管翅式换热器优化设计方案方法(较为详细表述)
翅片式换热器优化设计的探讨

翅片式换热器优化设计的探讨翅片式换热器是一种常用的换热设备,广泛应用于石化、制药、化工等行业中。
它具有结构紧凑、传热效率高的特点,但在实际运行中,常常存在一些问题,如阻力大、热交换面积利用率低等。
因此,对翅片式换热器进行优化设计,可以提高其性能,并满足实际工况的要求。
首先,翅片式换热器的流道结构对其传热性能有着重要影响。
传统的翅片式换热器流向通常是平行或交叉流。
然而,这种结构简单,热交换效果有限。
研究表明,采用交叉错位流道结构,可以增加传热面积,改善传热效果。
因此,在翅片式换热器的设计中,可以考虑采用交叉错位流道结构,以提高传热效率。
另外,优化翅片的几何形状也是一种提高翅片式换热器性能的途径。
翅片的形状对换热器的传热性能有着重要的影响。
传统的翅片通常是直翅片,但这种结构容易造成流动阻力和压力损失。
因此,可以考虑采用曲翅片或波纹翅片等非常规形状的翅片,以降低流动阻力和提高传热效率。
此外,还可以在翅片式换热器中引入增强换热技术,进一步提高传热效果。
增强换热技术包括流体的纵向和横向换热增强技术,如加入纵向或横向插差元件、增加流体的喷撞、涡旋流动等。
这些技术可以增加流体的湍流程度,提高传热效率。
此外,在翅片式换热器的设计中,还需考虑材料的选择和防腐蚀措施。
翅片式换热器通常工作在恶劣的工况下,如高温、高压、腐蚀介质等。
因此,在设计中应选择合适的材料,如不锈钢、钛合金等,以提高翅片式换热器的耐腐蚀性能。
综上所述,翅片式换热器优化设计应从流道结构、翅片形状、增强换热技术以及材料选择等多个方面进行考虑。
通过合理的设计和选型,可以提高翅片式换热器的传热效率,降低能耗,满足实际工况的要求。
翅片管换热方案

翅片管换热方案引言换热是热工学中的一个重要概念,它涉及到热量传递的过程。
在很多工业领域中,翅片管换热是一种常见的换热方式,它具有体积小、热传输效率高等优点。
本文将介绍翅片管换热的基本原理以及常用的换热方案。
基本原理翅片管换热是通过在管道外表面上安装翅片来增加换热面积,从而提高换热效率。
翅片管换热的基本原理可以简单概括为以下几点:1.翅片的存在增加了换热面积。
由于翅片的形状多为翅片片或片柱,可以有效地增加管道外表面积。
通过增大换热面积,可以提高热量的传递速度,从而加快换热过程。
2.翅片的存在增加了对流换热的效果。
翅片具有不同形状和结构,可以有效地改变流体流动的方式和速度。
通过增加流体的流动路径和速度,可以增加对流换热的效果,进一步提高换热效率。
3.翅片的存在改变了流体内部的温度分布。
翅片管交换热时,翅片和流体之间会形成温度梯度,从而改变了流体内部的温度分布。
通过调整翅片的形状和尺寸,可以改变温度场的分布,使得热量更加均匀地传递到流体中。
常用的换热方案在实际工程中,翅片管换热的方案可以根据实际需求进行选择。
以下是一些常用的翅片管换热方案:1. 螺旋翅片管换热器螺旋翅片管换热器是一种常见的用于气液换热的设备。
它的主要特点是管束内的管子呈螺旋形,并且外表面增加了翅片。
这种设计可以增大换热面积,增加对流换热效果,从而提高热传输效率。
2. 悬浮式翅片管换热器悬浮式翅片管换热器是一种通过悬浮在管道内部的翅片来实现换热的装置。
翅片通常由螺旋形或环形翅片构成,通过在管道内部布置悬挂或固定的方式,实现了翅片与流体之间的热量传递。
悬浮式翅片管换热器具有结构紧凑、热传导性能好等特点。
3. 平面翅片管换热器平面翅片管换热器是一种将翅片平铺在管道外表面上的换热器。
它通常由管道和翅片两部分组成,翅片以平面方式固定在管道外部。
这种换热器结构简单,容易维修,适用于一些对设备体积要求较高的场合。
应用领域及案例翅片管换热方案在许多工业领域都有广泛的应用,尤其是一些需要大量热能传递的场合。
管式换热器的优化设计

30613 305618 49613 1161912 1739317 17210
26717 202919 39712 347213 779312 16210
35516 272217 57111 489719 3284416 11910
Ds (m) 面积余量 ( %)
0160
0146
39
0151
0138
© 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved.
pipe space and the pipe outer diameter , as optimization criterion. By taking the early investment and annual running charge as objective function for optimum seeking , and by means of computers , complicated calculation is avoided. The values obtained from the optimum calculation are compared with that from the conventional calculation , and the result shows that , by means of the optimum design , under the given restrains , the pipe heat exchanger can operate well with a reduction of over 25 % heat transfer area.
