多元线性回归模型
多元线性回归

多元线性回归简介多元线性回归是一种统计分析方法,用于预测一个因变量与多个自变量之间的关系。
该方法适用于具有多个自变量和一个因变量之间的线性关系的数据集。
多元线性回归建立了一个多元线性模型,通过对多个自变量进行加权求和来预测因变量的值。
它基于最小二乘法,通过最小化预测值与实际观测值之间的差异来找到最佳拟合线。
在多元线性回归中,自变量可以是连续变量、二进制变量或分类变量。
因变量通常是连续的,可以预测数值型变量的值,也可以用于分类问题中。
数学原理多元线性回归的数学原理基于线性代数和统计学。
假设有n个自变量和一个因变量,可以将多元线性回归模型表示为:多元线性回归公式其中,y表示因变量的值,β0表示截距,β1, β2, …, βn表示自变量的系数,x1, x2, …, xn表示自变量的取值。
通过使用最小二乘法,可以最小化残差的平方和来计算最佳拟合线的系数。
残差是预测值与实际观测值之间的差异。
模型评估在构建多元线性回归模型后,需要对模型进行评估,以确定模型的效果和拟合优度。
常用的模型评估指标包括均方误差(Mean Squared Error, MSE)、决定系数(Coefficient of Determination, R2)和F统计量等。
•均方误差(MSE)是指预测值与实际观测值之间差异的平方和的均值。
MSE越接近于0,说明模型的预测效果越好。
•决定系数(R2)是指模型解释因变量变异性的比例。
R2的取值范围是0到1,越接近1表示模型对数据的解释能力越好。
•F统计量是用于比较两个模型之间的差异是否显著。
F统计量越大,说明模型的解释能力越好。
实例应用下面通过一个实例来说明多元线性回归的应用。
假设我们想要预测一个学生的学术成绩(因变量)与以下自变量之间的关系:学习时间、睡眠时间和饮食状况。
我们收集了100个学生的数据。
首先,我们需要对数据进行预处理,包括处理缺失值、异常值和标准化数据等。
然后,我们使用多元线性回归模型进行建模。
多元线性回归模型的决定系数

多元线性回归模型的决定系数
多元线性回归模型的决定系数(R-Squared)是一个用于衡量多元线性回归模型拟合好坏的重要指标。
它表明了研究变量之间的联系有多强,也反映了回归模型对解释变量之间关系的准确程度。
决定系数(R-Squared)取值介于0到1之间,其中0代表模型无力拟合实际数据,1代表模型拟合程度较好。
一般来说,当R-Squared的值越大,这个模型的拟合程度越好,反之R- Squared值越小,拟合程度越差。
多元线性回归模型的好坏不仅取决于R-Squared的大小,也可以由每个被解释变量的系数或R-Squared的加权平均值来判断。
一般来说,如果R-Squared大于0.7,则表明模型拟合程度较好;如果R-Squared低于0.3,则表明模型拟合程度较差。
在此情况下,需要采取进一步检查,了解模型拟合程度不好的原因,如可能使用了错误的模型,数据中存在多重共线性,存在异常值或受试者间存在影响因素等等。
因此,多元线性回归模型的决定系数R-Squared是一项重要的指标,可以用于评估模型的拟合情况,检查数据中的多重共线性和异常值,及受试者的特性等. R-Squared的取值越大,表明模型的拟合程度也就越好。
多元线性回归模型

yT = 0 + 1xT1+ 2xT2 +…+ kxTk+ uT
y1
y2
1 x11 x12 x13
1
x21
x22
x23
yT
(T 1)
1
xT 1
xT 2
xT 3
x1k
0
u1
x2k
1
u2
xTk
T(k 1)
k
(k 1)1
uT
(T 1)
因此: 这个模型相应的矩阵表示形式为:Y = X + U
§3 最小二乘估计量的统计特性
• 线性特性 • 无偏性 • 最小方差性(有效性) • 高斯-马尔可夫(Gauss-Markov)定理
一、线性特性
线性特性:是指最小二乘估计量 βˆ 是被解释变量观测值y1,y2,…,yT 的线性函数。
βˆ ( X' X )1 X' Y
设: 则:
A ( X' X )1 X' βˆ (X' X)1 X' Y AY
Q ˆ1
2
(yt ˆ0 ˆ1xt1 ˆ2 xt2
Q
ˆk
2
(yt ˆ0 ˆ1xt1 ˆ2 xt2
ˆk xtk ) • ( 1) 0 ˆk xtk ) • (xt1) 0
ˆk xtk ) • ( xtk ) 0
Tβˆ0 βˆ1 xt1 βˆ2 xt2 βˆk xtk yt
