentration)计算公式:DO=(P–Pv)/H其中,DO为溶解氧浓度(mg/L),P为大气压力(mmHg),Pv为饱和水蒸气压力(mmHg),H为溶解氧浓度与溶解氧分压之间的线性关系。
水处理常用计算公式

水处理常用计算公式碳源计算公式01碳源选择通常反硝化可利用的碳源分为快速碳源(如甲醇、乙酸、乙酸钠等)、慢速碳源(如淀粉、蛋白质、葡萄糖等)和细胞物质。
不同的外加碳源对系统的反硝化影响不同,即使外加碳投加量相同,反硝化效果也不同。
与慢速碳源和细胞物质相比,甲醇、乙醇、乙酸、乙酸钠等快速碳源的反硝化速率最快,因此应用较多。
表 1 对比了四种快速碳源的性能。
02碳源投加量计算1)氮平衡进水总氮和出水总氮均包括各种形态的氮。
进水总氮主要是氨氮和有机氮,出水总氮主要是硝态氮和有机氮。
进水总氮进入到生物反应池,一部分通过反硝化作用排入大气,一部分通过同化作用进入活性污泥中,剩余的出水总氮需满足相关水质排放要求。
2)碳源投加量计算同化作用进入污泥中的氮按BO D5去除量的5%计,即0.05(S i-Se),其中Si、S e分别为进水和出水的BO D5浓度。
反硝化作用去除的氮与反硝化工艺缺氧池容大小和进水B O D5浓度有关。
反硝化设计参数的概念,是将其定义为反硝化的硝态氮浓度与进水BO D5浓度之比,表示为Kd e(k gN O3--N/kg BOD5)。
由此可算出反硝化去除的硝态氮[N O3--N]=K de Si。
从理论上讲,反硝化1k g 硝态氮消耗 2.86kg BO D5,即:K d e=1/2.86(k g N O3--N/k gB OD5)=0.35(kg N O3--N/kg BO D5)污水处理厂需消耗外加碳源对应氮量的计算公式为:N=Ne计-N sN e计=N i-Kd eS i-0.05(S i-Se)式中:N—需消耗外加碳源对应氮量,mg/L;N e 计—根据设计的污水水质和设计的工艺参数计算出能达到的出水总氮,mg/L;N s—二沉池出水总氮排放标准,mg/L;K d e—0.35,kgN O3--N/k gB OD5;S i—进水B OD5浓度,mg/L;S e—出水B OD5浓度,mg/L;N e计需通过建立氮平衡方程计算,生化反应系统的氮平衡见图1。
水处理设计计算手册(超滤反渗透)完整版

水处理技术手册(内部资料,务需外传)编辑:审核:*****水务有限公司贰零二一年一月目录一.常用管道的允许流速 (3)二.流速、流量与管道直径的关系 (3)三.原水箱设计规则 (3)四.管道与流量的关系参考数据表 (4)五.管道内外径的关系 (4)六.原水泵设计规则 (4)七.絮凝剂、助凝剂加药设计规则(可参照exsell表格) (5)八.机械过滤器设计规则 (5)九.活性炭过滤器设计参数 (6)十.反洗水泵设计规则 (7)十一.罗茨鼓风机的选择 (7)十二.5um精密过滤器的参考数据 (7)十三.阻垢加药的设计 (8)十四.反渗透系统的设计 (8)十五.反渗透清洗系统的选择 (8)十六.中间水箱的有效容量设计规则 (9)十七.鼓风填料式除碳器的设计 (9)十八.混床的运行设计及再生工艺过程技术数据 (11)十九.混床再生周期及耗酸碱量的计算 (12)二十.各类交换床常用运行流速 (13)二十一.树脂再生周期及耗盐量的计算 (14)二十二.过滤器滤料填充计算公式及参考数据 (14)二十三.无油空压机的选择 (17)二十四.换热器的设计原理 (17)二十五.超滤系统 (17)二十六.EDI装置 (18)一.常用管道的允许流速二.流速、流量与管道直径的关系Q = π×(D÷2)2 ×V×3600Q-------------------流量(单位:m3/h)D-------------------管道直径(单位:m)V-------------------水流速(单位:m/s)3600---------------单位换算系数(单位:s/h)三.原水箱设计规则1.预处理采用全自动表头出力为1吨及1吨以下系统可按预处理每小时处理量的80%~100%;出力为1吨以上系统可按预处理每小时处理量的50%~80%;2.预处理不采用全自动表头,且反冲从原水箱抽水;原水箱可按照预处理每小时处理量1~2倍选型;3.预处理不采用全自动表头,且反冲不从原水箱抽水;原水箱可按照预处理每小时处理量的50%~100%;4.对于大型设备,修筑原水池时,原水池的容量一般按原水2个小时处理量来选择。
水处理计算方法

