SI9000各阻抗计算说明

合集下载

si9000 中间层差分阻抗计算

si9000 中间层差分阻抗计算

si9000 中间层差分阻抗计算si9000 中间层差分阻抗计算在现代电子通信和电子设备的设计中,中间层差分阻抗计算是一个非常重要的主题。

si9000 是一种常用的计算工具,用于帮助工程师计算和优化中间层差分阻抗。

本文将深入探讨 si9000 中间层差分阻抗计算的原理、方法和应用,并共享个人观点和理解。

一、si9000 中间层差分阻抗计算的重要性1. 中间层差分阻抗的定义中间层差分阻抗是指在多层印制电路板(PCB)中,两个相邻的导体层之间所形成的差分传输线的阻抗。

在高速信号传输和抗干扰能力方面,中间层差分阻抗的匹配和控制至关重要。

2. 信号完整性和性能稳定性在现代电子设备中,尤其是高频和高速通信设备中,信号完整性和性能稳定性是设计中最为关键的因素之一。

而中间层差分阻抗的合适性直接影响了信号的传输品质和抗干扰能力。

3. 设计和优化的需求设计师需要通过对中间层差分阻抗的准确计算和优化,来保证电子设备在高速信号传输和抗干扰能力方面的稳定表现。

si9000 作为一种专业工具,能够帮助工程师进行准确和可靠的中间层差分阻抗计算,从而满足设计和优化的需求。

二、si9000 中间层差分阻抗计算的原理和方法1. 差分传输线的定义和特点差分传输线是由两条相等而并列的导体线组成,它们之间的电压是相等的,但是电流方向相反。

差分传输线的主要特点是抗干扰能力强,传输速度快,适用于高速信号传输。

2. si9000 的工作原理si9000 是一种专业的中间层差分阻抗计算工具,其核心算法基于传输线理论和有限元方法。

通过建立中间层结构的几何模型、选择合适的介质材料参数和计算条件,si9000 能够进行精确的中间层差分阻抗计算。

3. si9000 的使用方法在进行中间层差分阻抗计算时,用户需要输入中间层结构的几何尺寸、介质材料参数和工作频率等信息。

si9000 会根据用户输入的参数进行计算,并给出相应的阻抗数值和波形图,以帮助用户对中间层差分阻抗进行评估和优化。

阻抗控制计算之SI9000

阻抗控制计算之SI9000

阻抗计算之SI9000Jerry Wang概述阻抗匹配在高速电路设计中非常重要,高速电路板设计的时候通常对于关键信号都需要进行阻抗控制。

SI9000是一款很好的计算软件,之前的版本有SI6000以及SI8000,本文试图简要介绍SI9000的使用并给出SI6000和SI9000的异同。

传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论),如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得到推出通解定义出特性阻抗无耗线下r=0,g=0则得到注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波阻抗定义)特性阻抗与波阻抗之间的关系可从LC=εμ此关系式推出。

理解特性阻抗理论上是怎么回事,再来看看实际的意义。

当电流电压在传输线传播的时候,如果特性阻抗不一致所求出来的电报方程的解不一致,就造成所谓的反射现象等等。

在信号完整性领域里,比如反射、串扰、电源平面切割等问题都可以归类为阻抗不连续问题,因为匹配的重要性在此展现出来。

叠层(Stackup)的定义下图是一种8层板常用的叠层,4层power/ground以及4层走线层,sggssggs,分别定义为L1、L2…L8,因此要计算的阻抗为L1、L4、L5和L8。

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克),在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下这里需要注意的是,由于内层蚀刻表面层电镀,实际的厚度会有差别,比如内层一般的1Oz = 1.2 mil。

介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型。

si9000阻抗计算

si9000阻抗计算

阻抗计算(用SI9000如何计算微带线)(2011-09-20 21:15:48)转载▼分类:读书笔记标签:si9000阻抗用SI9000如何计算微带线一.几个概念:阻抗的定义:在某一频率下,电子器件传输信号线中,相对某一参考层,其高频信号或电磁波在传播过程中所受的阻力称之为特性阻抗,它是电阻抗,电感抗,电容抗……的一个矢量总和。

