地表沉降分析
如何进行地表沉降监测数据分析与预测

如何进行地表沉降监测数据分析与预测地表沉降是指由于地下水开采、地下排水、地下工程施工等原因引起的地表或地质体的下沉现象。
在城市化进程中,随着城市建设规模的扩大,地表沉降的问题越来越突出。
因此,进行地表沉降监测数据分析与预测,对于保障城市建设的安全和可持续发展具有重要意义。
本文将从数据收集、数据分析和预测模型建立三个方面进行探讨。
一、数据收集进行地表沉降监测数据的分析与预测,首先要收集相关的监测数据。
通常,地表沉降监测数据可以通过地面测量、遥感技术、卫星测量等多种手段获取。
其中,地面测量是常用的方法之一,包括全站仪、GPS等测量仪器。
此外,地表沉降的监测数据还可以通过地下水位观测井、沉降观测点等进行采集。
数据收集的过程中需要注意数据的准确性和完整性,确保数据的可靠性。
二、数据分析在进行地表沉降监测数据分析时,首先要进行数据的处理与清洗。
数据的处理包括数据缺失值的填充、异常值的排除等,以确保数据的完整性和准确性。
然后,可以利用统计学方法对数据进行分析,如计算数据的平均值、方差、标准差等,从中得到数据的特征和趋势。
此外,还可以使用地统计分析方法,探索数据的空间分布特点。
例如,通过空间插值方法将有限的监测点的数据推算到整个区域上,以获取更为全面的数据分析结果。
三、预测模型建立为了进行地表沉降的预测,可以根据历史的监测数据建立预测模型。
根据不同的情况,可以选择合适的模型,如趋势分析模型、回归模型等。
其中,趋势分析模型可以用来描述地表沉降的发展趋势,通过对历史数据的分析,可以预测未来一段时间内地表沉降的变化情况。
回归模型可以用来研究地表沉降与相关因素(如地下水开采量、地下排水量等)之间的关系,从而预测未来地表沉降的可能变化。
在进行地表沉降监测数据分析与预测时,还需要考虑一些其他因素。
首先,要考虑数据的时间尺度,根据具体情况选择合适的时间尺度进行分析与预测。
其次,要考虑地表沉降与其他地质灾害(如地震、地裂缝等)的关系,以综合考虑地质灾害的整体风险。
浅埋暗挖法地表沉降原因分析

浅埋暗挖法地表沉降原因分析浅埋暗挖法作为城市地下工程主要的施工方法,具有对地面交通干扰小、拆迁少、施工灵活等优点,但该工法可能引起较大的地表沉降。
为此国内外众多学者对浅埋暗挖法引起的地层沉降进行了广泛而长期的理论研究,最后取得比较一致的意见:土体的固结沉降、施工引起的地层损失、隧道开挖后地层初始应力改变三方面是导致浅埋隧道地层变形的主要原因。
标签:浅埋暗挖法;地表沉降;原因分析目前,我国地铁的修建处于高峰时期[1,2],由于地铁埋深较浅,修建过程中引起土层初始应力场的变化会导致的地层位移发生改变进而波及地表,产生不均匀沉降,地表的沉降会对地面周边的建筑物、构筑物和地下管线产生不同程度的影响,当沉降达到一定限值后就会产生损坏,极有可能引发安全事故,因此正确认识并利用地表沉降规律,保证隧道开挖和支护形式的合理性是很重要的。
1、土体的固结沉降简单的说,土的固结是指在荷载等因素作用下,土体水分排出,土体体积减小、密度及强度增大的现象。
广义上的土体固结是指土的压缩过程,通常意义下的固结仅指饱和土的固结,当荷载刚施加在饱和土上时,由于土体孔隙中充满了水,土体所受的附加压力全部由孔隙水压力承担,随着水分的排出,有效应力逐步分担附加压力,当土体孔隙水分完全排出后,有效应力承担全部附加压力,这就是土体的固结过程。
简单的讲,土体固结就是附加压力由孔隙水压力转移到有效应力的过程。
固结按其发生机理可以分主固结与次固结,主固结是指土体受压,孔隙水排出,孔隙水压力逐步转化为有效应力的过程,也称渗透固结;次固结沉降是指主固结完成后,变形随时间缓慢增长导致的沉降。
这种变形既包括剪应变,又包括体积变化,主要取决于土骨架本身的蠕变性质,与孔隙水排出无关。