1. 工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。
流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。
管径单位:mm管径=sqrt(353.68X流量/流速)sqrt:开平方饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。
如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。
因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算。
2. 管道的水力计算包括长管水力计算和短管水力计算。
区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。
(水头损失可以理解为固体相对运动的摩擦力)以常用的长管自由出流为例,则计算公式为H=(v^2*L)/(C^2*R),其中H为水头,可以由压力换算,L是管的长度,v是管道出流的流速,R是水力半径R=管道断面面积/内壁周长=r/2,C是谢才系数C=R^(1/6)/n,n是糙率,其大小视管壁光洁程度,光滑管至污秽管在0.011至0.014之间取。
呵呵,计算这个比较麻烦,短管计算更麻烦,公式不好打。
总之,只知道压力和管径,无法算得流速的,因为管道起始端压力一定,管道的流速和管长和糙率成反比。
3. 我公司的一个车间内自来水量不够,现需增加。
开车时用水量在60个立方以上,但现在肯定达不到不知道是增加管径好,还是加个增压泵好?我的流体力学书丢了,现在没法算出60个立方,压力0.1MPa(表压)时,选用多少管径比较节能?主管道大概有55米,每根次管道是3米到30米不等。
请高手帮我算下,或者给出公式。
水处理相关工艺计算公式

水处理相关工艺计算公式水处理是指通过一系列工艺和设备对水进行处理和净化,使之达到特定的品质要求,以适用于各种不同的用途。
对于水处理工艺的计算公式,主要涉及到以下几个方面:流量计算、水质计算、反应速率计算和设备选型等。
1.流量计算:-平均流量计算:平均流量(Q)是指一定时间内通过给定截面的液体体积与时间的比值。
计算公式为:Q=V/t,其中Q为平均流量,V为通过给定截面的液体体积,t为经过的时间。
-流速计算:流速(v)是指液体通过单位截面的速度。
计算公式为:v=Q/A,其中v为流速,Q为流量,A为给定截面的面积。
2.水质计算:-溶解氧计算:溶解氧(DO)是指在一定温度和压力下水中溶解的氧气的浓度。
溶解氧的计算公式为:DO=(C/P)*100,其中DO为溶解氧的浓度,C为溶解氧的含量,P为水的总压力。
-悬浮物浓度计算:悬浮物是指在水中悬浮的固体颗粒。
悬浮物浓度的计算公式为:C=(m/V)*100,其中C为悬浮物的浓度,m为悬浮物的质量,V为水的体积。
3.反应速率计算:-反应速率计算:反应速率是指单位时间内反应物消耗或生成的量。
反应速率的计算公式为:r=ΔC/Δt,其中r为反应速率,ΔC为反应物消耗或生成的量的变化量,Δt为时间的变化量。
-反应速率常数计算:反应速率常数是指在给定条件下反应速率与反应物浓度的关系。
反应速率常数的计算公式为:k=r/C,其中k为反应速率常数,r为反应速率,C为反应物的浓度。
4.设备选型:-净水设备选型:净水设备的选型需要考虑水源的特性、处理效果要求、处理量等因素。
常用的净水设备包括过滤器、反渗透膜、离子交换器等。
选型公式一般采用经验公式或计算公式,如根据水质特点和处理要求来确定所需的设备型号和数量。
-污水处理设备选型:污水处理设备的选型需要考虑污水特性、处理工艺要求、处理量等因素。
常用的污水处理设备包括曝气池、沉淀池、MBR等。
选型公式一般采用设计原则和经验公式,例如根据污水COD浓度和处理效果来确定曝气池的尺寸和风量。
水处理设备常用计算公式

水处理设备常用计算公式1.流量计算公式:流量=速度×面积在水处理设备中,常常需要计算流量以确定设备的处理能力。
流量的计算公式可以通过测量流体通过一定面积的时间来确定。
其中,速度可以通过测量流体的速度来计算,而面积可以通过设备的尺寸来确定。
2.底部流速计算公式:底部流速=流量/(底部横截面积×空隙率)底部流速是指底部槽体过滤层中流体通过的速度。
在水处理设备中,底部流速的计算可以用来判断底部过滤层的流速是否过高或过低,进而调整设备的运行参数。