强化翅片管式换热器换热性能的方法及应用

(1)
Ki Fi = K0 F0
(2)
1/ Ki = 1/ hi + ri + ( F1i/ 2πλ) ln ( d0/ di)
+ r0/ (βη) + 1/ ( h0βη)
(3)
1/ K0 = β/ hi + rβi + ( F10/ 2πλ) ln ( d0/ di)
+ r0/ η + 1/ ( h0η)
霜开始形成时表面粗糙度增大引起传热面积增大同时气体流速也增大从而导致在结霜初期传热系数增大但随着霜层的不断增厚传热热阻增加最终导致传热系减小6结霜对换热器性能的影响表现在降低其传热系数和增大其阻力两方面合理的换热器结构应同时减小这两方面的影响发器采用变翅片间距结构时实际上已构成了翅片的错列分布当空气横掠错列翅片时翅片的交错分布使得上游翅片对下游翅片有绕流作用由于前面翅片的前半部分换热加强后面的翅片的分布又使得流道变窄流速提高翅片后半部分的换热也得到强化9
时沟槽和凸肋对流体的限流作用有助于边界层的 减薄 ,而绕流作用使流体产生轴向旋涡 ,可致使边 界层分离 ,流体主体径向温度梯度减小 ,有助于热 量传递的进行 。因此采用在已加工好的管壁内部 加工变螺距内螺纹 ,不但可以扩大管子的内表面 积 ,增加传热面积 ,并且由于管子不再是光管 ,内部 有螺纹所以内壁变得粗糙 ,可以破坏层流边界层 , 使管内的制冷剂的流态变成紊流 ,从而提高管内对 流换热系数 。同时 ,因为采用变螺距 ,沿着流体流 动方向螺距从大变小 ,这样可增强流体的扰动 ,强 化流体的换热系数 。 3. 2. 2 变间距内螺纹翅片管结构示意图及对比计算
METHODS AND APPL ICATION OF HEAT TRANSFER IMPROVEMENT OF FIN2TUBE HEAT EXCHANGER
翅片式换热器优化设计的探讨

翅片式换热器优化设计的探讨翅片式换热器(Finned heat exchanger)是一种常见的热交换设备,被广泛应用于各个领域,如汽车发动机、空调系统等。
它通过增加翅片的表面积,提高了传热效率。
本文将探讨翅片式换热器的优化设计,包括翅片结构的优化、流体流动的优化以及材料的选择优化等方面。
首先,翅片结构的优化是提高热交换效率的关键。
传统的翅片结构是直翅片,但随着科技的进步,新型的翅片结构被提出,如波纹翅片、凹凸翅片等。
这些新型翅片结构可以增加翅片与流体之间的传热面积,提高传热效率。
因此,在设计翅片式换热器时,可以根据具体的传热需求选择合适的翅片结构,以实现更高的传热效率。
其次,流体流动的优化也是提高热交换效率的重要因素。
流体在翅片间的流动方式对传热效率有着直接的影响。
通过优化流体流动的路径、速度和分布等参数,可以改善流体在翅片间的流动状态,减小流体的阻力,提高传热效率。
例如,可以在翅片之间设置适当的腔体,引导流体流动,并通过数值模拟和实验验证确定最优设计方案。
另外,材料的选择优化也是翅片式换热器设计的关键。
传统的翅片材料多为铝合金,它具有良好的热导性和轻质化特点。
但在一些特殊工况下,铝合金可能不能满足要求,此时可以选择合适的材料替代。
例如,对于高温、高压的工况,可以选择耐高温合金或陶瓷材料作为翅片材料,以提高耐温性能和耐腐蚀性能。
此外,辅助设备的优化也是翅片式换热器设计中需要考虑的因素。
例如,在冷却系统中,增加风扇的数量和风速可以提高换热器的冷却效果;对于一些特殊工况,还可以考虑使用辅助冷却设备如水喷淋装置或降低冷却剂的温度等。
这些技术措施可以在满足热交换要求的前提下,进一步提高热交换效率。
总之,翅片式换热器的优化设计从翅片结构、流体流动、材料选择以及辅助设备等多个方面入手,以实现更高的传热效率和更好的工作性能。
优化设计的研究不仅需要理论模拟和实验验证,还需要综合考虑具体的应用场景和经济效益。
随着科技的不断进步,翅片式换热器的优化设计将会得到进一步的完善和发展。