在一些软土、淤泥等孔隙比较大的土层中,次固结沉降不仅持续时间长而且在整个沉降量中占有较大比重,个别可高达35%,不容忽视。
结合土的固结理论和与地下工程的特点,我们可以将土的固结沉降归结为以下4个方面:(1)地下水位的下降;(2)孔隙水溢出;(3)开挖对土体的扰动;(4)土体的后期固结沉降。
测绘技术地表沉陷监测方法与数据处理技巧

测绘技术地表沉陷监测方法与数据处理技巧地球的表面是一个复杂且动态的系统,不同地区的地表沉陷问题一直是我们关注的焦点。
地表沉陷不仅会给人们的生活和财产安全带来威胁,还会对环境和生态系统造成严重影响。
因此,准确监测和及时处理地表沉陷问题显得尤为重要。
在这篇文章中,我们将介绍一些测绘技术地表沉陷监测方法和数据处理技巧。
第一部分:测绘技术地表沉陷监测方法1. 卫星测量技术卫星测量技术是一种常用且有效的测绘技术,可以用来监测地表沉陷。
通过卫星遥感,我们可以获取大范围、高分辨率的地表形变数据。
卫星测量技术的优势在于覆盖范围大,时间分辨率高,可以实时监测地表沉陷情况。
同时,卫星测量技术还可以提供三维形变场信息,帮助我们深入了解地表沉陷的特征和机制。
2. 激光雷达技术激光雷达技术是一种近年来快速发展的测绘技术,被广泛应用于地表沉陷监测。
激光雷达可以通过发射激光脉冲并记录反射回来的时间来计算距离,进而获取地表形变信息。
与传统测量技术相比,激光雷达技术具有高精度、高效率、非接触等优点。
而且,激光雷达可以在夜晚和恶劣天气条件下进行测量,适用范围更广。
第二部分:地表沉陷数据处理技巧1. 数据预处理在进行地表沉陷数据处理之前,首先需要对原始数据进行预处理。
这包括去除噪声、补偿系统误差、检查和修复数据缺失等步骤。
数据预处理的目标是保证数据质量和准确性,为后续分析和处理提供可靠的基础。
2. 数据分析与建模地表沉陷数据的分析和建模是理解和解释地表沉陷机制的关键步骤。
通过对时间序列数据的分析,我们可以探索地表沉陷的特征、趋势和周期性。
同时,基于观测数据,可以建立数学模型来模拟地表沉陷的过程和机制。
地表沉陷数据的分析和建模可以帮助我们更好地理解地表沉陷的原因以及对策制定。
3. 数据可视化与结果呈现地表沉陷数据的可视化和结果呈现是将复杂数据转化为直观、易于理解的形式的重要手段。
通过绘制时空图、变形云图和等值面图等,可以直观地展示地表沉降的空间分布和变化趋势。
地面沉降的解决措施

《地面沉降的解决措施》地面沉降,作为一种严重的地质灾害现象,给人类社会的发展和经济建设带来了诸多严峻挑战。
它不仅会导致建筑物、道路等基础设施的损坏,危及人民的生命财产安全,还会对城市的可持续发展造成深远影响。
探寻有效的解决措施,对于应对地面沉降问题、保障社会稳定和经济发展具有至关重要的意义。
一、地面沉降的成因分析要有效地解决地面沉降问题,首先必须深入了解其成因。
地面沉降的形成原因较为复杂,主要包括以下几个方面:1. 地下水过度开采地下水是地面沉降的主要诱因之一。
随着城市的发展和人口的增加,对水资源的需求不断增大,导致大量地下水被开采。
过量开采地下水会引起地下水位的持续下降,土层中的孔隙压力减小,土层发生压缩,从而引发地面沉降。
2. 工程建设活动大规模的工程建设活动,如地铁施工、建筑物基础开挖、大型桥梁建设等,会对地下土体产生扰动,改变土体的应力状态,引起土体的沉降。
特别是在软弱土层分布地区,工程建设活动更容易引发地面沉降。
3. 开采石油、天然气等矿产资源石油、天然气等矿产资源的开采过程中,会抽取大量的地下流体,导致地下水位下降和地层压力变化,进而引发地面沉降。
4. 地质构造因素某些地区存在特殊的地质构造条件,如松散沉积层、深厚软土层等,这些地质因素本身就容易导致地面沉降的发生。
