实数计算题

合集下载

实数的练习题带答案

实数的练习题带答案

实数的练习题带答案实数是数学中的一个重要概念,是整数、有理数和无理数的集合。

在数学学习中,实数概念的掌握是非常重要的,因为它涉及到我们日常生活中很多实际问题的解决。

下面,我将给大家带来一些实数的练习题,并附上答案,希望可以帮助大家更好地理解实数的概念和应用。

一、选择题1. 下列哪个数是有理数?A. √3B. 2πC. 0.618D. e答案:C2. 已知a、b是实数,且a>b,那么下列哪个不等式成立?A. a+b < aB. a/b > 1C. |a| > |b|D. a-b < 0答案:D3. 下列哪个数是无理数?A. 0.5B. -2C. 4/5D. √2答案:D4. 已知a是整数,b是有理数但不是整数,那么a+b一定是:A. 整数B. 有理数但不是整数C. 无理数D. 不能确定答案:B二、填空题1. 若x是实数,那么方程2x+1=5的解为______。

答案:x=22. 实数-√3的绝对值是______。

答案:√33. 若a是有理数,且a的平方等于4,那么a的值可能为______。

答案:±24. 若x是实数,那么不等式x-3 > 2的解集为______。

答案:(3, +∞)三、计算题1. 计算(√5+1)(√5-1)的值。

答案:(√5+1)(√5-1) = (√5)^2 - 1 = 5 - 1 = 42. 计算下列各式的值:√7 + √7 - √7 + √7 - √7答案:√7 + √7 - √7 + √7 - √7 = √73. 若a、b是实数,且a的平方+b的平方=29,且ab=6,求a和b的值。

答案:由第一个条件可得a^2 + b^2 = 29,由第二个条件可得ab = 6。

将第一个等式两边同时平方得到(a^2 + b^2)^2 = (29)^2,即a^4 + 2a^2b^2 + b^4 = 841。

将第二个等式代入,得到a^4 + 2(6^2) + b^4 = 841,即a^4 + 72 + b^4 = 841。

八年级数学上册实数计算题

八年级数学上册实数计算题

八年级数学上册实数计算题一、实数计算题20题。

1. 计算:√(4) + sqrt[3]{-8}- 解析:- 先分别计算各项。

- 因为√(4)=2,sqrt[3]{-8}=-2(因为(-2)^3 = -8)。

- 所以√(4)+sqrt[3]{-8}=2+( - 2)=0。

2. 计算:√(9)-√(16)- 解析:- 先计算根号下的数。

- √(9) = 3,√(16)=4。

- 则√(9)-√(16)=3 - 4=-1。

3. 计算:√(25)+√(36)- 解析:- √(25)=5,√(36)=6。

- 所以√(25)+√(36)=5 + 6=11。

4. 计算:√(1)-√(0)- 解析:- 因为√(1)=1,√(0)=0。

- 所以√(1)-√(0)=1-0 = 1。

5. 计算:√(121)-√(144)- 解析:- √(121)=11,√(144)=12。

- 则√(121)-√(144)=11-12=-1。

6. 计算:√(169)+√(196)- 解析:- √(169)=13,√(196)=14。

- 所以√(169)+√(196)=13 + 14=27。

7. 计算:√(49)-√(64)- 解析:- √(49)=7,√(64)=8。

- 所以√(49)-√(64)=7-8=-1。

8. 计算:√(81)+√(100)- 解析:- √(81)=9,√(100)=10。

- 所以√(81)+√(100)=9 + 10=19。

9. 计算:sqrt[3]{27}+sqrt[3]{-1}- 解析:- 因为sqrt[3]{27}=3(因为3^3 = 27),sqrt[3]{-1}=-1(因为(-1)^3=-1)。

- 所以sqrt[3]{27}+sqrt[3]{-1}=3+( - 1)=2。

10. 计算:sqrt[3]{64}-sqrt[3]{125}- 解析:- sqrt[3]{64}=4(因为4^3 = 64),sqrt[3]{125}=5(因为5^3 = 125)。

实数的计算题

实数的计算题

30 道实数计算题一、实数加法1. 3 + 5-解析:3 + 5 = 8。

2.-2 + 7-解析:-2 + 7 = 5。

3. 4.5 + 2.3-解析:4.5 + 2.3 = 6.8。

3.-3.2 + 1.8-解析:-3.2 + 1.8 = -1.4。

5. 2 + (-3) + 5-解析:2 + (-3) = -1,-1 + 5 = 4。

二、实数减法1. 8 - 3-解析:8 - 3 = 5。

2. 4 - (-2)-解析:4 - (-2) = 4 + 2 = 6。

3. 6.5 - 3.2-解析:6.5 - 3.2 = 3.3。

4. -4.8 - 1.2-解析:-4.8 - 1.2 = -6。

5. 3 - 5 - (-2)-解析:3 - 5 = -2,-2 - (-2) = 0。

三、实数乘法1.3×4-解析:3×4 = 12。

2.-2×5-解析:-2×5 = -10。

3. 2.5×3-解析:2.5×3 = 7.5。

3.-3.6×2-解析:-3.6×2 = -7.2。

4.2×(-3)×4-解析:2×(-3) = -6,-6×4 = -24。

四、实数除法1. 12÷3-解析:12÷3 = 4。

2.-10÷2-解析:-10÷2 = -5。

3. 7.5÷2.5-解析:7.5÷2.5 = 3。

3.-8.4÷2-解析:-8.4÷2 = -4.2。

5. 15÷(-3)÷(-5)-解析:15÷(-3) = -5,-5÷(-5) = 1。

五、实数混合运算1.2×(3 + 4)-解析:先算括号里的3 + 4 = 7,再算2×7 = 14。

2. 5 - 2×3-解析:先算乘法2×3 = 6,再算减法5 - 6 = -1。

专题02 实数的运算(三大题型,50题)(解析版)

专题02 实数的运算(三大题型,50题)(解析版)

