三角形性质和判定定理
[直角三角形的性质及判定]三角形的定义性质
![[直角三角形的性质及判定]三角形的定义性质](https://img.taocdn.com/s3/m/5dc31acd6e1aff00bed5b9f3f90f76c661374cb6.png)
[直角三角形的性质及判定]三角形的定义性质篇一: 三角形的定义性质定义由三条边首尾相接组成的内角和为180°的封闭图形叫做三角形三角形的内角和三角形的内角和为180度;三角形的一个外角等于另外两个内角的和;三角形的一个外角大于其他两内角中的任一个角。
:⑴直角三角形两个锐角互余;⑵直角三角形斜边上的中线等于斜边的一半;⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半.;⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;c.钝角三角形:有一个角大于90度。
d.证明全等时可用HL方法按角分a.锐角三角形:三个角都小于90度。
b.直角三角形:有一个角等于90度。
c.钝角三角形:有一个角大于90度。
按边分不等腰三角形;等腰三角形。
解直角三角形:勾股定理,只适用于直角三角形a+b=c, 其中a和b分别为直角三角形两直角边,c为斜边。
勾股弦数是指一组能使勾股定理关系成立的三个正整数。
比如:3,4,5。
他们分别是3,4和5的倍数。
常见的勾股弦数有:3,4,5;6,8,10;5,12,13;10,24,26;等等三角形的性质1.三角形的任何两边的和一定大于第三边,由此亦可证明得三角形的任意两边的差一定小于第三边。
[]2.三角形内角和等于180度3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
4.直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。
直角三角形斜边的中线等于斜边的一半。
5.三角形的外角等于与其不相邻的两个内角之和。
6.一个三角形最少有2个锐角。
7.三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段。
8.等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。
9.勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么这个三角形就一定是直角三角形。
三角形性质和判定定理

三角形性质和判定定理三角形是平面几何中最基本的图形之一,具有丰富的性质和判定定理。
本文将对三角形的性质和判定定理进行论述,探究其数学本质和应用。
1. 三角形的定义三角形是由三条线段组成的闭合图形,其中每条线段都是连接两个非共线点的直线段。
三角形可分为等边三角形、等腰三角形、直角三角形等各种类型。
2. 三角形的性质2.1 三角形的内角和定理三角形的内角和等于180度。
设三角形的三个内角分别为A、B、C,可以得出以下等式:A + B + C = 180度。
2.2 三角形的外角性质三角形的外角等于其余两个内角的和。
如果外角为θ,则有:θ = A + B 或θ = B + C 或θ = A + C。
2.3 三角形的边长关系三角形的两边之和大于第三边,两边之差小于第三边。
设三角形的三个边分别为a、b、c,则有以下不等式成立:a + b > c,a + c > b,b+ c > a;a - b < c,a - c < b,b - c < a。
三角形的内角与其对边之间存在一定的关系。
设三角形的三个内角分别为A、B、C,对边分别为a、b、c,则有以下关系成立:a/sinA = b/sinB = c/sinC。
3. 三角形的判定定理3.1 三边长度判定定理如果三角形的三边长度分别为a、b、c,满足a + b > c,a + c > b,b +c > a,则可以构成一个三角形。
3.2 两边夹角与第三边关系判定定理如果已知三角形的两边长度分别为a、b,夹角为θ,则可以根据余弦定理判断第三边的长度。
余弦定理表达式为:c^2 = a^2 + b^2 -2abcosθ。
3.3 两边夹角与第三边夹角关系判定定理如果已知三角形的两边长度分别为a、b,夹角分别为A、B,则可以根据正弦定理判断第三边夹角的大小。
正弦定理表达式为:sinC/a = sinA/b = sinB/c。
三角形的相似性质和判定

三角形的相似性质和判定三角形是几何中最基础的图形之一,具有广泛的应用价值。
在研究三角形的性质时,相似性质和判定是我们需要重点关注的内容。
本文将介绍三角形的相似性质和判定方法,帮助读者深入理解和应用这一重要概念。
一、相似三角形的定义和特点相似三角形指的是具有相同形状但可能不相等的三角形。
相似三角形的定义可以由以下两个条件来表示:1. 对应角相等:两个三角形的对应角度相等,即对应角度的度数相同。
2. 对应边成比例:两个三角形的对应边的比例相等,即两边的长度之比相同。
相似三角形具有以下重要的特点:1. 全等三角形是相似三角形的一个特例,全等三角形的对应边和角都相等。
2. 相似三角形的形状相似,但大小可能不同。
3. 当两个三角形相似时,它们的各个对应角度的度数相等,对应边长的比例相等。
二、相似三角形的判定方法判定两个三角形是否相似有多种方法,以下是常用的两种判定方法:1. AA相似定理:如果两个三角形的两个角分别相等,那么这两个三角形是相似的。
这个定理又称为“角-角相似定理”。
2. SSS相似定理:如果两个三角形的三个对应边长之比相等,那么这两个三角形是相似的。
这个定理又称为“边-边-边相似定理”。
需要注意的是,在使用相似三角形判定时,要保证对应角和对应边是正确对应的,否则可能会得出错误的结论。
三、相似三角形的应用相似三角形的概念在几何学和实际应用中都有广泛的应用,以下是一些常见的应用场景:1.解决实际测量问题:通过观察和测量,我们可以利用相似三角形的性质来计算无法直接测量的长度和距离。
2.设计和建筑:在建筑和设计领域,相似三角形的概念被广泛用于绘制和设计建筑物、家具、道路等的比例。
3.地图和导航:地图中的比例尺就是通过相似三角形的概念来确定的。
通过相似三角形,我们可以在地图上测量出实际距离。
4.影子和高度测量:在日常生活中,我们可以利用相似三角形的性质来测量高楼、树木等的高度,以及计算无法直接测量的距离。
直角三角形的判定和性质