二、地面沉降的危害地面沉降所带来的危害是多方面的、严重的:1. 建筑物和基础设施损坏地面沉降会使建筑物出现不均匀沉降,导致墙体开裂、屋顶漏水、地下室进水等问题,严重影响建筑物的使用功能和安全性。
道路、桥梁等基础设施也会因地面沉降而出现变形、开裂,缩短其使用寿命,增加维护成本,甚至影响交通的正常运行。
2. 水资源供需矛盾加剧地面沉降会导致地下水位下降,影响水资源的开采和利用。
原本充足的地下水供应可能变得紧张,加剧水资源的供需矛盾,给城市的供水安全带来隐患。
3. 生态环境恶化地面沉降会改变地表水系的分布和流向,导致河流改道、湖泊萎缩等现象,破坏生态平衡。
检测地面沉降的方法

检测地面沉降的方法介绍地面沉降是指地表或地下水位下降导致地表塌陷或沉陷的现象。
地面沉降对城市建设和土地利用产生了重要影响,因此,准确、可靠地检测地面沉降变得至关重要。
本文将介绍一些常用的地面沉降检测方法。
水准测量法水准测量法是一种常见的地面沉降检测方法。
它通过利用水准仪测量不同位置基准高度的变化,来判断地面是否发生了沉降。
具体步骤如下:1.选择合适的测区范围,确定起点和终点。
2.利用水准仪进行高度测量,并记录每个点的高程值。
3.根据高程数据计算出相邻点之间的高度差,进而判断是否存在地面沉降。
水准测量法适用于较小范围的地面沉降检测,精度较高,但成本较高且耗时较长。
GPS测量法GPS测量法是一种高精度的地面沉降检测方法。
它利用全球定位系统(GPS)接收器记录地表或地下控制点的位置信息,并在不同时间段进行对比。
具体步骤如下:1.在需要监测的区域选择合适位置布设GPS接收器,保证接收器固定不动。
2.连续记录接收器所在位置的坐标,并记录时间戳。
3.在一段时间后,再次进行GPS测量,并与初始位置进行对比,计算地面的变形情况。
GPS测量法可以实现对大范围地面沉降的监测,具有高精度和实时性的优势。
影像解译法影像解译法是一种基于遥感图像的地面沉降检测方法。
它通过分析不同时间段的遥感图像,检测地面沉降造成的地形变化。
具体步骤如下:1.收集不同时间段的遥感图像数据。
2.使用影像处理软件对图像进行配准处理,确保同一位置在不同时间段的图像中对应。
3.利用图像解译技术,提取地面特征并进行比较,寻找地面沉降的迹象。
影像解译法适用于大范围地面沉降的监测,但对遥感图像的质量要求较高。
激光雷达测量法激光雷达测量法是一种高精度的地面沉降检测方法。
它利用激光雷达系统对地表进行扫描,并实时记录地物的高度信息。
具体步骤如下:1.配置激光雷达设备并进行定标操作,确保测量精度。
2.进行激光扫描,并记录地物的高度数据。
3.在不同时间段进行对比分析,判断地面是否发生了沉降。
地面沉降情况汇报

地面沉降情况汇报
最近,我们注意到了一些地面沉降的情况,这对我们的工作和生活都可能造成
一定的影响。
因此,我们需要对这些情况进行汇报和分析,以便及时采取措施应对。
首先,我们需要了解地面沉降的原因。
地面沉降通常是由于地下水抽取、地下
开采、地质构造变化等原因引起的。
在城市建设和发展过程中,地面沉降是一个常见的问题,特别是在一些地质条件较差的地区。
其次,我们需要对地面沉降的影响进行评估。
地面沉降可能会导致建筑物和道
路的损坏,给市民的生活带来不便。
此外,地面沉降还可能引发地质灾害,对人们的生命和财产安全构成威胁。
针对地面沉降的情况,我们已经采取了一些措施。
首先,我们加强了地质勘察
和监测工作,及时发现地面沉降的迹象。
其次,我们加强了对地下水资源的管理和保护,控制地下水的过度开采。
同时,我们还加强了对地面沉降影响的评估和预警工作,确保市民的生命和财产安全。
在未来,我们还将继续加强对地面沉降情况的监测和研究,不断改进预警和防
范措施,保障市民的生活和财产安全。