3.清洗水量计算公式:清洗水量=过滤面积×清洗水流量×清洗水时间在水处理设备中,为了保持设备的正常运行,清洗是一个必要的步骤。
清洗水量的计算可以帮助确定清洗所需的水量,并进一步优化清洗过程。
4.含氧量计算公式:含氧量=(溶解的氧气质量/溶液的质量)×100%含氧量是指水中溶解氧气的含量。
在水处理设备设计和操作过程中,确定水中的氧气含量对于设备的正常运行至关重要。
5.总固体含量计算公式:总固体含量=(溶解固体的质量/溶液的质量)×100%总固体含量是指水中固体颗粒物的总含量。
在水处理设备中,固体颗粒物的含量对设备的正常运行和处理效果有重要影响。
6.压力损失计算公式:压力损失=摩阻力×每单位长度的管道长度压力损失是指水流通过管道时由于摩擦而造成的压力损失。
在水处理设备设计和操作过程中,确定压力损失对于设备的正常运行和节能优化非常重要。
以上是一些水处理设备常用的计算公式,这些公式可以帮助工程师和操作人员进行操作和设计,提高水处理设备的处理能力和效果。
水处理设备常用计算公式

水处理设备常用计算公式1.流量计算公式流量(Q)是指单位时间内通过水处理设备的液体体积。
常用的流量计算公式为:Q=A×V其中,Q表示流量,A表示截面面积,V表示流速。
在水处理设备中,根据需要处理的液体流量和流速,可以通过该公式计算出所需的截面面积。
2.时间计算公式时间(t)是指液体在水处理设备中停留的时间。
常用的时间计算公式为:t=V/Q其中,t表示时间,V表示液体的体积,Q表示流量。
在水处理设备中,根据所需的停留时间和流量,可以通过该公式计算出所需的液体体积。
3.搅拌功率计算公式搅拌功率是指搅拌设备(如搅拌器、搅拌罐等)所需的功率。
常用的搅拌功率计算公式为:P=ρ×N^3×D^5其中,P表示搅拌功率,ρ表示液体的密度,N表示搅拌器的转速,D表示搅拌器的直径。
在水处理设备中,根据所需的搅拌功率、液体密度和搅拌器参数,可以通过该公式计算出所需的搅拌器转速和直径。
4.滤液含固率计算公式滤液含固率是指滤液中固体的质量占比。
常用的滤液含固率计算公式为:含固率=(W-W0)/V其中,含固率表示滤液中固体的质量占比,W表示滤液的总质量,W0表示滤液中固体的质量,V表示滤液的体积。
在水处理设备中,通过测量滤液的总质量、固体的质量和体积,可以通过该公式计算出滤液的含固率。
5.化学药剂计量计算公式化学药剂的计量是指根据所需的处理效果和水质参数,计算出所需添加的化学药剂的量。
常用的化学药剂计量计算公式为:药剂量=Q×C/D其中,药剂量表示所需添加的化学药剂的量,Q表示流量,C表示药剂的浓度,D表示药剂的投加量。
在水处理设备中,根据所需的处理效果、水质参数和药剂的浓度,可以通过该公式计算出所需添加的化学药剂的量。
这些是水处理设备中常用的计算公式,通过这些公式可以有效地进行水处理设备的设计和运行。
但需要注意的是,由于水处理设备的复杂性和实际情况的差异,对于不同的处理工艺和设备类型,可能需要使用特定的计算公式进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 污水的一级处理构筑物设计计算1.1格栅格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。
被截留的物质称为栅渣。
设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。
格栅断面有圆形、矩形、正方形、半圆形等。
圆形水力条件好,但刚度差,故一般多采用矩形断面。
格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm );按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。
1.1.1格栅的设计城市的排水系统采用分流制排水系统,城市污水主干管由西北方向流入污水处理厂厂区,主干管进水水量为s L Q 63.1504 ,污水进入污水处理厂处的管径为1250mm ,管道水面标高为80.0m 。
本设计中采用矩形断面并设置两道格栅(中格栅一道和细格栅一道),采用机械清渣。
其中,中格栅设在污水泵站前,细格栅设在污水泵站后。
中细两道格栅都设置三组即N=3组,每组的设计流量为0.502s m 3。
1.1.2设计参数1、格栅栅条间隙宽度,应符合下列要求:1) 粗格栅:机械清除时宜为16~25mm ;人工清除时宜为25~40mm 。