专题02实数的运算(三大题型,50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、用数轴上的点表示实数,中档题20题,难度三星1.如图,若5x =,则表示2211(1)x x x x -+÷-的值的点落在()A .段①B .段②C .段③D .段④【答案】C 【分析】首先对原式进行化简,然后代入x 的值,最后根据5 2.236≈即可判断.【详解】原式=2211()x x x x x-+-÷=()211x xx x -- =1x -当5x =时,原式=51-∵5 2.236≈∴51 1.236-≈故选C .【点睛】本题考查了分式的乘除法化简,无理数的估算,无理数的估算是难点,关键是要熟记一些常用的完全平方数,和一些常用无理数的近似值.2.若实数p ,q ,m ,n 在数轴上的对应点的位置如图所示,且满足0p q m n +++=,则绝对值最小的数是()A .pB .qC .mD .n【答案】C 【分析】根据0p q m n +++=,并结合数轴可知原点在q 和m 之间,且离m 点最近,即可求解.A.a b>B.π+A.πB.1【答案】B【分析】根据数轴与实数的一一对应关系解答即可.A .a b-+B .a b +C .a 【答案】21π--【分析】求出圆的周长,再根据实数与数轴上的点的对应关系解答即可.【答案】﹣2a﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【答案】32-或32+【分析】分顺时针旋转和逆时针旋转,两种情况讨论求解即可.【详解】解:∵点A 表示的数为3,点B 表示的数为4,∴1AB =,此时C '表示的数为:32-;当正方形ABCD 绕点A 逆时针旋转,使得点C 落在数轴上的点C '处时,如图:此时C '表示的数为:32+;【答案】2π2+【分析】先求出圆的周长为2π,再利用数轴的性质求解即可得.【详解】解:由题意可知,将圆沿数轴向右转动一周,转动的距离为∴点A 向右移动了2π个单位长度,【答案】280905--+/809052【分析】本题考查的是数轴的一个知识,解题的关键是找到规律:第移动25个单位,从第2次落在数轴上开始,比上一次又向右多移动了(1)图1中的阴影部分为正方形,它的面积是_________;(2)请利用(1)的解答,在图1的数轴上画出表示10的点;并简洁地说明理由.(3)如图2,请你利用正方形网格,设计一个面积方案,在数轴上画出表示理由.【答案】(1)10(3)解:如图,阴影部分为正方形,面积为所以,其边长为5,在数轴上截取5==,CDOC OK则点K表示的数为5,点D表示的数【点睛】本题主要考查正方形的性质以及网格,熟练掌握正方形的性质是解题的关键.20.阅读下面的文字,解答问题.大家知道,2是无理数,而无理数是无限不循环小数,因此【点睛】此题考查的是估算无理数及求代数式的值,能够得到一个无理数的整数部分与小数部分是解决此题的关键.二、实数的大小比较,中档题15题,难度三星π-<-<根据数轴上点的特点可得: 1.5333.在数轴上表示数0,π-303π-<-<<.2【点睛】本题考查了实数与数轴,实数的大小比较,能利用数轴比较实数的大小是解此题的关键,注意:。

专题实数的运算计算题(共45小题)

专题实数的运算计算题(共45小题)