等腰直角三角形的面积可以通 过其直角边计算,面积=1/2 * a * a = 1/2 * a^2。
30°-60°-90°的直角三角形
30°-60°-90°的直角三角形是具有30°和60°锐角的直角三角形,其中30° 角所对的直角边等于斜边的一半,即c=2a,其中c为斜边,a为30°角所 对的直角边。
直角三角形中的三个角满足三角形内角和定理,即三角形的 三个内角之和等于180度。
直角三角形中的边长关系
直角三角形中,斜边是直角边中最长的一边,且斜边上的 中线等于斜边的一半。
在直角三角形中,直角边的平方和等于斜边的平方,即勾 股定理。
直角三角形的中线性质
直角三角形中,斜边上的中线长度等于斜边长度的一半。 直角三角形的中线性质还包括,中线与直角相对的边平行且等于该边的一半。
04
直角三角形的应用
在几何图形中的应用
01
勾股定理
勾股定理是直角三角形的一个重要性质,在几何学中广泛应用于解决与
直角三角形相关的问题。
02
等腰直角三角形
等腰直角三角形是一种特殊的直角三角形,其两腰相等,且一个角为90
度。在几何图形中,等腰直角三角形
直角三角形的判定和性质
目 录
• 直角三角形的定义 • 直角三角形的判定 • 直角三角形的性质 • 直角三角形的应用 • 直角三角形的特殊情况
01
直角三角形的定义
定义
01
直角三角形是有一个角为90度的 三角形。
02
在直角三角形中,斜边是最长的 一边,两个锐角的角度之和为90 度。
直角三角形的表示方法
运动学
在描述物体的运动轨迹时,我们经常需要使用直角三角形来计算角度、速度和加速度等物 理量。例如,在抛体运动中,我们可以使用直角三角形来计算物体的射程和仰角。
直角三角形的性质与判定

3.互逆命题与互逆定理
观察上面三组命题,你发现了什么?
1.两直线平行,内错角相等;
3.如果小明患了肺炎,那么他一定会发烧;4.如果小明发烧,那么他一定患了肺炎;
2.内错角相等,两直线平行;
5.一个三角形中相等的边所对的角相等;6.一个三角形中相等的角所对的边相等;
┏
归纳总结
定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
定理:如果一个三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.
勾股定理:直角三角形两条直角边的平方和等于斜边的平方.
下面两个定理的条件和结论有什么样的关系?
如果一个三角形中有两个锐角互余,那么这个三角形是直角三角形吗?
1.直角三角形的性质与判定
如图,在△ABC中, ∠A +∠B=90°,那么△ABC是直角三角形吗?
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°,所以∠C=90°. 于是△ABC是直角三角形.
勾股定理:直角三角形两条直角边的平方和等于斜边的平方.即a2+b2=c2.
2.勾股定理与逆定理
证明欣赏
b
a
c
b
a
c
1.总统证法:
美国第20任总统:詹姆斯·艾伯拉姆·加菲尔德
c
a
b
c
a
b
c
a
b
c
a
b
∵ (a+b)2 = c2+ ,
a2+2ab+b2 = c2+2ab,
相似三角形的判定与性质