翅片管式换热器设计标准

翅片管式换热器设计标准
翅片管式换热器是一种常见的换热设备,广泛应用于化工、石油、电力、冶金
等行业。
其设计标准对于保证换热器的性能和安全具有重要意义。
本文将从设计标准的角度出发,对翅片管式换热器的设计要点进行详细介绍。
首先,翅片管式换热器的设计应符合国家相关标准,如《换热设备设计规范》GB 50661-2011等。
在设计过程中,应充分考虑换热器的工作条件、介质特性、换
热面积、流体流速等因素,确保设计符合标准要求。
其次,对于翅片管式换热器的翅片设计,应注意翅片的材质选择、形状结构、
间距等参数。
翅片的材质应具有良好的导热性能和耐腐蚀性能,常见的材质有铝合金、不锈钢等。
翅片的形状结构应合理设计,以增大传热面积,提高换热效率。
同时,翅片之间的间距也需经过合理计算,以确保介质在换热过程中的流体动力学性能。
另外,换热器管束的设计也是关键的一环。
管束的布置应符合流体介质的流动
特性,避免出现流阻过大、流动不均匀等问题。
管束的材质选择和尺寸设计也需要根据实际工况进行合理的选择,以确保管束在工作过程中具有良好的强度和稳定性。
此外,在翅片管式换热器的设计过程中,还需要考虑换热器的清洗和维护便利性。
合理的设计应考虑到换热器内部的结构,以便于清洗设备、维修设备等工作的进行,保证换热器的长期稳定运行。
总之,翅片管式换热器的设计标准涉及多个方面,需要综合考虑换热器的工作
条件、介质特性、材质选择、结构设计等因素。
只有严格按照设计标准进行设计,才能保证换热器具有良好的换热性能和安全稳定的运行。
管翅式换热器优化设计方案方法(较为详细表述)

管翅式换热器性能及结构综合优化的热设计方法陈维汉周飚华中科技大学能源与动力工程学院摘要:本文给出一种由翅片<或肋片)管组成的管翅式换热器的优化设计新方法。
该方法的理论依据是给定换热器结构材料而使的换热量最大的两侧换热表面的最佳匹配准则和两侧流体流动换热过程最佳的结构尺寸准则,以及使可用能损失率最小的最佳运行参数准则。
利用三个准则间的关系,采用迭代方式完最终成换热器的优化设计。
这样的设计方法能使换热器的设计达到材料省、换热效果好与运行费用低的目的,且能在设计阶段实现。
关键词:管翅式换热器、换热表面间的最佳匹配准则、换热过程最佳结构参数准则、换热过程可用能损失率分析、考虑综合性能的优化设计法图书分类号:TK1241 引言管翅式换热器是广泛应用的热交换设备之一。
它常常应用在两侧流体的换热性能相差甚大的情况下,通常是以管外侧安装翅化表面来减小换热性能较差流体的换热热阻,而换热性能较好的流体在管内流动仍然保持较小的换热热阻,从而达到整体增强换热器传热效果的目的。
对于这样的换热器,如何去设计和运行是摆在工程技术人员面前的首要问题。
对于换热表面的设计,传统的做法是力求使两侧的换热热阻相同以获得最大的传热效果,这是等热阻匹配原则[1]。
这种认识如果从投资成本上来考虑,就是十分不可取的办法。
本文作者曾针对这一问题进行过专门的分析,导出了在给定投资费用<或换热面材料)的前提下两侧换热表面的最佳匹配关系式,即换热面积之比与其换热性能比和投资费用比之间的平方根关系式,这是平方根原则[2]。
按这种原则设计换热面就能达到单位传热量的投资成本最低,从而实现结构设计的优化。
同时,换热器设计的另一个问题是流动参数的设计。
传统的做法是以不超过允许的阻力损失为最后标准来选取流动参数。
这种做法人为因素的影响很大。
正确的办法是以单位传热量可用能损失率最小为目标来寻求流动参数的最佳值[3]。
这样就能实现单位传热量的运行费用最低,从而使流动参数的设计得以优化。
翅片式换热器的设计及计算

翅片式换热器的设计及计算翅片式换热器的设计主要包括翅片布置和换热面积的确定。
首先,需要确定换热器的热负荷和流体参数,根据这些参数选择适当的材料和结构形式。
然后,根据热负荷和流体参数计算翅片式换热器所需的换热面积。