同时,我们也呼吁广大市民加强环境保护意识,共同保护我们的地球家园。
总的来说,地面沉降是一个复杂的地质问题,需要我们共同努力来解决。
我们
将继续密切关注地面沉降的情况,采取有效措施,确保城市的安全和稳定。
希望大家能够共同参与,共同努力,共同守护我们美丽的家园。
谢谢大家!。
基于InSAR技术的地表沉降监测与分析

基于InSAR技术的地表沉降监测与分析地表沉降是一种常见的地质灾害,它会导致城市、工业区、港口等地区的地下设施受损,给人们的生产和生活带来不便。
目前,随着科技的不断发展,基于InSAR技术的地表沉降监测与分析成为了研究热点。
InSAR,即合成孔径雷达干涉技术,是一种利用搭载在卫星上的合成孔径雷达,通过测量同一地点不同时刻的雷达信号相位差,从而得出该地点的高程和地表形变量的技术。
首先,基于InSAR技术的地表沉降监测与分析具有很高的精度和准确度,可以实现厘米至亚厘米级的水平分辨率和毫米至亚毫米级的垂直分辨率。
这意味着可以实现对地表沉降变化的高精度和高精度掌握,为地质环境评估、城市规划、建筑结构监测和地震预警等提供了有力的技术支持。
其次,基于InSAR技术的地表沉降监测与分析具有很高的时空分辨率,可以实现对大范围地表沉降监测和分析。
而传统地表沉降监测技术则具有时空不均匀性和局限性,不能全面、高效监测和分析地表沉降变化。
另外,基于InSAR技术的地表沉降监测与分析还有很强的实际应用意义。
例如,可以实现对城市基础设施、交通运输、水资源和环境等的定量评估和预测,有助于提前发现和防范地质灾害。
基于InSAR技术实现地表沉降监测与分析的核心是通过加工和分析多时相、多角度的雷达数据,提取地表形变量及其趋势。
通常,可以采用不同的地表形变模型(如:线性、非线性模型)来分析地表沉降变化规律。
同时,得益于互联网和智能化科技的发展,现在基于InSAR技术的地表沉降监测与分析正在越来越自动化和智能化。
例如,借助机器学习和人工智能技术,可以实现对大量地表沉降数据的自动提取、分类和分析,提取有效信息和预测规律性更为高效和准确。
综合来看,基于InSAR技术的地表沉降监测与分析是一项非常重要的技术,具有较高的实用价值和科学意义。
随着技术的不断完善和智能化的加速发展,它将为科学家、政府和公众提供更好的服务。
地面沉降的原因分析

地面沉降的原因分析摘要关键词1.引言地面沉降在世界各地非常普遍,在城市地区尤为显著。
随着工业化、城市化进程的加速,人类的经济与工程活动在地面沉降中的作用成为决定性的关键因素。
地面沉降已成为影响经济社会可持续发展的典型的环境地质问题和重要的城市地质灾害之一。
本文阐述了地面沉降的发展现状与原因,全面的分析地面沉降的原因,以及以上海地面沉降的原因为例,分析了制约影响因素及其在地面沉降中的作用,在此基础上,提出面对地面沉降的防治措施与建议。
2.地面沉降的原因分析2.1地面沉降发展与现状地面沉降是指自然和人为因素作用下地面高程降低的现象。
自然因素包括地壳的升降运动、地震、火山活动、气候变化海平面上升及土体自然固结等;人为因素包括开采地下流体资源(地下水、石油、天然气)、开采地下固体矿产(金属矿、煤、岩盐等)、工程施工、灌溉(尤指黄土或泥炭土壤灌溉区)以及地表的静动荷载等。
伴随着工业革命的兴起和发展,人为因素在地面沉降中的作用日益凸显,特别是大规模持续地开发利用地下水和石油等资源,导致区域性的地面沉降迅速发展,成为地面沉降的主要影响因素。
19世纪末期,地面沉降现象已开始显露,而在20世纪初中期急速发展,并在世界各地逐步蔓延。
地面沉降已成为城市化进程中普遍存在的环境地质问题,由此导致的环境影响和社会危害日渐突出且日趋严重,成为制约社会经济可持续发展的重要地质灾害之一。
自从意大利威尼斯城最早发现地面沉降以来, 世界上已有200多个城市或地区发生了不同程度的地面沉降现象。