七年级下册数学《第六章 实 数》 专题 实数的运算计算题(共45小题)1.(2022秋•招远市期末)计算: (1)(√5)2+√(−3)2+√−83;(2)(﹣2)3×18−√273×(−√19).【分析】(1)原式利用平方根及立方根定义计算即可求出值; (2)原式利用乘方的意义,算术平方根及立方根定义计算即可求出值. 【解答】解:(1)原式=5+3+(﹣2) =8﹣2 =6;(2)原式=(﹣8)×18−3×(−13) =(﹣1)﹣(﹣1) =﹣1+1 =0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 2.(2022•庐江县二模)计算:√0.04+√−83−√1−925. 【分析】先计算被开方数,再开方,最后加减. 【解答】解:原式=0.2﹣2−√1625 =0.2﹣2−45 =0.2﹣2﹣0.8 =﹣2.6.【点评】本题考查了实数的混合运算,掌握开方运算是解决本题的关键. 3.(2022春•上思县校级月考)计算: (1)−12+√16+|√2−1|+√−83; (2)2√3+|√3−2|−√643+√9.【分析】(1)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案;(2)直接利用算术平方根的性质、绝对值的性质、立方根的性质分别化简,进而计算得出答案. 【解答】解:(1)−12+√16+|√2−1|+√−83; =﹣1+4+√2−1﹣2 =√2;(2)原式=2√3+2−√3−4+3 =√3+1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.4.(2022春•渝中区校级月考)实数的计算: (1)√16+√(−3)2+√273; (2)√−33+|1−√33|﹣(−√3)2.【分析】(1)先计算平方根和立方根,再计算加减; (2)先计算平方根、立方根和绝对值,再计算加减; 【解答】解:(1)√16+√(−3)2+√273=4+3+3 =10;(2)√−33+|1−√33|﹣(−√3)2=−√33+√33−1﹣3 =﹣4.【点评】此题考查了实数的混合运算能力,关键是能准确理解运算顺序,并能进行正确地计算.5.(2022秋•原阳县月考)计算: (1)√−83+√4−(−1)2023;(2)(−√9)2−√643+|−5|−(−2)2.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√−83+√4−(−1)2023 =﹣2+2﹣(﹣1)=0+1 =1;(2)(−√9)2−√643+|−5|−(−2)2 =9﹣4+5﹣4 =6.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.6.(2022春•牡丹江期中)计算: (1)−12−√0.64+√−273−√125;(2)√3+√(−5)2−√−643−|√3−5|.【分析】(1)先计算平方、平方根和立方根,再进行加减运算; (2)先计算平方根、立方根和绝对值,再进行加减运算. 【解答】解(1)−12−√0.64+√−273−√125=﹣1﹣0.8﹣3﹣0.2 =﹣5;(2)√3+√(−5)2−√−643−|√3−5| =√3+5+4+√3−5 =2√3+4.【点评】此题考查了运用平方根和立方根进行有关运算的能力,关键是能准确理解并运用以上知识.7.(2022秋•南关区校级期末)计算:√16−(−1)2022−√273+|1−√2|.【分析】直接利用有理数的乘方运算法则、绝对值的性质、平方根的性质分别化简,进而得出答案. 【解答】解:原式=4﹣1﹣3+√2−1 =√2−1.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.8.(2022秋•成武县校级期末)计算:﹣12022−√643+|√3−2|.【分析】这里,先算﹣12022=﹣1,√643=4,|√3−2|=2−√3,再进行综合运算.【解答】解:﹣12022−√643+|√3−2|=﹣1﹣4+2−√3 =﹣3−√3.【点评】本题考查了实数的综合运算,计算过程中要细心,注意正负符号,综合性较强.9.(2022春•昌平区校级月考)√1253+√(−3)2−√1−35273.【分析】先化简各式,然后再进行计算即可解答.【解答】解:√1253+√(−3)2−√1−35273=5+3−√−8273=5+3﹣(−23) =5+3+23 =823.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.10.(2022春•舒城县校级月考)计算:√−273+12√16+|−√2|+1.【分析】首先计算开方、开立方和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值即可. 【解答】解:√−273+12√16+|−√2|+1 =﹣3+12×4+√2+1 =﹣3+2+√2+1 =√2.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用. 11.(2022春•舒城县校级月考)计算:﹣12+|﹣2|+√−83+√(−3)2.【分析】先化简各式,然后再进行计算即可解答. 【解答】解:﹣12+|﹣2|+√−83+√(−3)2=﹣1+2+(﹣2)+3=﹣1+2﹣2+3 =2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.12.(2021秋•镇巴县期末)计算:(−1)10+|√2−2|+√49+√(−3)33. 【分析】按照实数的运算顺序进行运算即可. 【解答】解:原式=1+2−√2+7−3 =7−√2.【点评】本题考查了实数的运算,掌握对值,立方根以及平方根的运算法则是关键.13.(2022春•阳新县期末)计算:|√3−2|+√−83×12+(−√3)2.【分析】先算开方和乘方,再化简绝对值算乘法,最后加减. 【解答】解:原式=2−√3+(﹣2)×12+3 =2−√3−1+3 =4−√3.【点评】本题考查了实数的运算,掌握乘方、开方及绝对值的意义是解决本题的关键.14.(2022春•十堰期中)计算:﹣12022+√(−4)2+√83+10√925.【分析】先算乘方、开方,再算乘法,最后算加减. 【解答】解:原式=﹣1+4+2+10×35 =﹣1+4+2+6 =11.【点评】本题考查了实数的混合运算,掌握实数的运算法则、实数的运算顺序是解决本题的关键. 15.(2021秋•峨边县期末)计算:|√5−3|+√(−2)2−√−83+√5. 【分析】直接利用绝对值的性质以及立方根的性质分别化简,进而得出答案. 【解答】解:原式=3−√5+2+2+√5 =7.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.16.(2021秋•乳山市期末)计算:√(−3)2−2×√94+52×√−0.0273.【分析】应用实数的运算法则:先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行,进行计算即可得出答案. 【解答】解:原式=3﹣2×32+52×(﹣0.3) =3﹣3−52×310 =0−34 =−34.【点评】本题主要考查了实数的运算,熟练掌握实数的运算进行求解是解决本题的关键.17.