特殊情况下,最大间隙可为100mm 。
2) 细格栅:宜为1.5~10mm 。
3) 水泵前,应根据水泵要求确定。
2、 污水过栅流速宜采用0.6~1.Om /s 。
除转鼓式格栅除污机外,机械清除格栅的安装角度宜为60~90°。
人工清除格栅的安装角度宜为30°~60°。
3、当格栅间隙为16~25mm 时,栅渣量取0.10~0.0533310m m 污水;当格栅间隙为30~50mm 时,栅渣量取0.03~0.0133310m m 污水。
4、格栅除污机,底部前端距井壁尺寸,钢丝绳牵引除污机或移动悬吊葫芦抓斗式除污机应大于1.5m ;链动刮板除污机或回转式固液分离机应大于1.Om 。
5、格栅上部必须设置工作平台,其高度应高出格栅前最高设计水位0.5m ,工作平台上应有安全和冲洗设施。
6、 格栅工作平台两侧边道宽度宜采用0.7~1.Om 。
工作平台正面过道宽度,采用机械清除时不应小于1.5m ,采用人工清除时不应小于1.2m 。
7、 粗格栅栅渣宜采用带式输送机输送;细格栅栅渣宜采用螺旋输送机输送。
8、格栅除污机、输送机和压榨脱水机的进出料口宜采用密封形式,根据周围环境情况,可设置除臭处理装置。
9、格栅间应设置通风设施和有毒有害气体的检测与报警装置。
10、沉砂池的超高不应小于0.3m 。
1.1.3中格栅设计计算1、进水渠道宽度计算根据最优水力断面公式2221111νB v B B hv B Q ===计算设计中取污水过栅流速v =0.8s mm QB 12.18.0502.0221=⨯==ν则 栅前水深:m B h 56.021==2、格栅的间隙数 NbhvQ n αsin =式中 n 格栅栅条间隙数,个; Q 设计流量,s m 3; α 格栅倾角,º; N 设计的格栅组数,组;b 格栅栅条间隙数,m 。
设计中取 60=α b =0.02m528.056.002.060sin 502.0=⨯⨯︒=n 个3、格栅栅槽宽度()bn n S B +-=1 式中 B 格栅栅槽宽度,m ; S每根格栅条宽度,m 。
设计中取S =0.015m()m B 80.104.176.05202.0152015.0=+=⨯+-⨯=4、进水渠道渐宽部分的长度计算 111tan 2αB B l -=式中 1l 进水渠道渐宽部分长度,m ; 1α渐宽处角度,º。
设计中取 1α=︒20 m l 93.020tan 212.180.11=︒-=5、进水渠道渐窄部分的长度计算m l l 46.0293.0212===6、通过格栅的水头损失αβsin 2)(2341g v b S k h =式中 1h 水头损失,m ;β 格栅条的阻力系数,查表知 β=2.42;k格栅受污物堵塞时的水头损失增大系数,一般取 k =3。
则 m g h 14.060sin 28.0)02.0015.0(42.232341=︒⨯⨯=7、栅后槽总高度设栅前渠道超高m h 3.02=则 栅后槽总高度:m h h h H 00.13.014.056.021=++=++=8、栅槽总长度mh hl l L 38.360tan 3.060tan 56.00.15.046.093.0tan tan 0.15.0221=︒+︒++++=+++++=αα 中格栅示意图如图3—1图3—1 中格栅示意草图9、每日栅渣量 100010008640011max W Q K W Q W Z =⨯⨯= 式中 W每日栅渣量,m 3;1W 每日每10003m 污水的栅渣量,33310m m 污水。
设计中取 1W =0.0533310m m 污水43310100.0550.21000W m d m d ⨯⨯==> 应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
10、进水与出水渠道城市污水通过1250DN mm 的管道送入进水渠道,然后,就由提升泵将污水提升至细格栅。