我国最早于1921年在上海地区发现地面沉降以来, 天津、西安、太原、苏州以及内蒙等地相继出现了地面沉降现象。
2.2地面沉降的原因2.2.1地下水资源的开采地下水资源由五个组成部分,水资源各组份的性质及其对地面沉降的影响所有的地面沉降,都是从地层中抽汲流体的结果。
因此,进一步探讨水资源各组份对地面沉降的影响。
第一部分,即因压力水头下降,水体积膨胀而增加的水量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地表沉降分析————————————————————————————————作者: ————————————————————————————————日期:ﻩ1、前言地下空间作为城市的重要资源,在发达国家得到了多方面的应用,随着我国经济的快速发展,城市地下空间的开发利用已经受到广泛重视,城市地下工程的兴建已经成为一种趋势。
就地下铁路来看,我国从1965年开始修建地下铁道,至今已有北京、天津、上海、广州、深圳、南京等大城市建成部分地铁,武汉等其它城市也即将或将要修建地铁,我国的地铁建设已步人快速发展阶段。
ﻫ然而,在地铁工程的施工中,地表沉降事故发生的概率很高。
以深圳地铁一号线的建设为例,在施工工期内,地面沉降事故占总事故的25%。
事故发生地位于深圳市区繁华地段,对工程周围的建筑物以及地下管线产生了一定的影响,同时也影响了工程的进度增加了工程的费用。
所以,不论从工程进度、费用的控制方面考虑还是从工程质量安全方面来考虑,都要对地表沉降控制有足够的重视,从各个方面着手,来控制沉降的发生。
ﻫ2、地铁工程沉降控制的重要性ﻫ地表沉降的主要危害有:(1)沿海地区沉降使地面低于海面,受海水侵袭;(2)一些港口城市,由于码头、堤岸的沉降而丧失或降低了港湾设施的能力; ﻫ(3)桥墩下沉,桥梁净空减小,影响水上交通;(4)在一些地面沉降强烈的地区,伴随地面垂直沉陷而发生的较大水平位移,往往会对许多地面和地下构筑物造成巨大危害; ﻫ(5)在地面沉降区还有一些较为常见的现象,如深井管上升、井台破坏,高摆脱空,桥墩的不均匀下沉等,这些现象虽然不致于造成大的危害,但也会给市政建设的各方面带来一定影响。
针对地铁工程而言,进行沉降控制的重要性体现在两个方面:(1)城市地铁工程一般位于城市的繁华地段,周围建筑物密集、各种地下管线纵横复杂交错,一旦沉降事故发生,将可能造成建筑物开裂、倾斜,地下管线断裂等事故。
影响市民正常生活,造成各种纠纷,进而影响工程施工的进度,增加工程的费用。
2(ﻫ)沉降事故在地铁工程的施工中属于多发事故。
同时其发生的直接表现为地下隧道拱顶的下沉或坍塌,而这种塌陷的发生又多由围岩涌水、涌泥,支护失效,工程爆破等原因引起。
这些原因的存在和发生,可以导致施工现场的人员伤亡、设备损坏,进而影响工程进度、增加工程费用,造成严重的后果。
可以看出,事故的多发性和事故后果的严重性,使沉降事故成为地铁施工中的重大风险因素,在施工过程中进行沉降控制技术的研究和应用使十分必要的。
3ﻫﻫ、地铁工程沉降控制技术 3.1ﻫ地面沉降发生的机理分析ﻫ地铁工程以上地面的岩层或土层在自然状态下,一般处于应力平衡的稳定状态。
在地下工程施工中,要通过人工、机械或者爆破等方式进行土石方开挖。
土石方的移除、土石层孔隙水的排出,必然会改变土石地层的应力状态,使之处于非平衡状态。
这种状态可以在短时间内或者经过较长的时间效应变化之后显现出来,出现坍塌、变形等现象,进而导致地面沉降。
3.2地面沉降发生的原因分析 3.2.1ﻫ土层的沉降原因分析(1)土层自身的特点:天然土体一般是由矿物颗粒构成骨架体,孔隙水和气体填充骨架体而组成的三相体系。
饱和土由土颗粒和水组成,土颗粒之间存在胶结物,有些没有粘结。
