最大值函数和最小值函数
函数的最大值与最小值90830

(Ⅰ)求导数 f ( x) ;
(Ⅱ)若 f (1) 0 ,求 f ( x)在[-2,2]上的 最大值和最小值;
(Ⅲ)若 f ( x) 在(-∞,-2]和[2,+∞)上 都是递增的,求a的取值范围。
练习1:求函数f(x)=2x3+3x2-12x+14在区间[-3,4]上的最
r 2
V
(3 V 2
)2
由于S(r)只有一个极值,所以它是最小值. 答:当罐的高与底半径相等时,所用的材料最省.
(3)函数在其定义域上的最大值与最小值至多各有一个,
而函数的极值则可能不止一个,也可能没有极值,并且极大 值(极小值)不一定就是最大值(最小值),
但除端点外在区间内部的最大值(或最小值),则一 定是极大值(或极小值).
的最大值为 ,最小值为
。
分析: (1) 由 f ´(x)=3x²+6x-9=0, 得x1=-3,x2=1 函数值为f (-3)=27, f (1)=-5
(2) 区间[-4 , 4 ]端点处的函数值为 f (-4) =20 , f (4) =76
当x变化时,y′ 、 y的变化情况如下表:
x -4 (-4,-3) -3 (- 1 (1,4) 4 3,1)
大值和最小值.
答案:最大值为f(4)=142,最小值为f(1)=7.
四、实际应用
1.实际问题中的应用. 在日常生活、生产和科研中,常常会遇到求函数的
最大(小)值的问题.建立目标函数,然后利用导数的方法 求最值是求解这类问题常注意确定函数的定义域.
在实际问题中,有时会遇到函数在区间内只有一个 点使 f (x) 0 的情形,如果函数在这个点有极大(小)值, 那么不与端点值比较,也可以知道这就是最大(小)值. 这里所说的也适用于开区间或无穷区间.
函数的最大值与最小值

(3)函数在其定义域上的最大值与最小值至多各 函数在其定义域上的最大值与最小值至多各 有一个,而函数的极值则可能不止一个 而函数的极值则可能不止一个,也可能没有 有一个 而函数的极值则可能不止一个 也可能没有 极值,并且极大值 极小值)不一定就是最大值 最小 极值 并且极大值(极小值 不一定就是最大值(最小 并且极大值 极小值 不一定就是最大值 但除端点外在区间内部的最大值(或最小值 值),但除端点外在区间内部的最大值 或最小值 则 但除端点外在区间内部的最大值 或最小值),则 一定是极大值(或极小值 或极小值). 一定是极大值 或极小值 (4)如果函数不在闭区间 如果函数不在闭区间[a,b]上可导 则在确定函 上可导,则在确定函 如果函数不在闭区间 上可导 数的最值时,不仅比较该函数各导数为零的点与端 数的最值时 不仅比较该函数各导数为零的点与端 点处的值,还要比较函数在定义域内各不可导的点 点处的值 还要比较函数在定义域内各不可导的点 处的值. 处的值 (5)在解决实际应用问题中 如果函数在区间内只 在解决实际应用问题中,如果函数在区间内只 在解决实际应用问题中 有一个极值点(这样的函数称为单峰函数 这样的函数称为单峰函数),那么要根 有一个极值点 这样的函数称为单峰函数 那么要根 据实际意义判定是最大值还是最小值即可,不必再 据实际意义判定是最大值还是最小值即可 不必再 与端点的函数值进行比较. 与端点的函数值进行比较
函数的最大值与最 小值与导数
1.当函数 当函数f(x)在x0处连续时,判别 0)是极大 小)值的 在 处连续时 判别f(x 是极大(小 值的 当函数 判别 是极大 方法是: 方法是 如果在x 右侧f ①如果在 0附近的左侧 f/(x)>0 ,右侧 /(x)<0 ,那 ) 右侧 那 是极大值; 么,f(x0)是极大值 是极大值 如果在x 右侧f ②如果在 0附近的左侧 f/(x)<0, 右侧 /(x)>0 ,那 那 是极小值. 么,f(x0) 是极小值 2.导数为零的点是该点为极值点的必要条件 而不是充 导数为零的点是该点为极值点的必要条件,而不是充 导数为零的点是该点为极值点的必要条件 分条件.极值只能在函数的 极值只能在函数的导数为零且在其附近左右 分条件 极值只能在函数的导数为零且在其附近左右 时取到. 两侧的导数异号时取到 两侧的导数异号时取到 3.在某些问题中 往往关心的是函数在一个定义区间上 在某些问题中,往往关心的是函数在一个定义区间上 在某些问题中 往往关心的是函数在一个定义区间上, 哪个值最大,哪个值最小 而不是极值. 哪个值最小,而不是极值 哪个值最大 哪个值最小 而不是极值
函数的最大值最小值