阻抗匹配:是为了保证能量传输损耗最小,匹配就是上一级电路的内电阻要等于下一级电路的输入电阻。

当电路实现阻抗匹配时,将获得最大的功率传输,反之,当电路阻抗失配时,不但得不到最大功率传输,还可能对电路产生损害。

目前常见阻抗分类:单端(线)阻抗、差分(动)阻抗、共面阻抗三种情况。

目前我司要考虑阻抗匹配的线有:USB差分线90欧,网口线差分100欧,RF 输入信号单端75欧二.实例:1.工具可以到FTP上面下载,路径为:ftp://172.16.1.56/工具软件/工具软件-上传区/2.下面以SI9000为例给出模型:1).首先了解一下几个参数的含义:H1:外层到VCC/GND间的介质厚度 W2:阻抗线线面宽度W1: 阻抗线线底宽度 S1:差动阻抗线间隙Er1: 介质层介电常数 T1:线路铜厚,包括基板铜厚+电镀铜厚CEr: 阻抗介电常数 C1: 基材阻焊厚度C2:线面阻焊厚度 C3:差动阻抗线间阻焊厚度2).二层板,板厚1.6的两个模型:USB差分线90欧可参考如下:b. RF输入信号单端75欧可参考如下:c.说明:以下是凯歌给出的参考值:参数H1=57.677 ER1=4.5 T1=1.7 W1-W2= 1 C1(绿油)=0.4 C2=0.5 C3=0.4 CEr=3.5根据layout实际情况,可根据以上模型选用适合自己的W1,D1,S1的宽度。

瑞华给出的参数参数H1=57.677 ER1=4.3 T1=1.42 W1-W2=0.5 C(绿油)=0.591博敏给出的参数参数H1=57.677 ER1=4.5 T1=1.7 W1-W2=1 C1(绿油)=0.6 C2=0.5 C3=0.5 Cer=3.5各个厂家给出的参数有些差别,但算出来的结果偏差不大,大家可以按凯歌给出的参数计算即可,再者,这个计算出来的值也是理论值,发板时一定要注明这些线要求做阻抗,并标出阻抗值,可以参考以下标注:厂家会根据实际做些细微的调整,以满足阻抗的要求,厂家也只能保证阻抗值±10%,以下是厂家给出的报告:三.外协联系方式以下是我司合作的厂家电话,若想更进一步了解可以联系他们的工程师:不公开四.四层板如何计算:4层板计算相对复杂点,有一种方法可以借鉴,一般我们的4层板中间层是GND/POWER,要求走阻抗的线在TOP/BOM层,这样就和相临层构成2层板,可以参考以上介绍的二层板的模型来计算:4层板的构造示意如下:。

详解PolarSI9000软件计算阻抗及设计层叠结构

详解PolarSI9000软件计算阻抗及设计层叠结构

详解 Polar SI9000 软件计算阻抗及设计层叠结构
第一部分:阻抗知识详细介绍
1、特性阻抗的定义 特性阻抗:又称“特征阻抗”,它不是直流电阻,属于长线传输中的概念。
在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源 或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的, 那么只要信号在传输,就始终存在一个电流 I,而如果信号的输出电平为 V,在 信号传输过程中,传输线就会等效成一个电阻,大小为 V/I,把这个等效的电阻 称为传输线的特性阻抗 Z。信号在传输的过程中,如果传输路径上的特性阻抗发 生变化,信号就会在阻抗不连续的结点产生反射。影响特性阻抗的因素有:介电 常数、介质厚度、线宽、铜箔厚度。 2、控制阻抗的目的
类型二:实测厚度=理论厚度-铜厚 1*(1-残铜率 1)-铜厚 2*(1-残铜率 2)
注:残铜率:残铜率是指板平面有铺铜的面积和整板面积之比;一般表层的残铜
率取 100%,光板的残铜率为 0。没有加工的原材料就是1,蚀刻成光板就是0. 一般我们设计中平面层取残铜率65%-70%,信号层取残铜率 15%-23%。
第三部分:6 层板阻抗计算实例演示
表层阻抗=SI9000 软件计算值(不盖阻焊模式)*0.9+3.2 内层阻抗= SI9000 软件计算值 L1/6 层单端 50 欧姆走线
L3 层单端 50 欧姆走线
L1/6 层差分 100 欧姆走线 L3 层差分 100 欧姆走线
L1 层单端 75 欧姆、隔层参考 L3 层走线 L1/L6 微带线、共面阻抗 100 欧姆走线
增加线宽,可减小阻抗,减小线宽可增大阻抗。线宽的控制要求在+/-10% 的公差内,才能较好达到阻抗控制要求信号线的缺口影响整个测试波形,其单点 阻抗偏高,使其整个波形不平整,阻抗线不允许补线,其缺口不能超过10% 线宽主要是通过蚀刻控制来控制。为保证线宽,根据蚀刻侧蚀量、光绘误差、图 形转移误差,对工程底片进行工艺补偿,达到线宽的要求。 ③ 铜厚 T