相似三角形的判定与性质相似三角形是几何学中的重要概念,它们在很多问题的解决中起着关键作用。
本文将介绍相似三角形的判定方法以及相似三角形的一些性质。
一、相似三角形的判定方法1. AA相似定理AA相似定理是相似三角形的判定方法之一。
当两个三角形的对应角度相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足∠A = ∠D,且∠B = ∠E,那么这两个三角形是相似的。
2. SSS相似定理SSS相似定理是相似三角形的判定方法之二。
当两个三角形的对应边长成比例时,这两个三角形是相似的。
具体而言,如果三角形ABC 和三角形DEF满足AB/DE = BC/EF = AC/DF,那么这两个三角形是相似的。
3. SAS相似定理SAS相似定理是相似三角形的判定方法之三。
当两个三角形的一个对应边成比例,且两个对应边夹角相等时,这两个三角形是相似的。
具体而言,如果三角形ABC和三角形DEF满足AB/DE = AC/DF和∠A = ∠D,那么这两个三角形是相似的。
二、相似三角形的性质1. 对应角相等性质相似三角形的对应角是相等的。
如果三角形ABC与三角形DEF是相似的,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边成比例性质相似三角形的对应边成比例。
如果三角形ABC与三角形DEF是相似的,那么AB/DE = BC/EF = AC/DF。
3. 高度与边成比例性质相似三角形的对应边上的高度成比例。
如果三角形ABC与三角形DEF是相似的,那么AD/DF = BE/EF = CF/DE。
4. 面积与边长平方的比例性质相似三角形的面积与对应边长的平方成比例。
如果三角形ABC与三角形DEF是相似的,则S(ABC)/S(DEF) = (AB/DE)^2 = (BC/EF)^2 = (AC/DF)^2,其中S(ABC)表示三角形ABC的面积,S(DEF)表示三角形DEF的面积。
5. 定理勾股定理性质边长成比例的三角形中,对应边长的平方和成比例。
三角形的相关性质及判定定理

附:相关概念
1、三角形的内角(三角形的角)
2、(锐角、直角、钝角)三角形
3、三角形的角平分线
4、三角形的中线
5、三角形的高线
三角形的相关性质及判定定理
性质
判定定理
三角形
1、三角形三个内角的和等于180°
2、三角形任何两边的和大于第三边
等腰三角形
1、等腰三角形的两个底角相等(在同一个三角形中,等边对等角)
2、等腰三角形的顶角平分线、底边上的中线和高线互相重合(等腰三角形三线合一)
1、如果一个三角形有两个角相等,那么这个三角形是等腰三角形。(在同一个三角形中,等角对等边)
等边三角形
1、等边三角形的各个内角都等于60°
1、三个角都相等的三角形是等边三角形
2、有一个角是60°的等腰三角形的两个锐角互余
2、直角三角形斜边上的中线等于斜边的一半
3、直角三角形两条直角边的平方和等于斜边的平方。a²+b²=c²
1、有两个角互余的三角形是直角三角形
(完整版)直角三角形的判定和性质

直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。
【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。
则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形性质和判定定理-CAL-FENGHAI.-(YICAI)-Company One1
等腰三角形:
定义:有两条边相等的三角形是等腰三角形。
在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
性质:
1.等腰三角形的两条腰相等;
2.等腰三角形的两个底角相等;
3.等腰三角形是轴对称图形;
4.等腰三角形顶角的平分线、底边上的中线、底边上的高重合,它们所在的直线都是等腰三角形的对称轴。
判定:
1.有两条边相等的三角形是等腰三角形;
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等。
等边三角形:
定义:三边都相等的三角形是等边三角形,也叫正三角形。
性质:
1.等边三角形是轴对称图形,有三条对称轴,任意边的垂直平分线都是它的对称轴;
2.等边三角形的三个角都相等,每个角都是60°。
判定:
1.三条边都相等的三角形是等边三角形;
2.有一个角是60°的等腰三角形是等边三角形;
3.有两个角是60°的三角形是等边三角形。
直角三角形:
定义:有一个内角是直角的三角形叫做直角三角形。
其中,构成直角的两边叫做直角边,直角边所对的边叫做斜边。
性质:
1.直角三角形的两个余角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中30°角所对的直角边等于斜边的一半;
4.勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
判定:
1.有一个角是直角的三角形是直角三角形;
2..有两个角互余的三角形是直角三角形;
3.如果一个三角形一条边上的中线等于这条边的的一半,那么这个三角形是直角三角形;
4.如果三角形的三边长a、b、c满足于
a^2+b^2=c^2,那么这个三角形是直角三角形。
角平分线定理:在角的平分线上的点到这个角的两边
的距离相等
逆定理:到一个角的两边的距离相同的点,在这个角的平分线上
中垂线定理:线段垂直平分线上的点到这条线段两个
端点的距离相等
逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
1 定理三角形两边的和大于第三边
2 推论三角形两边的差小于第三边
5外角2 三角形的一个外角大于任何一个和它不相邻的内角
3 三角形内角和定理三角形三个内角的和等于180°4外角1 三角形的一个外角等于和它不相邻的两个
内角的和
全等的判定:
6边角边公理(SAS) 有两边和它们的夹角对应相等的两
个三角形全等
7角边角公理( ASA)有两角和它们的夹边对应相等
的两个三角形全等
8推论(AAS) 有两角和其中一角的对边对应相等的
两个三角形全等
9边边边公理(SSS) 有三边对应相等的两个三角形
全等
10斜边、直角边公理(HL) 有斜边和一条直角边对应
相等的两个直角三角形全等。