(2022秋•横县期中)计算:(﹣1)2022+√9−(2﹣3)÷12.【分析】先计算乘方与开方和小括号里的,再计算除法,最后计算加减即可. 【解答】解:原式=1+3﹣(﹣1)×2 =4+2 =6.【点评】此题考查的实数的运算,掌握其运算法则是解决此题的关键.18.(2022秋•儋州校级月考)计算: (1)√643−√81+√1253+3; (2)|−3|−√16+√83+(−2)2.【分析】(1)直接利用立方根的性质、平方根的性质分别化简,进而计算得出答案; (2)直接利用立方根的性质、平方根的性质、绝对值的性质分别化简,进而计算得出答案. 【解答】解:(1)原式=4﹣9+5+3 =3;(2)原式=3﹣4+2+4 =5.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.19.(2022秋•海曙区校级期中)计算: (1)﹣23+√−273−(﹣2)2+√1681;(2)(﹣3)2×(﹣2)+√643+√9.【分析】(1)先计算乘方、立方根和平方根,再计算加减; (2)先计算乘方、立方根和平方根,再计算乘法,最后计算加减. 【解答】解:(1)﹣23+√−273−(﹣2)2+√1681=﹣8﹣3﹣4+49=﹣1459;(2)(﹣3)2×(﹣2)+√643+√9=﹣9×2+4+3 =﹣18+4+3 =﹣11.【点评】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法.20.(2022秋•安岳县校级月考)计算: (1)(√3)2−√16+√−83;(2)(﹣2)3×√1214+(﹣1)2013−√273; (3)√(−4)2+√214+√3383−√32+42.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答; (3)先化简各式,然后再进行计算即可解答. 【解答】解:(1)(√3)2−√16+√−83=3﹣4+(﹣2) =﹣3;(2)(﹣2)3×√1214+(﹣1)2013−√273=﹣8×112+(﹣1)﹣3=﹣44﹣1﹣3=﹣48;(3)√(−4)2+√214+√3383−√32+42=4+32+32−5=2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.21.(2022秋•隆昌市校级月考)计算:(1)|−3|−√16+√−83+(−2)2;(2)√−273+|2−√3|−(−√16)+2√3.【分析】(1)首先计算乘方、开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.(2)首先计算开平方、开立方和绝对值,然后从左向右依次计算,求出算式的值即可.【解答】解:(1)|−3|−√16+√−83+(−2)2=3﹣4+(﹣2)+4=1.(2)√−273+|2−√3|−(−√16)+2√3=﹣3+(2−√3)﹣(﹣4)+2√3=﹣3+2−√3+4+2√3=3+√3.【点评】此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.22.(2021秋•泉州期末)计算:√(−3)2×√−1 83−(12)2+(−1)2022.【分析】先算乘方和开方,再算乘法,最后算加减.【解答】解:原式=3×(−12)−14+1=−32−14+1 =−12−14=−34.【点评】本题主要考查了实数的运算,掌握平方根的性质、乘方运算、开方运算是解决本题的关键.23.(2022秋•新野县期中)计算:√−83+√9−√1916+(−1)2022+|1−√2|. 【分析】利用立方根的定义,算术平方根的定义,乘方运算,绝对值的定义计算即可. 【解答】解:√−83+√9−√1916+(−1)2022+|1−√2|. =﹣2+3−54+1+√2−1 =−14+√2.【点评】本题考查了实数的运算,解题的关键是掌握立方根的定义,算术平方根的定义,乘方运算,绝对值的定义.24.(2021秋•新兴区校级期末)计算下列各题: (1)√1−19273+√(14−1)2; (2)√53−|−√53|+2√3+3√3.【分析】(1)先化简各式,然后再进行计算即可解答; (2)先化简各式,然后再进行计算即可解答. 【解答】解:(1)√1−19273+√(14−1)2=√8273+√(−34)2=23+34 =1712;(2)√53−|−√53|+2√3+3√3 =√53−√53+2√3+3√3 =5√3.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.25.(2022秋•绥德县期中)计算:2(√3−1)−|√3−2|−√643. 【分析】先去括号,化简绝对值,开立方,再计算加减即可. 【解答】解:原式=2√3−2﹣(2−√3)﹣4 =2√3−2﹣2+√3−4 =3√3−8.【点评】本题考查实数的混合运算,平方根加法,熟练掌握实数的混合运算法则是解题的关键.26.(2022秋•义乌市校级期中)计算:﹣22×(﹣112)2−√−643−√169×|﹣3|. 【分析】先算乘方,再算乘法,后算加减,即可解答. 【解答】解:﹣22×(﹣112)2−√−643−√169×|﹣3|=﹣4×94−(﹣4)−43×3 =﹣9+4﹣4 =﹣9.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.27.(2022秋•西湖区校级期中)计算: (1)|7−√2|﹣|√2−π|−√(−7)2;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273.【分析】(1)先化简绝对值和平方根,再计算加减; (2)先算乘方和根式,再计算乘法,最后加减. 【解答】解:(1)|7−√2|﹣|√2−π|−√(−7)2 =7−√2−(π−√2)﹣7 =7−√2−π+√2−7 =﹣π;(2)﹣22×√(−4)2+√(−8)33×(−12)−√273 =﹣4×4+(﹣8)×(−12)﹣3=﹣16+4﹣3=﹣15.【点评】本题考查了实数的混合运算,实数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行实数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.(2022秋•沈丘县校级月考)计算:√0.01×√121+√−11253−√0.81. 【分析】直接利用平方根的性质、立方根的性质分别化简,进而得出答案.【解答】解:原式=0.1×11−15−0.9=1.1﹣0.2﹣0.9=0.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.29.(2022春•西山区校级期中)计算:5−2×(√7−2)+√−83+|√3−2|.【分析】直接利用立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=5﹣2√7+4﹣2+2−√3=9﹣2√7−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.30.