但是它们都能传递荷载,从而形成传力骨架,叫做土骨架。
外载荷作用在土体上,一部分由孔隙水承担,叫做孔隙水压力,另一部分则由土骨架承担,就是有效应力,对引起压缩和产生强度有效。
孔隙水压力可以分成两部分,一个是静水压力,在荷载施加之前就存在,一个是超孔隙水压力,由外载荷引起。
土体的变形是孔隙流体及气体体积减小、颗粒重新排列、颗粒间距离缩短和骨架体发生错动的结果。
粘性土有一定的厚度,水总是在土层透水面先排出,使孔隙压力降低然后向土层内部传递。
这种孔压力降低的过程,一方面取决于土的渗透性,另一方面取决于在土中的位置。
软粘土的渗透系数很低,固结过程很长。
土体受外力后,土粒和孔隙中的流体均将发生位移。
当建筑物通过基础将压力传递给地基后或者土层下部通过土石方开挖而失去支承,土体内部将发生应力变形。
从而引起地基下沉或地表下沉。
(2)施工方案的选择:预防沉降的发生,进行正确的、可靠的支护是十分重要的。
当支护方法不当或者失效的时候,难以使土层处于稳定状态,土层将失去稳定性,进而会导致地层沉降。
3.2.2ﻫ岩石层的沉降原因分析(1)岩石层的沉降与岩石层的地质特点有直接关系:岩石在长期的地质演变中产生出褶皱、裂隙、断层等地质构造。
褶皱是岩石在构造中受力形成的连续弯曲变形。
岩石中沿断裂面没有位移的断裂为裂隙。
褶皱岩层核部产生许多裂隙,而背斜顶部岩层易塌落,向斜核部是储水丰富的地段,地铁隧道中易发生岩层的塌落、漏水及涌水。
地铁隧道与褶皱走向一致时建筑中易发生岩层顺层滑动。
断层是两盘岩石沿断裂面发生位移的断裂,一般伴有几米到几十米的岩石破碎带。
地铁隧道工程通过断裂带时易发生坍塌,车站建筑物易发生不均匀沉降等。
(2)施工方案的选择:防排水、支护等施工方式的正确选择以及方案的有效性都会影响到岩层沉降控制的效果。
当方案失效的时候,可能会导致生沉降的发生。
ﻫ3.3沉降控制技术的机理ﻫ施工中会造成地层的地层损失、原始应力状态变化、土体固结、土体的蠕变,同时还可能发生支护结构的变形等情况的发生。
所以,进行地层沉降控制,其出发点是保持或者加强原有地层的稳定性,维持其稳定的应力平衡状态。
3ﻫ.4沉降控制技术资料表明,隧道施工引起地表沉陷的程度主要取决于:ﻫ(1)地层和地下水条件;(2)隧道埋深和直径;ﻫ(3)施工方法。
其中,施工方法的影响更为明显。
同样的地质条件和设计,不同的施工方法引起的地表沉陷会有很大的差异。
因此,对地铁的施工方法进行对比分析是建设者必须首先论证的问题。
地铁的施工方法主要有3种:明挖法、新奥法和盾构法。
明挖法由于对地面交通干扰大,且因敞开作业对周围环境千扰、污染严重,现在已经较少使用。
新奥法和盾构法对环境干扰小,是主要的施工方法。
下面结合地表沉陷的产生与控制措施对这2种施工方法进行概述。
ﻫ3.4.1新奥法所谓新奥法就是施工过程中充分发挥围岩本身具有的自承能力,即洞室开挖后,利用围岩的自稳能力及时进行以喷锚为主的初期支护,使之与围岩密贴,减小围岩松动范围,提高自承能力,使支护与围岩联合受力共同作用。
ﻫ采用新奥法时主要的施工方法有:(1)全断面开挖法,原则上是一次完成设计开挖断面,是在稳定的围岩中采用的方法; (2)台阶开挖法; 3(ﻫ)侧壁导坑环型开挖法,这是当地质条件特别差时所采用的一种方法,也是城市隧道抑制下沉时常用的方法。
ﻫ采用新奥法施工时,地面沉陷主要取决于开挖的方法、初期支护及永久支护的时间和强度,有以下防止地面下沉的措施:(1)改变施工方法:缩短开挖进尺,如计划1个循环1.5m,可缩短为1m或0.8m;不用全断面开挖方法,而用环型开挖方法.(2)稳定掌子面法:掌子面的稳定是施工的前提条件,对于粘聚力小的土砂围岩,应选用辅助施工方法,如超前支护、开挖面喷射混凝土和安设锚杆等。