1.1.4细格栅设计计算设计中取格栅栅条间隙数b =0.01m ,格栅栅前水深h =0.9m ,污水过栅流速v =1.0s m ,每根格栅条宽度S =0.01m ,进水渠道宽度1B =0.8m ,栅前渠道超高m h 3.02=,每日每10003m 污水的栅渣量1W =0.0433310m m则 格栅的间隙数:NbhvQ n αsin =520.19.001.060sin 502.0=⨯⨯︒= 个 格栅栅槽宽度:()()m bn n S B 03.15201.015201.01=⨯+-=+-= 进水渠道渐宽部分的长度:m B B l 32.020tan 28.003.1tan 2111=︒--=α进水渠道渐窄部分的长度计算:m l l 16.0232.0212=== 通过格栅的水头损失:m g g v b S k h 32.060sin 20.101.001.042.23sin 2)(2342341=︒⨯⨯⎪⎭⎫ ⎝⎛⨯⨯==αβ 栅后槽总高度:m h h h H 52.13.032.09.021=++=++=栅槽总长度:ααtan tan 0.15.0221h hl l L +++++=m67.260tan 3.060tan 9.00.15.016.032.0=︒+︒++++=每日栅渣量:433max 118640010100.0550.2100010001000Z Q W Q W W m s m s K ⨯⨯⨯====>⨯应采用机械除渣及皮带输送机或无轴输送机输送栅渣,采用机械栅渣打包机将栅渣打包,汽车运走。
细格栅示意图见图3—2图3—2 细格栅示意图1.2提升泵站污水总泵站接纳来自整个城市排水管网来的所有污水,其任务是将这些污水抽送到污水处理厂,以利于处理厂各构筑物的设置。
因采用城市污水与雨水分流制,故本设计仅对城市污水排水系统的泵站进行设计。
排水泵站的基本组成包括:机器间、集水池、格栅和辅助间。
3.2.1泵站设计的原则1、污水泵站集水池的容积,不应小于最大一台水泵5min 的出水量;如水泵机组为自动控制时,每小时开动水泵不得超过6次。
2、集水池池底应设集水坑,倾向坑的坡度不宜小于10%。
3、水泵吸水管设计流速宜为0.7~1.5 m/s 。
出水管流速宜为0.8~2.5 m/s 。
其他规定见GB50014—2006《室外排水规范》。
1.2.2泵房形式及工艺布置本设计采用地下湿式矩形合建式泵房,设计流量选用最高日最高时流量d m s m Q 3313000050463.1==。
1、泵房形式为运行方便,采用自灌式泵房。
自灌式水泵多用于常年运转的污水泵站,它的优点是:启动及时可靠,管理方便。
该泵站流量小于2m 3/s ,且鉴于其设计和施工均有一定经验可供利用,故选用矩形泵房。
由于自灌式启动,故采用集水池与机器间合建,前后设置。
大开槽施工。
2、工艺布置本设计采用来水为一根污水干管,无滞留、涡流等不利现象,故不设进水井,来水管直接经进水闸门、格栅流入集水池,经机器间的泵提升污水进入出水井,然后依靠重力自流输送至各处理构筑物。
3.2.3泵房设计计算1、设计参数设计流量为31.504631504.63Q m s L s ==,集水池最高水位为79.93m ,出水管提升至细格栅,出水管长度为5m ,细格栅水面标高为85.001m 。
泵站设在处理厂内,泵站的地面高程为81.50m 。
2、泵房的设计计算 (1)集水池的设计计算设计中选用5台污水泵(4用1备),则每台污水泵的设计流量为:11504.63376.244Q Q L s ===,按一台泵最大流量时5min 的出水量设计,则集水池的容积为:31376.2560112860112.86V Q t L m ==⨯⨯==取集水池的有效水深为 2.0h m =集水池的面积为:2112.8656.432V F m h ===集水池保护水深0.71m ,实际水深为2.0+0.71=2.71m 。
(2)水泵总扬程估算1)集水池最低工作水位与所需提升最高水位之间的高差为: 85.001-(79.93-2)=7.071m 2)出水管管线水头损失每一台泵单用一根出水管,其流量为1376.2Q L s =,选用的管径为mm DN 600的铸铁管,查《给水排水设计手册》第一册常用资料得流速s m v 33.1=(介于0.8~2.5s m 之间),68.31000=i 。
出水管出水进入一进水渠,然后再均匀流入细格栅。
设局部损失为沿程损失的30%,则总水头损失为:m h 024.03.1100068.35=⨯⨯= 泵站内的管线水头损失假设为1.5m ,考虑自由水头为1.0,则水泵总扬程为: m H 595.90.1071.7024.05.1=+++=(3)选泵本设计单泵流量为1376.2Q L s =,扬程m 595.9。
查《给水排水设计手册》第11册常用设备,选用300TLW-540IB 型的立式污水泵。
该泵的规格性能见表3-1。
表3-1 300TLW-540IB 型的立式污水泵的规格性能3、泵站总扬程的校核水泵的平面布置形式可直接影响机器间的面积大小,同时,也关系到养护管理的方便与否。