换热面积的计算可以借助换热器的设计公式和换热器的特性曲线来进行。
换热器的设计公式通常采用对流传热的基本方程和换热面积的计算公式。
对于翅片式换热器,换热面积的计算公式可以按照以下步骤进行:1.首先,计算换热器的传热系数。
传热系数是一个重要的参数,它表示热量在热交换过程中的传递速率。
传热系数的计算可以基于对流传热、辐射传热和传导传热等模式来进行。
常见的计算方法包括经验公式、理论公式和实验测定等。
2.其次,根据热传导原理,计算翅片的最佳布局。
翅片的布局可以根据换热器所需的流体参数和热负荷来确定。
翅片的布局决定了换热面积和热量的传递效率。
一般来说,翅片的间距和角度需要根据流体的流速和温度差来确定。
3.最后,根据翅片的布局和传热系数,计算翅片式换热器所需的换热面积。
换热面积的计算可以根据翅片的数量、长度和宽度来进行。
一般来说,换热面积与翅片的长度和宽度成正比。
换热器的计算还需要考虑一些其他因素,如流体的流量、温度差、压差和材料特性等。
这些因素会影响翅片式换热器的换热效率和运行成本。
因此,在设计和计算过程中需要综合考虑这些因素,以实现最佳的设计效果。
总之,翅片式换热器的设计和计算需要根据具体的应用需求和流体参数来确定。
通过正确选择材料、布置翅片和确定换热面积,可以实现翅片式换热器的高效运行,并达到预期的换热效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管翅式换热器性能及结构综合优化的热设计方法陈维汉周飚华中科技大学能源与动力工程学院摘要:本文给出一种由翅片<或肋片)管组成的管翅式换热器的优化设计新方法。
该方法的理论依据是给定换热器结构材料而使的换热量最大的两侧换热表面的最佳匹配准则和两侧流体流动换热过程最佳的结构尺寸准则,以及使可用能损失率最小的最佳运行参数准则。
利用三个准则间的关系,采用迭代方式完最终成换热器的优化设计。
这样的设计方法能使换热器的设计达到材料省、换热效果好与运行费用低的目的,且能在设计阶段实现。
关键词:管翅式换热器、换热表面间的最佳匹配准则、换热过程最佳结构参数准则、换热过程可用能损失率分析、考虑综合性能的优化设计法图书分类号:TK1241 引言管翅式换热器是广泛应用的热交换设备之一。
它常常应用在两侧流体的换热性能相差甚大的情况下,通常是以管外侧安装翅化表面来减小换热性能较差流体的换热热阻,而换热性能较好的流体在管内流动仍然保持较小的换热热阻,从而达到整体增强换热器传热效果的目的。
对于这样的换热器,如何去设计和运行是摆在工程技术人员面前的首要问题。
对于换热表面的设计,传统的做法是力求使两侧的换热热阻相同以获得最大的传热效果,这是等热阻匹配原则[1]。
这种认识如果从投资成本上来考虑,就是十分不可取的办法。
本文作者曾针对这一问题进行过专门的分析,导出了在给定投资费用<或换热面材料)的前提下两侧换热表面的最佳匹配关系式,即换热面积之比与其换热性能比和投资费用比之间的平方根关系式,这是平方根原则[2]。
按这种原则设计换热面就能达到单位传热量的投资成本最低,从而实现结构设计的优化。
同时,换热器设计的另一个问题是流动参数的设计。
传统的做法是以不超过允许的阻力损失为最后标准来选取流动参数。
这种做法人为因素的影响很大。
正确的办法是以单位传热量可用能损失率最小为目标来寻求流动参数的最佳值[3]。
这样就能实现单位传热量的运行费用最低,从而使流动参数的设计得以优化。
最后,当要确定换热器尺寸时,翅片管管长和管排数目可以分别针对各自换热过程以给定材料换热量最大导出最佳结构参数来确定[4,5]。
综合结构参数与流动参数的优化设计,就可以完成管翅式换热器的综合性能优化设计的工作。