最小值.
x 1
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,
则
f (x1)
f
(x2 )
2 x1 1
2 x2 1
2[(x2 1) (x1 1)] (x2 1)(x1 1)
2(x2 x1) (x2 1)(x1 1)
由于2<x1<x2<6,得x2- x1>0,(x1-1)(x2-1)>0,于是
结论:闭区间上的单调函数的最值在区间 的端点处取得。
利用函数单调性判断函数的最大(小)值的方法
1.利用二次函数的性质(配方法)求函数的最大(小)值
2. 利用图象求函数的最大(小)值
3.利用函数单调性的判断函数的最大(小)值
如果函数y=f(x)在区间[a,b]上单调递增,则函 数y=f(x)在x=a处有最小值f(a),在x=b处有最大值 f(b如) 果;函数y=f(x)在区间[a,b]上单调递减,在区 间[b,c]上单调递增则函数y=f(x)在x=b处有最小值 f(b);
课堂练习
1、函数f(x)=x2+4ax+2在区间(-∞,6]内递减,
则a的取值范围是( ) D
A、a≥3
B、a≤3
C、a≥-3
D、a≤-3
2、在已知函数f(x)=4x2-mx+1,在(-∞,-2]上 递减,在[-2,+∞)上递增,则f(x)在[1,2]上的 值域__[2_1_,_3_9_] _____.
例3、“菊花”烟花是最壮 观的烟花之一.制造时一般是 期望在它达到最高点时爆裂. 如果在距地面高度h m与时 间t s之间的
关系为:
h(t)= -4.9t2+14.7t+18 ,
大学数学_3_4 函数的最大值与最小值

例5 3 甲船以 20nmile / h 的速度向东行驶,同一时间 乙船在甲船的正北 82nmile 处以16nmile / h 的速度向南行 驶,问经过多少时间,甲乙两船相距最近. y 82 解 设在时刻 t 0 时甲船位于 O 点, 16t 乙船位于甲船正北82nmile 处,在时刻 t B (单位:h)甲船由点 O 出发向东行驶了 20t (单位:nmile)至A点,乙船向南行驶 O 20t A x 了16t (单位:nmile)至B点(图 3-7) 图3-7 甲乙两船的距离为
内容小结
1. 最值点应在极值点和边界点上找
2. 应用题可根据问题的实际意义判别
作业
P134 1(1), (5), 2, 3, 4
由这个例子看出,为什么我们经常用n次测量值的算 术平均值作为所测量值的近似值. 例题中x-xi代表第i次的 测量值xi与真值x的误差,由于x-xi(i=1,2, …,n)可为正 也可为负,不能用它们的和作为n次测量值的总误差,以 免正负误差相抵消,因此一般采用n次测量误差的平方和 作为总误差,寻求如何取近似值能使这个总误差最小. 这 就是通常所谓的最小二乘法.
2 ( x 差平方和 1
x1 x2 n
xn
( x x2 )2 ( x xn ) 2 为最小. 2 2 2 y ( x x ) ( x x ) ( x x ) 证 记 1 2 n . 现求y的最小
值.
y 2[( x x1 ) ( x x2 ) ( x xn )] 2[nx ( x1 x2 xn )]. 令 y 0 得唯一驻点 1 x ( x1 x2 xn ). n 1 又y一定存在最小值,故当x ( x1 x2 xn ).时误差平 n 方和最小.
函数性质2最大值-和最小值