polar si9000阻抗计算教程

polar si9000阻抗计算教程

主题:阻抗计算公式、polar si9000(教程)给初学者的一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教!在计算阻抗之前,我想很有必要理解这儿阻抗的意义传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论)如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得推出通解定义出特性阻抗无耗线下r=0, g=0 得注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义)特性阻抗与波阻抗之间关系可从此关系式推出.Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来.叠层(stackup)的定义我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克)在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型在计算传输线特性阻抗的时候, 主板阻抗要求基本上是:单线阻抗要求55 或者60Ohm,差分线阻抗要求是70~110Ohm,厚度要求一般是1~2mm,根据板厚要求来分层得到各厚度高度. 在此假设板厚为1.6mm,也就是63mil 左右, 单端阻抗要求60Ohm,差分阻抗要求100Ohm,我们假设以如下的叠层来走线先来计算微带线的特性阻抗,由于top 层和bottom 层对称,只需要计算top 层阻抗就好的,采用polar si6000,对应的计算图形如下:在计算的时候注意的是:1,你所需要的是通过走线阻抗要求来计算出线宽W(目标)2,各厂家的制程能力不一致,因此计算方法不一样,需要和厂家进行确认3,表层采用coated microstrip 计算的原因是,厂家会有覆绿漆,因而没用surface microstrip 计算,但是也有厂家采用surface microstrip 来计算的,它是经过校准的4,w1 和w2 不一样的原因在于pcb 板制造过程中是从上到下而腐蚀,因此腐蚀出来有梯形的感觉(当然不完全是)5,在此没计算出精确的60Ohm 阻抗,原因是实际制程的时候厂家会稍微改变参数,没必要那么精确,在1,2ohm 范围之内我是觉得没问题6,h/t 参数对应你可以参照叠层来看再计算出L5 的特性阻抗如下图记得当初有各版本对于stripline 还有symmetrical stripline 的计算图,实际上的差异从字面来理解就是symmetrical stripline 其实是offset stripline 的特例H1=H2 在计算差分阻抗的时候和上面计算类似,除所需要的通过走线阻抗要求来计算出线宽的目标除线宽还有线距,在此不列出选用的图是在计算差分阻抗注意的是:1,在满足DDR2 clock 85Ohm~1394 110Ohm 差分阻抗的同时又满足其单端阻抗,因此我通常选择的是先满足差分阻抗(很多是电流模式取电压的)再考虑单端阻抗(通常板厂是不考虑的,实际做很多板子,问题确实不算大,看样子差分线还是走线同层同via 同间距要求一定要符合)----------谨以此文怀念初学SI 的艰苦岁月特性阻抗公式(含微带线,带状线的计算公式)a.微带线(microstrip)Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)] 其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectric constant)。

使用SI9000进行PCB常规阻抗计算

使用SI9000进行PCB常规阻抗计算

SI9000常规阻抗计算常规信号分为微带线与带状线,微带线指该信号线只有一个参考平面(表底层),带状线指该信号线在两个参考平面之间(内层),故阻抗计算需要选择不同模型来完成。