(2022春•东莞市期中)计算:√(−3)2+(﹣1)2020+√−83+|1−√2| 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√(−3)2+(﹣1)2020+√−83+|1−√2| =3+1+(﹣2)+√2−1=3+1﹣2+√2−1=1+√2.【点评】本题考查了实数的运算,准确熟练地化简各式是解题的关键.31.(2022秋•安溪县月考)计算:√16+√−273−√3−|√3−2|+√(−5)2.【分析】直接利用立方根的性质、绝对值的性质算术平方根的性质分别化简,进而合并得出答案.【解答】解:原式=4﹣3−√3−2+√3+5=4.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.32.(2022秋•仁寿县校级月考)计算:√−8273+√(−4)2×(−12)3−|1−√3|. 【分析】先化简各式,然后再进行计算即可解答.【解答】解:√−8273+√(−4)2×(−12)3−|1−√3|=−23+4×(−18)﹣(√3−1) =−23+(−12)−√3+1=−76−√3+1=−16−√3.【点评】本题考查了实数的运算,准确熟练地进行计算是解题的关键.33.(2022春•海淀区校级期中)计算:√81+√−273−2(√3−3)−|√3−2|.【分析】本题涉及去掉绝对值、根式化简考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=9﹣3﹣2√3+6﹣(2−√3)=6﹣2√3+6﹣2+√3=10−√3.【点评】本题主要考查了实数的综合运算能力,解决此类题目的关键是准确熟练地化简各式是解题的关键.34.(2022春•梁平区期中)计算:√(−1)33+√−273+√(−2)2−|1−√3|.【分析】利用算术平方根,立方根和绝对值的意义化简运算即可.【解答】解:原式=﹣1+(﹣3)+2﹣(√3−1)=﹣1﹣3+2−√3+1=﹣1−√3.【点评】本题主要考查了实数的运算,算术平方根,立方根和绝对值的意义,正确利用上述法则与性质化简运算是解题的关键.35.(2022春•东莞市校级期中)计算:﹣12020+√(−2)2−√643+|√3−2|. 【分析】直接利用有理数的乘方运算法则、平方根的性质、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:原式=﹣1+2﹣4+2−√3=﹣1−√3.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.36.计算下列各题:(1)√1+√−273−√14+√0.1253+√1−6364(2)|7−√2|﹣|√2−π|−√(−7)2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值.【解答】解:(1)原式=1﹣3−12+0.5+18=−178; (2)原式=7−√2−π+√2−7=﹣π.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.37.计算:√0.0083×√1916−√172−82÷√−11253. 【分析】首先计算开方、乘法和除法,然后计算减法,求出算式的值是多少即可.【解答】解:√0.0083×√1916−√172−82÷√−11253=0.2×54−15÷(−15)=14+75 =7514【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.38.计算:3√3−2(1+√3)+√(−2)2+|√3−2|【分析】首先利用去括号法则以及绝对值的性质和算术平方根的定义分别化简得出答案.【解答】解:原式=3√3−2﹣2√3+2+2−√3=2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.39.计算:(1)√(−2)2×√214−23×√(−18)23(2)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|【分析】(1)首先计算开方和乘法,然后计算减法,求出算式的值是多少即可.(2)首先计算开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)√16+√32+√−83=4+3﹣2=5(2)√(−2)2×√214−23×√(−18)23 =2×32−8×14=3﹣2=1(3)√9+|1−√2|−√125273×√(−3)2+|4√0.25−√2|=3+√2−1−53×3+2−√2=﹣1【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.40.计算:(﹣2)2×√14+|√−83|+√2×(﹣1)2022 【分析】原式利用平方根、立方根定义,绝对值的代数意义,以及乘方的意义计算即可得到结果;【解答】解:原式=2+2+√2=4+√2;【点评】此题考查了实数的运算,平方根、立方根,熟练掌握各自的性质是解本题的关键.41.计算:﹣22+√16+√83+1014×934. 【分析】原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用立方根定义计算,最后一项利用乘法法则计算即可得到结果.【解答】解:原式=﹣4+4+2+414×394=2+159916=1011516. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.42.计算:|﹣5|−√273+(﹣2)2+4÷(−23). 【分析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;【解答】解:原式=5﹣3+4﹣6=0【点评】本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.43.(2022秋•城关区校级期中)计算:(1)√12+(√3)2+14√48−9√13;(2)√(−3)2+(−1)2022+√83+|1−√2|.【分析】(1)直接利用平方根的性质分别化简,进而计算得出答案;(2)直接利用平方根的性质、有理数的乘方运算法则、立方根的性质、绝对值的性质分别化简,进而计算得出答案.【解答】解:(1)原式=2√3+3+14×4√3−9×√33 =2√3+3+√3−3√3=3;(2)原式=3+1+2+√2−1=5+√2.【点评】此题主要考查了实数的运算,正确化简各数是解题关键.44.(2021春•濉溪县期末)计算:√49−√273+|1−√2|+√(1−43)2.【分析】原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用平方根性质化简即可得到结果.【解答】解:原式=7﹣3+√2−1+13=103+√2. 【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.45.(2022秋•岳麓区校级月考)计算−12022+(12)2+|√2−3|−√(−3)2.【分析】根据乘方,绝对值的意义,平方根的性质将原式进行化简,然后根据实数运算法则进行计算即可.【解答】解:原式=−1+14+3−√2−3,=−34−√2.【点评】本题考查了乘方,绝对值的意义,平方根的性质,掌握相关运算法则是关键.。