1-4、随机误差项独立同分布 ui ~ N (0,σ2); Cov(ui,uj)=0;
5、解释变量与随机误差项彼此不相关 Cov(uj, Xij) =0 ; 6、解释变量直接不存在完全共线性 rank(X)=k+1<n。
多元线性回归模型构建

多元线性回归模型构建多元线性回归模型是统计分析中一种常用的数据拟合方法,可用来对定量变量之间的关系进行建模,预测定量变量的变化,以及预测结果的置信水平等。
本文将针对多元线性回归模型的概念及其理论模型,结构介绍,应用说明以及优缺点等方面进行详细介绍。
二、概念多元线性回归模型(Multiple Linear Regression Model, MLRM)是统计分析中最常用的数据拟合方法,也是机器学习和数据挖掘的一种经典算法。
它可以用来在多个定量变量之间建立一个线性回归关系,从而预测定量变量的变化,以及预测结果的置信水平等。
多元线性回归模型以线性模型为基础,以求解最小二乘问题(Least Squares Problem)来寻找常数和系数,旨在找到最佳拟合模型。
三、结构多元线性回归模型以线性模型为基础,以求解最小二乘问题(Least Squares Problem)来寻找常数和系数,旨在找到最佳拟合模型,其结构如下:多元线性回归模型:Y=b0+b1*X1+b2*X2…+b n*XnY 为因变量,指被预测的定量变量;X1、X2…Xn是自变量,指可用来预测因变量变化的定量变量; b0、b1、b2…b n分别为关系中各个自变量的系数。
四、应用多元线性回归模型广泛应用于社会科学,包括经济学、管理学、法学等多个领域。
例如,探讨一个企业经济活动的盈利情况,就可采用多元线性回归模型计算出不同的投资因素对企业收益的影响程度。
因此,多元线性回归模型可以应用在预测和决策分析中,从而更好地支持决策。
五、优点(1)多元线性回归模型可涉及多个自变量,可模拟出复杂的系统关系,解决多头预测和决策分析问题,对决策提供可靠的数据和参考;(2)多元线性回归模型具有较高的精度和稳定性,可以准确地捕捉现实问题,更好地反映实际情况;(3)多元线性回归模型的数据处理上也相对较为简单,不需要花费大量的人力和时间资源,容易操作,易于理解;六、缺点(1)多元线性回归模型要求数据具有较高的完整性和多样性,并要求自变量的变量类型较少,局限性较大;(2)多元线性回归模型可能因数据中的噪音而影响模型的准确性,模型预测存在较大误差;(3)多元线性回归模型可能存在欠拟合或过拟合的情况,无法有效反映出实际系统中的复杂情况。
多元线性回归模型及其假设条件

§5.1 多元线性回归模型及其假设条件 1.多元线性回归模型 多元线性回归模型:εi pi p iiix b xb x b b y +++++= 2211,n i ,,2,1 =2.多元线性回归模型的方程组形式 3.多元线性回归模型的矩阵形式4.回归模型必须满足如下的假设条件:第一、有正确的期望函数。
即在线性回归模型中没有遗漏任何重要的解释变量,也没有包含任何多余的解释变量。
第二、被解释变量等于期望函数与随机干扰项之和。
第三、随机干扰项独立于期望函数。
即回归模型中的所有解释变量Xj与随机干扰项u 不相关。
第四、解释变量矩阵X 是非随机矩阵,且其秩为列满秩的,即:n k k X rank 〈=,)(。
式中k 是解释变量的个数,n 为观测次数。
第五、随机干扰项服从正态分布。
第六、随机干扰项的期望值为零。
()0=u E 第七、随机干扰项具有方差齐性。
()σσ22=u i(常数)第八、随机干扰项相互独立,即无序列相关。
()()u u u u jiji,cov ,=σ=0§5.2 多元回归模型参数的估计建立回归模型的基本任务是:求出参数bb b p,,,,1σ的估计值,并进行统计检验。
残差:yy e iiiˆ-=;残差平方和:Q=()∑-∑==y y e i i ni iˆ212矩阵求解:X=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡x xxx x x x x x pn nnp p212221212111111,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=b b b b p B ˆˆˆˆ210ˆ ,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=-y y y y n n Y 121 ,()YB X X X ττ1ˆ-=1ˆ2--=p n Qσ要通过四个检验:经济意义检验、统计检验、计量经济学检验、模型预测检验。