一、外层(微带线)单端阻抗计算模型1、单端阻抗结构——>2、单端阻抗模型——>3、设置相应参数说明:介电常数与板材有关,常规FR4介电常数在4、2—4、5之间,常规半固化片介电常数106(3、9)、1080(4、2)、2116(4、2)、7628(4、5),罗杰斯板材RO4350B介电常数就是3、66,M6板材介电常数在3、3-3、5之间.二、外层(微带线)差分阻抗计算模型1、差分阻抗结构-—>2、差分阻抗模型——>3、设置相应参数说明:常规差分控制阻抗100ohm,USB控90ohm,Typec控90oh m以下就是1、6mm板厚常规八层板得层叠1、 3个信号层、2个地、一个电源2、射频隔层参考,线宽16mil3、关键信号在S1层,注意S2跨分割问题,适用于杂线多得情况A.根据微带线单端模型50ohm阻抗计算如下(线宽6):B。

根据微带线差分模型阻抗计算如下:1、单端阻抗结构-->2、单端阻抗模型—-〉3、设置相应参数1、差分阻抗结构-—>2、差分阻抗模型——>3、设置相应参数根据常规8层板层叠计算内层阻抗、A。

内层单端阻抗模型:S1:H1=16+1、2+4、3=21、5H2=1、2+4、3=5、5S1层50ohm:5mil(说明:阻抗允许误差正负10%,H1与H2数值)S1与S2参考层面厚度相差较小阻抗线宽一致(说明:如果H1与H2数值正确,H1与H2即使颠倒,阻抗变化很小)S2:H1=4、3ﻩ H2=1、2+16+1、2+4、3=22、7S2层50ohm:5milS3:H1=4、3H2=1、2+16=17、2S3层50ohm:5milB.内层差分阻抗模型(介质厚度与单端阻抗一致):S1:H1=16+1、2+4、3=21、5H2=1、2+4、3=5、5S2:H1=4、3ﻩ H2=1、2+16+1、2+4、3=22、7S3:H1=4、3H2=1、2+16=17、2S1、S2、S3:90ohmS1、S2、S3:100ohm同理计算,概不赘述.(关于射频线阻抗计算隔层参考,共面阻抗计算参考<SI9000隔层及共面模型计算>)阻抗说明:叠层厚度通常由单板实际情况决定,如果叠层确定,线宽变小,阻抗变大,差分阻抗线之间得间距变大,阻抗变大,差分100ohm计算时,可通过改变线宽与间距实现(注意:建议差分间距不要大于2倍线宽如4得线宽8得间距).单端阻抗主要依靠改变线宽实现。

详解怎样使用Polar Si9000软件计算阻抗及如何设计层迭结构.

详解怎样使用Polar Si9000软件计算阻抗及如何设计层迭结构.