实数计算题专题训练(含答案)

实数计算题专题训练(含答案)

实数计算题专题训练(含答案) 专题一计算题训练一、计算题1.计算题:| -2 | - (1 + 2) ÷ 2,求解。

2.计算题:- + 4 × (-3)² + (-6) ÷ (-2),求解。

3.计算题:√2 - √3 + √6 ÷ √2,求解。

4.计算题:||-14|-|-11||+2,求解。

5.计算题:-4 + 8 ÷ (-8) - (-1),求解。

6.计算题:∛(π - 2) + 1 ÷ 2,求解。

7.计算题:√(2 + √3) + √(3 - √2),求解。

8.计算题:√(3+ √5) + √(5 + √3),求解,精确到0.01.二、解答题(共13小题)1.计算题:| -2 | - (1 + 2) ÷ 2,求解。

解答:原式=|-2| - (1 + 2) ÷ 2。

2 - 1.5。

0.5.2.计算题:- + 4 × (-3)² + (-6) ÷ (-2),求解。

解答:原式=- + 4 × 9 + (-6) ÷ (-2)。

+ 36 + 3。

.3.计算题:√2 - √3 + √6 ÷ √2,求解。

解答:原式=√2 - √3 + √6 ÷ √2。

2 - √3 + √3。

2.4.计算题:||-14|-|-11||+2,求解。

解答:原式=||-14| - |-11|| + 2。

14 - 11| + 2。

5.5.计算题:-4 + 8 ÷ (-8) - (-1),求解。

解答:原式=-4 + 8 ÷ (-8) - (-1)。

4 - 1 + 1。

4.6.计算题:∛(π - 2) + 1 ÷ 2,求解。

解答:原式=∛(π - 2) + 1 ÷ 2。

π - 2) + 0.5.7.计算题:√(2 + √3) + √(3 - √2),求解。

实数计算100道

实数计算100道

(1)x^2-9x+8=0 答案:x1=8 x2=1(2)x^2+6x-27=0 答案:x1=3 x2=-9(3)x^2-2x-80=0 答案:x1=-8 x2=10(4)x^2+10x-200=0 答案:x1=-20 x2=10(5)x^2-20x+96=0 答案:x1=12 x2=8(6)x^2+23x+76=0 答案:x1=-19 x2=-4(7)x^2-25x+154=0 答案:x1=14 x2=11(8)x^2-12x-108=0 答案:x1=-6 x2=18(9)x^2+4x-252=0 答案:x1=14 x2=-18(10)x^2-11x-102=0 答案:x1=17 x2=-6(11)x^2+15x-54=0 答案:x1=-18 x2=3(12)x^2+11x+18=0 答案:x1=-2 x2=-9(13)x^2-9x+20=0 答案:x1=4 x2=5(14)x^2+19x+90=0 答案:x1=-10 x2=-9(15)x^2-25x+156=0 答案:x1=13 x2=12(16)x^2-22x+57=0 答案:x1=3 x2=19(17)x^2-5x-176=0 答案:x1=16 x2=-11(18)x^2-26x+133=0 答案:x1=7 x2=19(19)x^2+10x-11=0 答案:x1=-11 x2=1(20)x^2-3x-304=0 答案:x1=-16 x2=19(21)x^2+13x-140=0 答案:x1=7 x2=-20(22)x^2+13x-48=0 答案:x1=3 x2=-16(23)x^2+5x-176=0 答案:x1=-16 x2=11(24)x^2+28x+171=0 答案:x1=-9 x2=-19(25)x^2+14x+45=0 答案:x1=-9 x2=-5(26)x^2-9x-136=0 答案:x1=-8 x2=17(27)x^2-15x-76=0 答案:x1=19 x2=-4(28)x^2+23x+126=0 答案:x1=-9 x2=-14(29)x^2+9x-70=0 答案:x1=-14 x2=5(30)x^2-1x-56=0 答案:x1=8 x2=-7(31)x^2+7x-60=0 答案:x1=5 x2=-12(32)x^2+10x-39=0 答案:x1=-13 x2=3(33)x^2+19x+34=0 答案:x1=-17 x2=-2(34)x^2-6x-160=0 答案:x1=16 x2=-10(35)x^2-6x-55=0 答案:x1=11 x2=-5(36)x^2-7x-144=0 答案:x1=-9 x2=16(37)x^2+20x+51=0 答案:x1=-3 x2=-17(38)x^2-9x+14=0 答案:x1=2 x2=7(39)x^2-29x+208=0 答案:x1=16 x2=13(40)x^2+19x-20=0 答案:x1=-20 x2=1(41)x^2-13x-48=0 答案:x1=16 x2=-3(42)x^2+10x+24=0 答案:x1=-6 x2=-4(43)x^2+28x+180=0 答案:x1=-10 x2=-18(44)x^2-8x-209=0 答案:x1=-11 x2=19(46)x^2+7x+6=0 答案:x1=-6 x2=-1(47)x^2+16x+28=0 答案:x1=-14 x2=-2(48)x^2+5x-50=0 答案:x1=-10 x2=5(49)x^2+13x-14=0 答案:x1=1 x2=-14(50)x^2-23x+102=0 答案:x1=17 x2=6(51)x^2+5x-176=0 答案:x1=-16 x2=11(52)x^2-8x-20=0 答案:x1=-2 x2=10(53)x^2-16x+39=0 答案:x1=3 x2=13(54)x^2+32x+240=0 答案:x1=-20 x2=-12(55)x^2+34x+288=0 答案:x1=-18 x2=-16(56)x^2+22x+105=0 答案:x1=-7 x2=-15(57)x^2+19x-20=0 答案:x1=-20 x2=1(58)x^2-7x+6=0 答案:x1=6 x2=1(59)x^2+4x-221=0 答案:x1=13 x2=-17(60)x^2+6x-91=0 答案:x1=-13 x2=7(61)x^2+8x+12=0 答案:x1=-2 x2=-6(62)x^2+7x-120=0 答案:x1=-15 x2=8(63)x^2-18x+17=0 答案:x1=17 x2=1(64)x^2+7x-170=0 答案:x1=-17 x2=10(65)x^2+6x+8=0 答案:x1=-4 x2=-2(66)x^2+13x+12=0 答案:x1=-1 x2=-12(67)x^2+24x+119=0 答案:x1=-7 x2=-17(68)x^2+11x-42=0 答案:x1=3 x2=-14(69)x^20x-289=0 答案:x1=17 x2=-17(70)x^2+13x+30=0 答案:x1=-3 x2=-10(71)x^2-24x+140=0 答案:x1=14 x2=10(72)x^2+4x-60=0 答案:x1=-10 x2=6(73)x^2+27x+170=0 答案:x1=-10 x2=-17(74)x^2+27x+152=0 答案:x1=-19 x2=-8(75)x^2-2x-99=0 答案:x1=11 x2=-9(76)x^2+12x+11=0 答案:x1=-11 x2=-1(77)x^2+17x+70=0 答案:x1=-10 x2=-7(78)x^2+20x+19=0 答案:x1=-19 x2=-1(79)x^2-2x-168=0 答案:x1=-12 x2=14(80)x^2-13x+30=0 答案:x1=3 x2=10(81)x^2-10x-119=0 答案:x1=17 x2=-7(82)x^2+16x-17=0 答案:x1=1 x2=-17(83)x^2-1x-20=0 答案:x1=5 x2=-4(84)x^2-2x-288=0 答案:x1=18 x2=-16(85)x^2-20x+64=0 答案:x1=16 x2=4(86)x^2+22x+105=0 答案:x1=-7 x2=-15(87)x^2+13x+12=0 答案:x1=-1 x2=-12(88)x^2-4x-285=0 答案:x1=19 x2=-15(90)x^2-17x+16=0 答案:x1=1 x2=16(91)x^2+3x-4=0 答案:x1=1 x2=-4(92)x^2-14x+48=0 答案:x1=6 x2=8(93)x^2-12x-133=0 答案:x1=19 x2=-7(94)x^2+5x+4=0 答案:x1=-1 x2=-4(95)x^2+6x-91=0 答案:x1=7 x2=-13(96)x^2+3x-4=0 答案:x1=-4 x2=1(97)x^2-13x+12=0 答案:x1=12 x2=1(98)x^2+7x-44=0 答案:x1=-11 x2=4(99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6。