§5.4 多元线性回归模型的检验一、R2检验1.R2检验定义R2检验又称复相关系数检验法。
是通过复相关系数检验一组自变量xx x m,,,21与因变量y 之间的线性相关程度的方法。
多元线性回归模型的各种检验方法

多元线性回归模型的各种检验方法多元线性回归模型是常用于数据分析和预测的方法,它可以用于研究多个自变量与因变量之间的关系。
然而,仅仅使用多元线性回归模型进行参数估计是不够的,我们还需要对模型进行各种检验以确保模型的可靠性和有效性。
下面将介绍一些常用的多元线性回归模型的检验方法。
首先是模型的整体显著性检验。
在多元线性回归模型中,我们希望知道所构建的模型是否能够显著解释因变量的变异。
常见的整体显著性检验方法有F检验和显著性检查表。
F检验是通过比较回归模型的回归平方和和残差平方和的比值来对模型的整体显著性进行检验。
若F值大于一定的临界值,则可以拒绝原假设,即模型具有整体显著性。
通常,临界值是根据置信水平和自由度来确定的。
显著性检查表是一种常用的汇总表格,它可以提供关于回归模型的显著性水平、标准误差、置信区间和显著性因素的信息。
通过查找显著性检查表,我们可以评估模型的显著性。
其次是模型的参数估计检验。
在多元线性回归模型中,我们希望知道每个自变量对因变量的影响是否显著。
通常使用t检验来对模型的参数估计进行检验。
t检验是通过对模型的回归系数进行检验来评估自变量的影响是否显著。
与F检验类似,t检验也是基于假设检验原理,通过比较t值和临界值来决定是否拒绝原假设。
通常,临界值可以通过t分布表或计算机软件来获取。
另外,我们还可以使用相关系数来评估模型的拟合程度。
相关系数可以用来衡量自变量与因变量之间的线性关系强度,常见的相关系数包括Pearson相关系数和Spearman相关系数。
Pearson相关系数适用于自变量和因变量都是连续变量的情况,它衡量的是两个变量之间的线性关系强度。
取值范围为-1到1,绝对值越接近1表示关系越强。
Spearman相关系数适用于自变量和因变量至少有一个是有序变量或者都是有序变量的情况,它衡量的是两个变量之间的单调关系强度。
取值范围也是-1到1,绝对值越接近1表示关系越强。
最后,我们还可以使用残差分析来评估模型的拟合程度和误差分布。
多元线性回归与逐步回归的比较与选择

多元线性回归与逐步回归的比较与选择多元线性回归(Multiple Linear Regression)和逐步回归(Stepwise Regression)是统计学中常用的预测模型选择方法。
本文将比较这两种方法的优缺点,以及在不同场景中的选择建议。
一、多元线性回归介绍多元线性回归是一种基于多个自变量和一个因变量之间线性关系的预测模型。
它通过拟合一个线性方程来建立自变量与因变量的关系,其中自变量可能是连续的或者是分类的。
多元线性回归模型的基本形式为:Y = β0 + β1*X1 + β2*X2 + ... + βn*Xn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示随机误差项。
多元线性回归通过最小二乘法来估计回归系数,从而找到最佳的拟合直线。
二、逐步回归介绍逐步回归是一种逐渐加入和剔除自变量的方法,用于选择最佳的自变量组合。
逐步回归的基本思想是从空模型开始,逐个加入自变量,并根据一定的准则判断是否保留该变量。
逐步回归可以分为前向逐步回归(Forward Stepwise Regression)和后向逐步回归(Backward Stepwise Regression)两种。
前向逐步回归是从空模型开始,逐个加入对因变量贡献最大的自变量,直到不能继续加入为止。
而后向逐步回归则是从包含所有自变量的模型开始,逐个剔除对因变量贡献最小的自变量,直到不能继续剔除为止。
逐步回归的优点在于可以避免多重共线性和过度拟合的问题,仅选择与因变量相关性较强的自变量,提高模型的预测准确性。
三、多元线性回归与逐步回归的比较在实际应用中,多元线性回归和逐步回归各有优缺点,下面将从几个方面进行比较。
1. 模型解释性多元线性回归能够给出所有自变量的系数估计值,从而提供对因变量的解释。
而逐步回归仅提供了部分自变量的系数估计值,可能导致模型的解释性不足。
2. 处理变量的方法多元线性回归通常要求自变量具有线性关系,并且需要对自变量进行一定的前处理,如标准化、变量变换等。
多元线性回归模型