函数性质2:最大值与最小值一、函数最大(小)值定义1、最大值:一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x 0∈I ,使得f(x 0) = M那么,称M 是函数y=f(x)的最大值(Maximum Value ).注意:○1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 2、利用函数单调性的判断函数的最大(小)值的方法○1 利用二次函数 的性质(配方法 )求函数的最大(小)值 ○2 利用图象 求函数的最大(小)值(数形结合)○3 换元法:通过变量式代换转化为求二次函数在某区间上的最值. 例1、求函数12-=x y 在区间[2,6]上的最大值和最小值.例2、求函数1y x x =+-的最大值.例4、将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?例5、求函数223y x x x =-+当自变量在下列范围内取值时的最值.①10x -≤≤ ② 03x ≤≤ ③(,)x ∈-∞+∞例题7、已知函数2()22f x x ax =++,求()f x 在[]5,5-上的最大值与最小值。
练习:已知函数22()4422f x x ax a a =-+-+在闭区间[]0,2上有最小值3,求实数a 的值单调性拓展:复合函数单调性判断设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。
函数的最大值和最小值(教案与课后反思

函数的最大值和最小值一、教学目标:1. 让学生理解函数的最大值和最小值的概念。
2. 让学生掌握求函数最大值和最小值的方法。
3. 培养学生解决实际问题的能力。
二、教学内容:1. 函数的最大值和最小值的定义。
2. 求函数最大值和最小值的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:函数的最大值和最小值的定义,求最大值和最小值的方法。
2. 教学难点:如何运用方法求解实际问题中的最大值和最小值。
四、教学方法:1. 采用讲授法,讲解函数最大值和最小值的概念及求解方法。
2. 利用案例分析,让学生理解最大值和最小值在实际问题中的应用。
3. 开展小组讨论,培养学生合作解决问题的能力。
五、教学过程:1. 引入新课:通过生活中的例子,如购物时如何选择最划算的商品,引出函数的最大值和最小值的概念。
2. 讲解概念:详细讲解函数的最大值和最小值的定义,让学生明确最大值和最小值的意义。
3. 方法讲解:讲解求函数最大值和最小值的方法,并通过示例进行演示。
4. 案例分析:分析实际问题中的最大值和最小值,让学生了解最大值和最小值在生活中的应用。
5. 小组讨论:让学生分组讨论,运用所学方法解决实际问题。
6. 课堂小结:总结本节课的主要内容,强调最大值和最小值的概念及求解方法。
7. 课后作业:布置相关练习题,巩固所学知识。
课后反思:本节课通过生活中的例子引入最大值和最小值的概念,让学生容易理解。
在讲解方法时,结合示例进行演示,有助于学生掌握。
在案例分析和小组讨论环节,学生能够积极参与,运用所学知识解决实际问题。
但部分学生在理解最大值和最小值的应用时仍有一定难度,需要在今后的教学中加强引导和练习。
六、教学评价:1. 通过课堂提问、作业批改和课后访谈等方式,了解学生对函数最大值和最小值概念的理解程度。
2. 评估学生在实际问题中运用最大值和最小值方法的能力。
3. 根据学生的表现,调整教学策略,以提高教学质量。
七、教学拓展:1. 引导学生关注其他类型的函数(如二次函数、指数函数等)的最大值和最小值问题。
中考知识点函数的最大值与最小值