实数的运算100题

实数的运算100题

27. 2 cos 30 1 27 3 2 3
28. (1) 1 cos 30 2 cos 45 sin 60 cos 60
2
2
(2). 2 sin 30 tan 60 cos 45 tan 30
29. (π 3.14)0 (1)2015 1 3 3 tan 30
30. sin 60 cos 30 2 sin 45 tan 45 31. 5 3sin 30 ( 6)2 (tan 45)1
63. (π 3.14)0 1 2023 1 3 3 tan 30 64. 18 (2023 π)0 2 cos 45 1 1
4 65. ( 3 2)0 1 1 4 cos 30 12
3
66. 2 sin 60 1 2 2 π0 3 8 1 2022 3
37. 1 1 2 cos2 45 sin 30 tan 60
38. 1 1 cos2 60 ( 3 π)0 sin 60 tan 30 2
39. 2 sin 45 tan 60 cos 30
40. 1 1 2 sin 60 3 20150
2
41. 8 tan 30 cos 60 2sin 45
42. 1 2023 sin 30 π 3.140 1 1
2
43. 2 tan 45 sin 60 cos 30
44. 2sin 45 3 tan 30 cos 60 3 45. 2sin 60 3 tan 30 2 tan 60 cos 45 2
46. cos 30 sin 60 2sin 45 tan 45 47. 3 tan 60 sin 2 45 3 tan 45 cos 60
2
6. 3 tan 30 (2 3)0 ( 1 )1 12 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.比较大小:15 4 (填“>”、“<”或“=”号).2.(本题满分7分)计算: 20)2()3(4|1|--+-+--π.3.计算:(每小题3分,共12分)(1)()25.05)41(8----+ (2))21()51(10)1(2004-÷-⨯-- (3)12×(13+14―16) (4)632162---+-4.(本题满分8分)计算:(1)103248(2)-+-+(2)()()()323312442⎛⎫-⨯-+-⨯- ⎪⎝⎭5.根据图所示的拼图的启示填空. (1)计算28________+=; (2)计算832________+=; (3)计算32128________+=.6.计算:(1)(2013广东湛江)269(1)---;(2)(2013浙江衢州3422(75)-÷-⨯-+.7.已知一个圆和一个正方形的面积都是2πcm 2,问:它们中哪一个周长比较长,你从中得到了什么启示?8.如图所示,点A 、B 在数轴上,它们所对应的数分别是-4,2235x x +-,且点A 、B 到原点的距离相等,求x 的值.9.定义新运算“@”:@4x y xy +2@6)@8的值.10.已知一个正方体的表面积为2400cm 2,求这个正方体的体积. 11.计算.(1325272-; (2)31(181)13- 12.计算下列各题. (1)333 (2)51)(35)-. 13.(1)23327(3)1-+---(2)计算:|12||23|21|++;(3)223331(4)(4)272⎛⎫----- ⎪⎝⎭14.先阅读,再回答下列问题.2112+=122<<211+1.2226+=263<<222+的整数部分是2.23312+=,且3124<<233+3.……2n n +n 为正整数)的整数部分为________,试说明理由. 15.计算:(1)2332精确到0.01);(2)5 2.342+-π(精确到十分位).16.计算:(1)3(32)2(32)--;(2)|12||32|34++.17.设x 、y 为有理数,且x 、y 满足等式2221742x y +=-x +y 的值.19.实数a 、b 、c 在数轴上的位置如图所示,试化简:|c -b|+|b -a|-|c|.20.求下列各数的相反数、倒数和绝对值. (1)35;(2)916-. 21.若m 是实数,则下列各数一定是负实数的是( ) A .-m 2 B .2m - C .-(m +1)2 D .21m --22.求下列各数的相反数、倒数和绝对值: (1)5-; (2)1-π.23.若实数a 满足-1<a <0,则a ,-a ,1a,a 2的大小关系是( ) A .21a a a a<-<< B .21a a a a<<<- C .21a a a a -<<<D .21a a a a<<<-24.计算:3533-+.25.计算:32275)21()1(10--+-+--π26.(6分)计算(要求写出计算步骤): (1)()()2216833⎛⎫-⨯-÷-⎪⎝⎭ (2)31084-++ 27.计算:201945(3)2π-⎛⎫-⨯+-+- ⎪⎝⎭.28.计算:29.计算:9﹣2sin60°+|﹣3|. 30.计算:11(6π)()3tan30|3|5--︒+--︒+-.31.算:32.算33.算:34.(1)计算:(2)先化简,再求值:,其中.35.计算:()0120142tan 60()π1(1)3-︒---+-.36.计算:(1)0045tan )2(9+--π (2))2)(2()3(a a a a +-+-37.计算: 020)3(230c 233π-+----os评卷人 得分四、解答题(题型注释)评卷人 得分五、判断题(题型注释)评卷人 得分六、新添加的题型参考答案1.< 【解析】试题分析:因为2154<,所以154<.考点: 实数的大小比较 2.14. 【解析】试题分析:根据实数的运算法则,首先化去代数式中的绝对值,二次根式,乘方运算,然后进行合并即可.试题解析:解:原式=1-2+1+=. 考点:实数的运算.3.(1)3;(2)-3;(3)5;(4)264.【解析】试题分析:实数加法法则:同号两数相加,取相同的符号,并把绝对值相加; 异号两数相加,取相同的符号,并用大绝对值相减去小绝对值.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.乘方的运算法则:负数的奇次幂是负的, 负数的偶次幂是正的,正数的任何次幂是正数. 数轴上表示一个数的点离开原点的距离叫这个数的绝对值. 正数的绝对值是它本身;负数的绝对值是它的相反数. 实数混合运算顺序:先算乘方,再算乘除,最后算加减.二次根式性质. 试题解析:解:(1)118+()5(0.25)850.25344----=--+=; (2)200411(1)10()()12(2)14352--⨯-÷-=+⨯-=-=-; (3)11111112+-=12+12124325346346⨯⨯⨯-⨯=+-=(); (4)261236+--6221(36)6136264=--=-=.