综合性能优化设计的具体做法是,选定换热器的结构形式、翅片管的结构参数、及流动类型,以可用能损失率最小为目标首先确定管内流体的最佳流动参数,且以此计算出最佳的换热性能参数,同时可以计算出最佳的管长管径比这也就定下了管内流体流动方向上的尺寸;再设定安装翅片的管外侧<即肋化侧)换热性能参数以换热表面最佳匹配关系确定换热器两侧换热表面积的比值,以此计算出安装翅片一侧的结构尺寸,进而可对其进行可用能分析而得出最佳流动参数并由此计算出换热性能参数;以新得到的换热性能参数取代设定值重复以上的计算,直至前后两次相差甚小而得出收敛的结果;在翅化表面一侧的结构参数以收敛结果确定之后,以最佳的流动参数计算出最佳的管排数,以此就能定下管外流体流动方向上换热器的结构尺寸;还有一个方向上的尺寸由传热量及传热温差来确定。
经过这样的设计计算步骤就能达到管翅式换热器的结构参数与流动参数的同时优化,从而做到设计的管翅式换热器具有结构<成本)省、运行费用低而换热性能佳的良好性能。
下面将具体对优化方法进行讨论。
2 换热器传热过程综合性能分析评价准则为了介绍管翅式换热器优化设计方法,对其涉及到的传热过程的优化分析理论基础有一个基本了解是必要的。
这里将作者导出的传热过程两侧换热表面积的最佳匹配关系式、换热过程的可用能损失率关系式和结构参数优化的关系式作一个简单的介绍。
2.1传热过程的换热表面最佳匹配准则[2]对于如图1所示的充分简化的换热器的传热过程而言,投资费用与换热面的结构特征相关,而结构特征又与传热性能密不可分。
因此,我们就能够从换热器传热过程的传热方程和投资费用方程出发导出换热器换热表面与换热性能之间的最佳匹配关系式。
对于如图所示的换热器传热过程,其传热方程可用热阻形式表达如下: ,(1>而换热表面的投资费用方程,则可表示为:。
(2>在以上两式中:R 为传热过程的总热阻;P t 为传热表面的投资费用;分别为换热器两侧的换热系数、单位表面的费用和换热表面积。
将<2)式代入<1)式可得:。
<3)对<3)式求A 1的导数并令其为零,有,再用<2)式消取上式中的P t ,经整理得出: A A 1 A 2 α1 α2ρ1u 1 ρ2u 2图1 换热器传热过程示意图。
<4)上式即为换热器两侧换热性能和投资单价不随换热表面而改变情况下的换热表面随换热性能和投资单价变化的关系式,可称之为传热过程的换热表面最佳匹配准则或最佳结构匹配准则。
这里令,它们分别表示换热器两侧的换热系数比,投资单价比及换热表面积比。
于是换热器传热表面的最佳匹配关系式可以改写为如下简洁的形式:。
<5)分析一下上面的匹配关系式不难发现,当换热器两侧换热性能不同时,两侧的换热表面也要发生相应改变以获得最佳的换热效果。
但是由于考虑了投资成本,这种改变不再是按照线性比例关系,而是要按上式进行计算。
如果考虑扩展表面的效率,肋面效率必须乘以换热表面而构成有效换热表面积。
这里假定为肋化表面为A 1,肋面效率为η1,于是最佳匹配关系改写为。
<6)由肋面效率的定义,在这里可以写为式中ηf 为肋片效率,于是得到如下迭代关系式<7) 2.2 流动换热过程的可用能损失率方程[3]对于一般的流动换热过程<如图2所示),总可以视之为一个稳定的流动换热系统,其包含流体沿固体壁面的流动过程和流体与壁面间的换热过程。
相应的参数有:流体的比焓h 、比熵s 、质量流率、流体温度T f 、壁面温度T w ,、流体进出系统的压力分别为p 1和p 2、流体与壁面间的换热热流密度q 、以及流体的通流面积和换热面积分别是A f 与A t 。
今在流场中取一包含微元面积dA t 的微元控制体,将其视为一个稳定流动系统,分析其热平衡和熵平衡情况。
由热力学第一定律有和 , d A th h+dh m T f s+ds s T w d Q p 1 p 2 α 图2 一般流动换热过程示意式中,Q为通过换热面的热流量;α为流体流过壁面的换热系数;为流体质量流率。
由热力学第二定律有,式中:S为系统的熵产率,单位为W/℃。
利用以上关系式,同时认为热力学关系式<式中ρ为流体的密度)成立,就可整理得出:,式中定义:温度差和平均温度。