统计学第4章 多元线性回归模型第1节 多元线性回归模型概述(一)多元线性回归模型形式一般来说,我们研究的变量往往受多个因素的影响,如作物的收成会受气温,施肥量,降雨量等等的影响,对某中商品的消费需求会受该商品价格,收入,其他商品价格等的影响。
因此,我们要讨论一个变量对两个以上变量的统计依赖关系。
1)多元线性回归模型的一般表现形式:122i i k ik i Y X X βββε=++++,1,2,,i n =其中,k 为解释变量的数目,(1,2,,)j j k β= 习惯上,把常数项看成为取值恒为1的变量的系数,上述表达式也被称为总体回归函数的随机表达形式。
其非随机形式为:12122(,,,)i i ik i k ik E Y X X X X X βββ=+++表示各变量X 值固定时Y 的平均响应j β 也称为偏回归系数,表示在其他解释变量保持不变的情况下,j X 每变化一个单位时,Y 的均值()E Y 的变化。
或者说j β给出了j X 单位变化对Y 均值的“直接”或“净”(不含其它变量)影响。
总体线性回归模型n 个随机方程的矩阵表达式为:11212112122222122Y X ...k k k k n n k nk nX Y X X Y X X βββεβββεβββε=++++⎧⎪=++++⎪⎪⎪⎨⎪⎪⎪=++++⎪⎩将此方程组写成矩阵形式:112131122223222231...1.................................1...k k n n n nk k n Y X X X Y XX X Y X X X βεβεβε⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦简写为:11n n k n Y XB ε⨯⨯⨯=+2)样本回归函数及其矩阵表达用一定的方法对1β,2β,…,k β估计后,122ˆˆˆˆ...i i k ik Y X X βββ=+++ 残差:ˆi i iY Y e -= 样本回归方程的随机形式可表示为:122ˆˆˆ...i i k ik i Y X X e βββ=++++ 则其矩阵表达为:ˆˆYXB = 或ˆY XB e =+ 其中12ˆˆ.ˆ..ˆn Y Y YY ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ , 12ˆˆ.ˆ..ˆk B βββ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 12...n e e e e ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(二) 多元线性回归模型的基本假定 1. X 与Y 之间的关系是线性的121...i i k ik i Y X X βββε=++++, N i ,...,2,1= 即12(,,,)i i ik E Y X X X 是参数的线性函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节重点内容
1.多元线性回归模型一般形式 2.偏回归系数的含义 3.多元线性回归模型的基本假设(与一元
相比,多元的基本假设的不同点)
多元线性回归模型的一般形式
• P72例3.2.2:考虑2006年中国内地城镇居民家 庭全年人均消费支出与人均可支配收入及其上 一年人均消费支出的关系
总体回归模型——一般采用的形式
• 总体回归模型:总体回归函数的随机表达形式
Y 0 1X1 2 X2 k X k
该模型表示Y可表现为对总体均值的波动。源自样本回归函数与样本回归模型
• 从一次抽样中获得的总体回归函数的近似,称为样 本回归函数(sample regression function)。
3. 理解以一元为基础,注意多元中出现的新概 念及其与一元的不同点。
本章内容
• 多元线性回归模型概述 • 多元线性回归模型的参数估计 • 多元线性回归模型的统计检验 • 多元线性回归模型的预测 • 可化为线性的非线性模型 • 受约束回归 • 注:本章矩阵表述部分不涉及
§3.1 多元线性回归模型概述 (Regression Analysis)
• 样本回归函数:
Yˆ ˆ0 ˆ1X1 ˆ2 X2
• 样本回归模型: Y ˆ0 ˆ1X1 ˆ2X2 e
总体回归函数
• 总体回归函数:描述在给定解释变量X条件下 被解释变量Y的条件均值。
E(Y | X1, X 2, X k ) 0 1X1 2 X 2 k X k