一,首先给大家介绍一下Polar软件,Polar是专业计算阻抗的软件,其版本包括:Si6000,Si8000,及Si9000.二,其次给大家介绍常见的几种阻抗模型:特性阻抗,差分阻抗,共面性阻抗.7 g1 B: b4 A+ [0 W, d# X1.外层特性阻抗模型:3 c7 ?" ~0 m8 G& X3 k% }2.内层特性阻抗模型:. k2 r/ N# G* I, U. d3 `# [! F3.外层差分阻抗模型:; h+ Z: ?3 B9 w/ S2 t8 J2 _9 S# h& X( k4 _4.内层差分阻抗模型:* N8 N+ D9 F# r0 F8 h" k0 s# @1 V) z* |' X- k7 E5.共面性阻抗模型:包括(1)外层共面特性阻抗,(2)内层共面特性阻抗,(3)外层共面差分阻抗,(4)内层共面差分阻抗.三,再次给大家介绍一下芯板(即Core)及半固化片(即PP),8 a& L7 C2 a5 e; M9 A( @每个多层板都是由芯板和半固化片通过压合而成的,普通的FR-4板材一般有:生益,建滔,联茂等板材供应商.生益FR-4的芯板根据板厚来划分有:0.10MM ,0.15MM,,0.2MM ,,0.25MM.0.3MM,0.4MM,0.5MM等,包括有H/HOZ,1/1OZ,等这里有一点需要大家特别注意:含两位小数的板厚是指不含铜的厚度,只有一位小数指包括铜的总厚度,例如:0.10MM 1/1OZ的芯板,其0.10MM是指介质的厚度,其总厚度应为0.10MM+0.035+0.035MM=0.17MM,再如:0.15MM 1/1OZ的芯板,其总厚度是:0.15MM+0.035MM+0.035MM=0.22MM,而0.2MM 1/1OZ的芯板,其总厚度就是0.2MM,它的介质厚度应为:0.2MM-0.035MM-0.035MM=0.13MM.半固化片(即PP),一般包括:106,1080,2116,7628等,其厚度为:106为0.04MM,1080为0.06MM,2116为0.11MM,7628为0.19MM.( u4 f% A8 v4 f* M% u当我们计算层叠结构时候通常需要把几张PP叠在一起,例如:2116+106,其厚度为0.15MM,即6MIL;1080*2+7628,其厚度为0.31MM,即12.2MIL等.但需注意以下几点:1,一般不允许4张或4张以上PP叠放在一起,因为压合时容易产生滑板现象.2,7628的PP一般不允许放在外层,因为7628表面比较粗糙,会影响板子的外观.3,另外3张1080也不允许放在外层,因为压合时也容易产生滑板现象.后续我会把一些常用的芯板以及各种组合的PP厚度汇总给大家,以便学习用Polar软件计算阻抗及层叠结构时使用!四,怎样使用Polar Si9000软件计算阻抗:( E& A* }* x4 X首先应知道是特性阻抗还是差分阻抗,具体阻抗线在哪些信号层上,阻抗线的参考面是哪些层?其次根据文件选择正确的阻抗模型来计算阻抗,最后通过调整各层间的介质厚度,或者调整阻抗线的线宽及间距来满足阻抗及板厚的要求!( S6 t; o* g8 n五,举例说明怎样使用Polar Si9000计算阻抗及设计层叠结构:1.四层板板厚1.6MM,外层信号线要求控制50欧姆特性阻抗和100欧姆差分阻抗.其设计结构详见:4层板1.6MM阻抗设计.jpg,其中H1代表的是信号层与参考层之间的介质厚度,即L1与L2之间的厚度为3.2MIL,Er1为板材的介电常数,FR-4通常为4.2-4.6,W1称为下线宽,W2称为上线宽,一般认为W1=W+0.5MIL,W2=W-0.5MIL,S1(注意S1<2W)为两根差分线之间的间距(指线边缘与线边缘之间距离),T1信号层的成品铜厚,外层1OZ=1.4MIL,而内层考虑的蚀刻的因素,我们通常认为内层1OZ=1.2MIL,而0.5OZ=0.6MIL。

阻抗控制计算之SI9000

阻抗控制计算之SI9000

阻抗计算之SI9000Jerry Wang概述阻抗匹配在高速电路设计中非常重要,高速电路板设计的时候通常对于关键信号都需要进行阻抗控制。

SI9000是一款很好的计算软件,之前的版本有SI6000以及SI8000,本文试图简要介绍SI9000的使用并给出SI6000和SI9000的异同。

传输线阻抗的由来以及意义传输线阻抗是从电报方程推导出来(具体可以查询微波理论),如下图,其为平行双导线的分布参数等效电路:从此图可以推导出电报方程取传输线上的电压电流的正弦形式得到推出通解定义出特性阻抗无耗线下r=0,g=0则得到注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波阻抗定义)特性阻抗与波阻抗之间的关系可从LC=εμ此关系式推出。

理解特性阻抗理论上是怎么回事,再来看看实际的意义。

当电流电压在传输线传播的时候,如果特性阻抗不一致所求出来的电报方程的解不一致,就造成所谓的反射现象等等。

在信号完整性领域里,比如反射、串扰、电源平面切割等问题都可以归类为阻抗不连续问题,因为匹配的重要性在此展现出来。

叠层(Stackup)的定义下图是一种8层板常用的叠层,4层power/ground以及4层走线层,sggssggs,分别定义为L1、L2…L8,因此要计算的阻抗为L1、L4、L5和L8。

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的Oz 的概念Oz 本来是重量的单位Oz(盎司 )=28.3 g(克),在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下这里需要注意的是,由于内层蚀刻表面层电镀,实际的厚度会有差别,比如内层一般的1Oz = 1.2 mil。