在整个换热面上积分上式,且假定换热系数为常数,可以得到:,式中,为系统进出口压力之差。
此式为流动换热过程的熵产率的表达式,从中不难看出,过程的熵产率由两个部分构成,即由换热温差引起的熵产率和由流动压差引起的熵产率,它们反映出流动换热过程的不可逆性。
按照可用能<火用)损失率的定义E=T0S<T0为环境参考温度),代入上式则得出流动换热过程的可用能<火用)损失率方程,上面方程右边的第一项为温度差引起的可用能损失率而第二项为压力差引起的可用能损失率。
为了流动换热过程可用能损失率分析的方便,通常将这个方程无量纲化。
在无量纲化的过程中引入无量纲可用能<火用)损失率数,它表示单位换热热流量的系统可用能损失率,引用了Q=αA tΔT和<其中A f为流体通流面积,u f为流体的平均流速)这两个关系式,且定义流动阻力系数,结果变为如下两种形式:对于给定热流密度和换热特征尺寸有,<8)对于给定热流密度和流体流速有,<9)式中,为换热热流密度,为努谢尔特数,为雷诺数,为斯坦登数,L为流场特征尺寸,λ为流体导热系数,ν为流体运动黏度,c p为流体定压比热,分别为温度因子,而则为面积因子。
我们把这两个公式称为流动换热过程的可用能损失率方程。
从中不难看出,无量纲的可用能损失率N e的大小与流动换热特征参数<准则数)Nu,St,Re及c D是密切相关的。
对于一个流动换热过程而言,无量纲的可用能损失率越小过程的流动换热性能就越好。
因此,通过这两个关系式就可以找出各种流动换热过程的可用能损失率随着过程特征参数的变化关系,并从中导出使过程可用能损失率最小的最佳过程参数和结构参数。
说得具体一点,利用< 8)式,在给定换热热流密度<q)和过程的结构特征<L)的条件下可以导出使可用能损失率最小的最佳运行参数<Re或u f);而从<9)式中,在给定换热热流<q)和过程的运行参数<Re或u f)的条件下可以导出使火用损失率最小的最佳结构特征<L)。
这里将对具体流动换热过程进行可用能损失率分析而寻求最佳的过程运行参数。
从对流换热过程的分析中我们可以设定流动换热过程准则关系式的一般形式:换热关系式 <10),和流动阻力关系式 <11)。
将它们代入方程<8)得出在给定换热热流密度和换热结构尺寸下无量纲火用损失率Ne 随流动准则Re的变化关系式为。
<12)将上式对Re求导数且令其为零,即有,我们就可以得出无量纲火用损失率最小时对应的最佳雷诺数<Re opt)值,也就是最佳的过程运行参数,即。
<13)将<13)式代入无量纲火用损失率Ne的表达式<12)中就可以得出最小无量纲火用损失率Ne min的计算式,而将其代入<10)式则可得到最佳的努谢尔特数Nu opt,进而计算出过程最佳的对流换热系数αopt。
对于一个流动换热过程当给定换热热流和换热特征尺寸之后,就可以利用上述方法而获得最佳的运行状态及相应的换热性能。
显然,对于管翅式换热器两侧的流动换热过程也可以利用这一方法而得到相关的优化数据,成为其综合性能评价的一个重要环节。
如管内紊流流动换热时换热准则公式为:,而管内流动阻力计算的准则关系式为:,有。
将上面两式代到公式<13)之中,得出最佳雷诺数的计算式为:。
<14)这就是流体在管内紊流流动换热时基于火用损失率最小而导出的最佳运行参数<Re opt数)的表达式。
对于外侧流体流过翅片管束的流动与换热过程,其换热准则关系式不同的文献给出的关系式是各不同的,且在不同的Re范围其表达式也不同。
这里以雷诺数在的范围为例进行分析。
在此范围内正三角叉排翅片管束的换热准则关系式[7]的变形,即,式中考虑了原准则关系式中采用而在本文中采用的偏差修正项,且设定。
而在此范围内的流动阻力准则关系式[8]为,,式中。
又因为以及,式中。
将以上关系式与前述的标准准则形式,即<10)和<11)两式,进行比较可以得出:,,;,。
把上述关系式代入最佳运行参数表达式<13)中得出:。