考点:1实数混合运算;2绝对值;3二次根式比较大小.4.解:(1)1032482)-+=1+2-2+12 =32(2)()3122⎛⎫-- ⎪⎝⎭=()1-84+-4-2⎛⎫⨯⨯ ⎪⎝⎭=-32+2=-30 【解析】 试题分析:(1)先计算0指数与负整数指数幂、开立方、开平方,再按照有理数的加减运算法则进行计算即可;(2)先算乘方与开方,再计算乘法最后算加减. 考点:有理数的混合运算.点评:本题考查了有理数的混合运算.熟练掌握运算顺序是解题的关键,有理数的混合运算顺序:先算乘方与开方再算乘除最后算加减.5.(1)【解析】面积为2,面积为8的正方形是由4个面积为2的正方形拼成的,∴其边长为面积为32的正方形是由16个面积为2的正方形拼成的,∴其边长为面积为128的正方形是由64个面积为2的正方形拼成的,∴其边长为=======6.(1)2.(2)10【解析】(1)2|6|(1)6312--=--=.32|2|(75)282(2)2(8)10÷-⨯-+=-÷⨯-=--=.7.面积相等的圆和正方形,正方形的周长较大.【解析】设圆的半径为r ,则r ==cm ),周长228.886C =π≈(cm ).正方形的周长410.027l =≈(cm ).所以正方形的周长长.启示:面积相等的圆和正方形,正方形的周长较大.8.115由题意知22435x x +=--, 【解析】解得115x =.所以x 的值是115.9.6【解析】(2@6)@8=4@8==6.10.8000cm 3【解析】设正方体的棱长为xcm ,则x 2×6=2400, 解得x =±20.∵x >0,∴x =20,∴V =203=8000(cm 3). 答:这个正方体的体积是8000cm 3. 11.(1)4,(2)-233【解析】(12- =5-3+2 =4.(2)1(13119133=-⨯- 233=-.12.(1(2)-4【解析】(1)(2=-=(2)1)(3-+13=--=-413.(1) 1.2-.(3)2. 【解析】(1)原式=-3+3-(-1)=1.(2)原式=(11)112--+=-+=. (3)原式=14(4)341324--⨯-=+-=. 14.n【解析】 理由是:=又1n n <+,n . 15.(1) 7.71 (2)0.3【解析】(1)2 1.7323 1.4147.7067.71≈⨯+⨯=≈.12.34 2.24 2.343.140.320.32+-π≈⨯+-=≈.16.(2) 1【解析】(1)原式==(3(3-++(2)1221211-=-=. 17.-9【解析】∵x 、y 为有理数,且22217x y y++=-∴x 2+2y =17,y =-4,解得x =±5,y =-4. 当x =5时,x +y =5-4=1;当x =-5时,x +y =-5-4=-9. 18.0,|y +25|≥0250y +=,∴x-5=0,y+25=0,∴x=5,y=-25.5=-.19.a【解析】∵c<0,b<0,c<b,a>0,∴c-b<0,b-a<0,∴|c-b|+|b-a|-|c|=b-c+a-b+c=a.20..(2)34,倒数是43-,绝对值为34.【解析】绝对值是.(2)因为34 =-,所以34,倒数是43-,绝对值为33||44-=.21.D【解析】-m2≤0,故A不正确.当m=0时,0=,故B不正确.当m=-1时,-(m+1)2=0,故C不正确.22.(1π-1,11-π,π-1【解析】(1)(2)1-π的相反数是π-1,倒数是11-π,绝对值是π-1.23.B【解析】采用特殊值法,取12a=-,则12a-=,12a=-,214a=,所以21a a aa<<<-.24+=523=+.【解析】先求35-的绝对值,再将3-与33合并同类项. 25.63- 【解析】试题分析:原式=1-2+33-5-23=3-6 考点: 实数的运算 26.(1)32-(2)32【解析】试题分析:按照运算顺序,依次计算即可.试题解析:(1)221113(6)()(8)36()33382-⨯-÷-=⨯⨯-=-;(2)31130802422-++=-++=. 考点:实数的计算. 27.﹣7. 【解析】试题分析:分别用平方根定义,负指数幂法则,绝对值的代数意义,零指数幂法则进行计算即可得到结果.试题解析:原式=3﹣4×4+5+1=3﹣16+5+1=﹣7. 考点:1.实数的运算2.零指数幂3.负整数指数幂. 28.3 【解析】试题分析:根据零指数幂的意义和二次根式的化简及绝对值、乘方的意义可求解. 试题解析:解:原式考点:1、零指数幂的意义.2、二次根式的化简. 29.3. 【解析】试题分析:先根据数的开方法则、特殊角的三角函数值、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可. 试题解析:原式=3﹣2×323=333=3.【考点】1.实数的运算;2.特殊角的三角函数值. 30.-4【解析】试题分析:非0数的0次幂是1,任何一个不等于0的数的负P 次幂等于这个数的P 次幂的倒数,p p a a 1=-, 特殊角的三角函数值,按顺序计算即可试题解析:原式=433)5(1-=+--+考点:1、零指数幂;2特殊角的三角函数值;3、绝对值;4、负指数幂31.17.【解析】试题分析:先化简和,运用平方差公式计算,再进行计算求解. 试题解析:原式= =17考点:实数的运算.32.. 【解析】试题分析:原式=.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.33..【解析】试题分析:本题涉及零指数幂、二次根式的化简、分母有理化、绝对值化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 试题解析:原式=考点:1.实数的运算;2.零指数幂;3.分母有理化.34.(1)0 (2)【解析】解:(1)原式=﹣1﹣7+3+5=0;(2)原式=÷,=,=,当x=时,原式==.353【解析】试题分析:原式第一项利用特殊角的三角函数值计算,第二项利用负指数幂法则计算,第三项利用零指数幂法则计算,最后一项利用-1的偶次幂计算即可得到结果.原式=23311+3考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.36.(1)3;(2)4-3a .【解析】试题分析:(1)先根据二次根式、零次幂以及特殊角的正切值运算法则进行计算,最后进行加减运算即可;(2)先根据单项式乘以多项式、平方差公式把括号展开,最后合并同类项即可.(1)原式=3-1+1=3.原式=a 2-3a+4-a 2=4-3a .考点:1.实数的混合运算;2.整式的混合运算.37.4332+ 【解析】针对绝对值,特殊角的三角函数值,负整数指数幂,零指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果。

相关文档
最新文档