介电常数(DK)的概念电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε"Prepreg/Core 的概念pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.传输线特性阻抗的计算首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,对于他们的区分,最简单的理解是,微带线只有1 个参考地,而带状线有2个参考地,如下图所示对照上面常用的8 层主板,只有top 和bottom 走线层才是微带线类型,其他的走线层都是带状线类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阻抗培训
1.外层单端:Coated Microstrip 1B
H1:介质厚度(PP片或者板材,不包括铜厚)
Er1:PP片的介电常数(板材为:4.5 P片4.2)
W1:阻抗线上线宽(客户要求的线宽)
W2:阻抗线下线宽(W2=W1-0.5MIL)
T1:成品铜厚
C1:基材的绿油厚度(我司按0.8MIL)
C2:铜皮或走线上的绿油厚度(0.5MIL)
Cer:绿油的介电常数(我司按3.3MIL)
Zo:由上面的参数计算出来的理论阻值
2.外层差分:Edge-Coupled Coated Microstrip 1B
H1:介质厚度(PP片或者板材,不包括铜厚)
Er1:PP片的介电常数(板材为:4.5 P片4.2)
W1:阻抗线上线宽(客户要求的线宽)
W2:阻抗线下线宽(W2=W1-0.5MIL)
S1:阻抗线间距(客户原稿)
T1:成品铜厚
C1:基材的绿油厚度(我司按0.8MIL)
C2:铜皮或走线上的绿油厚度(0.5MIL)
C3:基材上面的绿油厚度(0.50MIL)
Cer:绿油的介电常数(我司按3.3MIL)
3.内层单端:Offset Stripline 1B1A
H1:介质厚度(PP片或者光板,不包括铜厚)
Er1:H1厚度PP片的介电常数(P片4.2MIL)
H2:介质厚度(PP片或者光板,不包括铜厚)
Er2:H2厚度PP片的介电常数(P片4.2MIL)
W1:阻抗线上线宽(客户要求的线宽)
W2:阻抗线下线宽(W2=W1-0.5MIL)
T1:成品铜厚
Zo:由上面的参数计算出来的理论阻值
4.内层差分:Edge-Couled Offset Stripline 1B1A
H1:介质厚度(PP片或者光板,不包括铜厚)
Er1:H1厚度PP片的介电常数(P片4.2MIL)
H2:介质厚度(PP片或者光板,不包括铜厚)
Er2:H2厚度PP片的介电常数(P片4.2MIL)
W1:阻抗线上线宽(客户要求的线宽)
W2:阻抗线下线宽(W2=W1-0.5MIL)
S1:客户要求的线距
T1:成品铜厚
Zo:由上面的参数计算出来的理论阻值
5.外层单端共面地:Coated Coplanar Waveguide With Ground 1B
H1:介质厚度(PP片或者板材,不包括铜厚)
Er1:PP片的介电常数(板材为:4.5 P片4.2)
W1:阻抗线上线宽(客户要求的线宽)
W2:阻抗线下线宽(W2=W1-0.5MIL)
D1:阻抗线到两边铜皮的距离
T1:成品铜厚
C1:基材的绿油厚度(我司按0.8MIL)
C2:铜皮或走线上的绿油厚度(0.5MIL)
Cer:绿油的介电常数(我司按3.3MIL)
Zo:由上面的参数计算出来的理论阻值
6.外层差分共面地:Diff Coated Coplanar Waveguide With Ground 1B
H1:介质厚度(PP片或者板材,不包括铜厚)
Er1:PP片的介电常数(板材为:4.5 P片4.2)
W1:阻抗线上线宽(客户要求的线宽)
W2:阻抗线下线宽(W2=W1-0.5MIL)
S1:阻抗线间距(客户原稿)
D1:阻抗线到铜皮的距离
T1:成品铜厚
C1:基材的绿油厚度(我司按0.8MIL)
C2:铜皮或走线上的绿油厚度(0.5MIL)
C3:基材上面的绿油厚度(0.50MIL)
Cer:绿油的介电常数(我司按3.3MIL)
Zo:由上面的参数计算出来的理论阻值。

相关文档
最新文档