中考知识点函数的最大值与最小值函数的最大值和最小值是中考数学中的一个重要知识点。
在解题过程中,我们需要运用一些方法来求解函数的最大值和最小值。
本文将介绍三种常见的方法:图像法、导数法和附加条件法,以帮助大家更好地理解和应用这一知识点。
一、图像法使用图像法求解函数的最大值和最小值,一般需要绘制函数的图像。
在中考中,我们通常采用手绘图像的方式进行计算。
下面以一个例题来说明图像法的具体步骤。
例题:已知函数$f(x)=x^2-6x+5$,求$f(x)$的最大值和最小值。
解题步骤:(1)首先,我们绘制出函数$f(x)=x^2-6x+5$的图像。
为了方便计算,我们可以计算出函数的顶点坐标。
由二次函数的性质可知,函数的顶点坐标为$(p,q)$,其中$p$的值等于二次项系数的相反数的一半,$q$的值等于函数在$p$处的取值。
可以求得顶点坐标为$p=3$,$q=-4$。
将这个顶点坐标标在函数图像上。
(2)根据图像,我们可以看出函数$f(x)$的最大值为$q=-4$,对应的$x$值为$p=3$;最小值为$q=-\infty$(无穷小),对应的$x$值为$x\to \infty$。
因此,函数$f(x)=x^2-6x+5$的最大值为$-4$,最小值为$-\infty$。
二、导数法使用导数法求解函数的最大值和最小值,可以利用函数的导数来判断函数的增减性。
下面以一个例题来说明导数法的具体步骤。
例题:已知函数$g(x)=3x^2+4x+2$,求$g(x)$的最大值和最小值。
解题步骤:(1)首先,我们需要求出函数$g(x)$的导函数$g'(x)$。
对于一次或二次函数,我们可以通过对函数的表达式进行求导来得到导函数。
对函数$g(x)$进行求导,得到$g'(x)=6x+4$。
(2)根据导数的定义,导数表示函数在某一点的变化率。
根据函数的导数可以判断函数的增减性。
当导数大于$0$时,函数递增;当导数小于$0$时,函数递减。
函数的最大值和最小值的求解方法

函数的最大值和最小值的求解方法1.图像法:通过绘制函数的图像来估计最大值和最小值。
首先,通过计算函数的导数来确定函数的增减性。
然后,在函数的定义域内绘制函数的图像,并观察图像的走势。
函数在其图像上的最高点(最大值)和最低点(最小值)对应着函数的最大值和最小值。
2.导数法:通过计算函数的导数来确定函数的最大值和最小值。
对于函数f(x),当f'(x)=0或f'(x)不存在时,f(x)可能取得极值。
因此,函数的最大值和最小值发生在导数为零或导数不存在的点上。
用一阶导数测试和二阶导数测试可以判断一个点是极大值还是极小值。
3.函数的端点:当函数在一个区间的一个或多个端点处定义时,此区间的端点可能是函数的最大值和最小值。
在确定端点的值后,通过计算函数在这些点上的函数值,可以判断哪个点是函数的最大值和最小值。
4.根的方法:对于函数f(x),要找出其最大值和最小值,首先需要找到所有满足f'(x)=0的x值,即函数f(x)的零点。
然后,在这些零点中找出所有满足f''(x)=0的x值,即函数f'(x)的零点。
在这些零点中找到的x值对应的f(x)值即为函数的最大值和最小值。
5. 化简方法:对于一些特殊形式的函数,可以通过化简来确定最大值和最小值。
比如,对于一个二次函数f(x) = ax^2 + bx + c,其中a、b和c是常数,可以通过求导或者用二次函数的顶点公式来确定函数的最大值和最小值。
需要注意的是,以上方法并非适用于所有的函数和问题。
对于复杂的函数和问题,可能需要使用其他更高级的方法,如微积分的高级理论和算法来求解函数的最大值和最小值。
同时,计算最大值和最小值时,也要注意函数的定义域和约束条件,避免出现错误的求解结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大值函数和最小值函数
最大值函数和最小值函数是函数的两种重要形态,它们可以帮助我们找到一组数据集
中的极值点。
最大值函数可以帮助我们找到数据集中的最大值,而最小值函数则是找到其
中的最小值。
在解决一些问题时,这两类函数可以起到必要的作用,有助于给出最优的解
决方案。
### 最大值函数的定义
最大值函数是指一个函数,它的输出或者输出的函数值的最大值,它的运算公式为:
${y}=f(x)={max}(x)
其中,${y}$代表函数输出的最大值,${x}$代表函数输入的变量,${max}$可以表示
某一变量或者一组变量。
最大值函数常用于某一变量给定时,对另一变量求最大值的情况,它一般可以得到最
优的解。
最小值函数对于寻找最小解时特别有用,它可以将状况复杂化为一个单变量的最优化
问题,从而求得最优的解决方案。
最大值函数和最小值函数都可以用于解决最优化问题。
比如,常见的最短权路径搜索
问题,可以用最小值函数来求解。
当我们需要计算最长路径时,可以使用最大值函数,它
可以求出在一组距离中最长的路径。
此外,最大值函数和最小值函数也可以用于求最大值、最小值、极值点等,它们给我们提供了很多有助于精确计算的重要工具。