k为解释变量的数目(采用此说法)。 习惯上,把常数项看成为虚变量的系数,该虚 变量的样本观测值始终取1。 于是,模型中解释变量的数目为(k+1)。
• 多元模型(二元) • PRF-某类家庭人均消费支出与两个相关因素之
间的函数关系
• PRM-某家庭人均消费支出与两个相关因素之 间的相关关系-均值+波动
• SRF-PRF的估计 • SRM-PRM的估计
• 总体回归函数: E(Y | X1, X2 ) 0 1X1 2 X2
• 总体回归模型: Y 0 1X1 2 X 2
Yˆ ˆ0 ˆ1X1 ˆ2 X2 ˆk Xk
• 样本回归函数的随机形式,称为样本回归模型 (sample regression model)。
残差
Y ˆ0 ˆ1X1 ˆ2 X2 ˆk Xk e
多元线性回归模型的下标
下标示例:某班共30名同学,考察期末考试各同学 的计量成绩。 • 计量成绩=0.2*平时成绩+0.7*考试成绩+0.1*实 验成绩
值,抽取样本后它们的值就确定了。
i 表示对应于每组(Xi1, Xi2,…, Xik, Yi)的随机
误差项,是未知的。
• 如果给出一组样本观测值,则总体回归模型将 表述为
Yi 0 1Xi1 2 Xi2 k Xik i i=1,2…,n
• 样本回归函数将表述为
Yˆi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik i=1,2…,n
• 样本回归模型将表述为
Yi ˆ0 ˆ1Xi1 ˆ2 Xi2 ˆk Xik ei
i=1,2…,n
多元线性回归模型偏回归系数的含义
E(Y | X1, X 2, X k ) 0 1X1 2 X 2 k X k
j称为回归系数(regression coefficient),j(从1
Y 0.2X 1 0.7X 2 0.1X 3
甲的化学成绩=0.2*甲的平时成绩+0.7*甲的 考试成绩+0.1*甲的实验成绩
Y 1 0.2 X 11 0.7 X 12 0.1X 13
• 乙的计量成绩= 0.2*乙的平时成绩+0.7*乙的 考试成绩+0.1*乙的实验成绩
Y 2 0.2 X 21 0.7 X 22 0.1X 23
• 用一般形式表示即为:
Y i 0.2 X i1 0.7 X i2 0.1X i3
i=1,2,…,30
多元线性回归模型一般形式中的下标表述:
Yi 0 1X i1 2 X i2 k X ik i
i=1,2,…,n
Yi表示被解释变量的第i个观测值 Xij表示第j个解释变量的第i个观测值,在下标中
第三章 经典单方程计量经济学模型:多 元线性回归模型
Multiple Linear Regression Model
说明 1. “多元”是指线性回归模型中的解释变量有
多个(两个以上),指需要考虑所有这些变量 对被解释变量的影响。
2. 无论是模型的一般形式,还是参数估计及检 验等多元都是一元的推广。
• 多元模型(二元)
散点图说明:每个个别的家庭的消费支出都有差异, 即使收入相同。但平均来说,随着收入的增加,消费 支出也在线性增加。
3500
每 月 消 费 支 出
Y (元)
3000 2500 2000 1500 1000
500
0
500
1000
1500 2000 2500 3000 每月可支配收入X(元)
开始)也被称为偏回归(斜率)系数(partial regression coefficients)(与一元不同点)。
j表示在其他解释变量保持不变的情况下, Xj每变化1个单位时,Y的均值E(Y|…)的变化。
或者说j给出了Xj的单位变化对Y均值的
“直接”或“净”(不含其他变量)影响。 P72例3.2.2
3500
4000
• 总体回归函数: E(Y | X ) 0 1X
• 总体回归模型: Y E(Y | X ) 0 1X
•
样本回归函数:
Yˆ
E(Y |
X
)
ˆ0
ˆ1 X
• 样本回归模型:
Y
Yˆ
ˆ
E(Y
|
X
)
ˆ
ˆ0
ˆ1 X
e
• P72例3.2.2:考虑2006年中国内地城镇居民家 庭全年人均消费支出与人均可支配收入及其上 一年人均消费支出的关系
把把表示第几个观测值的数字放在了前面,表示 第几个变量的数字放在后面。(与一元的不同点)
• 的下标表示与它相乘的是第几个解释变量, 例如 j 对应Xj。
Yi 0 1X i1 2 X i2 k X ik i
抽取共n 组样本观测值(样本数据),则
(Xi1, Xi2,…, Xik, Yi) 表示一组具体的样本观测