开挖面超前支护是在开挖面前方的围岩内插入钢筋、钢管和钢板作为辅助性支护构件,用以防护开挖面及拱部以及防止围岩松弛。
插入的角度应尽可能地小,以减少超挖量。
开挖面喷射混凝土应尽早进行,对于土砂围岩,一般喷射3cm厚的混凝土就能防止开挖面的局部塌落。
ﻫﻫ(3)特殊施工法:有管棚法,挡墙施工法、从地表打锚杆法、特殊钢板施工法(麦塞尔插板法)、注浆法和冻结法等。
管棚法,是先在开挖断面外钻孔,然后在管子的内外注浆,以加固开挖断面。
这种方法,可以加固堆积层和断层破碎带等不稳定围岩,能有效防止开挖的围岩松动。
但此法需要大量的设备。
挡墙施工法,是在隧道的两侧(或一侧)设置挡墙,控制隧道开挖时产生的松动范围。
有混凝土连续墙法和钢管、H型钢和钢插板等挡墙施工法。
ﻫ从地表打锚杆法,是在隧道开挖之前,先从地表大致垂直地打入锚杆,四周用砂浆固结起来,这种方法能有效地防止地表下沉。
ﻫ特殊钢插板施工法又称麦塞尔插板法,可以加固开挖面前方的围岩,防止围岩松动。
这种施工方法是采用特殊加工的钢插板,用千斤顶将其顶入围岩中。
但岩层中夹有鹅卵石时,施工困难,在砂岩和泥岩中效果显著。
ﻫ(4)动态施工力学法,这种方法是由朱维申教授总结完善的,这种方法强调勘察、设计、施工、科研各环节的紧密配合,能有效减少围岩的松动区,抑制地表沉降量。
ﻫ3.4.2盾构法盾构法是在地下暗挖隧道的一种有效方法。
施工中,先在隧道的某一端建造竖井或基坑,以供盾构安装就位。
盾构从竖井或基坑的墙壁开孔处出发,在地层中沿着设计轴线,向着另一竖井或基坑的设计孔洞推进。
盾构推进中所受的阻力,通过盾构千斤顶传至盾构尾部已拼装的预制隧道衬砌结构,再传到竖井或基坑的后靠壁上。
盾构是这种施工方法中最主要的独特的施工机具,它是一个既能支承地层压力又能在地层中推进的圆形或矩形或马蹄形等特殊形状的钢筒结构。
在钢筒结构的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内面安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳状体,在盾尾可以拼装1~2环预制的隧道衬砌环。
盾构每推进一环距离,就在盾尾支护下拼装l环衬砌,并及时地向紧靠盾尾后面的开挖坑道周边与衬砌环外周之间的空隙中压注足够的浆体,以防止隧道及地面下沉。
盾构施工中引起的地层损失和盾构隧道周围受扰动或受剪切破坏的重塑土的再固结,是地面沉降的基本原因。
(一)地层损失ﻫ地层损失是盾构施工中实际开挖土体体积与竣工隧道体积之差。
周围土体在弥补地层损失中发生地层移动,引起地面沉降。
引起地层损失的施工及其他因素是:(1)开挖面土体移动。
当盾构掘进时,开挖面土体受到的水平支护应力小于原始侧向力,开挖土体向盾构内移动,引起地层损失而导致盾构上方地面沉降;当盾构推进时,如作用在正面的土体的推力大于原始侧向力,则正向土体向上、向前移动,引起地层损失(欠挖)而导致盾构前上方土体隆起。
ﻫ(2)盾构后退。
在盾构暂停推进中,由于盾构推进千斤顶漏油回缩而可能引起盾构后退,使开挖面土体坍落或松动,造成地层损失。
(3)土体挤入盾尾空隙。
由于盾尾后面隧道外周建筑空隙中压浆不及时,压浆量不足,压浆压力不恰当,使盾尾后周边土体失去原始三维平衡状态,而向盾尾空隙中移动,引起地层损失。
4(ﻫ)改变推进方向。
盾构在曲线推进、纠偏、抬头推进或叩头推进过程中,实际开挖面不是圆形而是椭圆,因此引起地层损失。
ﻫ(5)盾构移动对地层的摩擦和剪切。
ﻫ(6)在土压力作用下,隧道衬砌产生的变形也会引起少量的地层损失。
ﻫ(二)受扰动土的固结ﻫ盾构隧道土体受到盾构施工的扰动后,便在盾构隧道的周围形成超孔隙水压力区(正值或负值)。
当盾构离开该处地层后,由于土体表面压力释放,隧道周围的孔隙水压力便下降。