细胞产物分析技术细胞产物分离方法

合集下载

细胞产物分析技术质谱分析详解演示文稿

细胞产物分析技术质谱分析详解演示文稿

大气压化学电离(atmospheric pressure chemical ionization, APCI)
在大气压下,化学电离反应的速率更大,电离效 率应更高。主要困难是将大气压力下产生的离子 转移到处于高真空(<10-6Torr)状态的质量分析器 中。现在常用的是电晕放电大气压电离。
快原子轰击(Fast atom bombardment, FAB)
基质辅助激 光解吸电离 方法
Wolfgang Paul
1989年诺贝 尔物理奖 离子阱技术
John Bennet Fenn 2002年诺贝 尔化学奖 电喷雾离子 化
基质辅助激光解吸/电 离飞行时间质谱仪
基质辅助激光解吸串 联飞行时间质谱仪
MALDI-TOF MS
MALDI-TOF-TOF MS
串联四极杆线性 离子阱质谱仪
动态平衡法(色谱进样):对一些组分较复杂的 混合物时,需将样品分离成一个个单一组分,再 进入质谱仪。最典型的就是气相或液相色谱通过 接口与质谱连接。
离子源
在离子源中样品被电离成离子,不同性质的样品可 能需要不同的电离方式。
电子轰击电离(electron impact, EI) 电子轰击电离使用具有一定能量的电子直接作用于 样品分子,使其电离。用钨或铼制作的灯丝在高真 空中发射出电子。灯丝与电离盒之间的电压称为电 离电压。对有机化合物通常选用70eV的电压。
压的固体
概述——用途
求准确的分子量 化学式的确定 推测未知物的结构 鉴定同分异构体 测定分子中Cl、Br等的原子数 ……
概述——质谱的发展史
1912年世界上第一台现代意义质谱仪在英国剑桥Cavendish实 验室出现
1918年世界上第一台实际意义质谱仪在美国芝加哥大学实验 室出现(扇型磁场MS)

细胞色素P450酶代谢产物的分离与鉴定

细胞色素P450酶代谢产物的分离与鉴定

细胞色素P450酶代谢产物的分离与鉴定
细胞色素P450酶是机体内重要的一类氧化酶,参与很多内源
性和外源性物质的代谢和解毒。

其主要作用是催化体内代谢物与
外界有害物质之间的化学反应,使这些物质在体内的水平得以控
制和调节。

然而,细胞色素P450酶在体内的代谢产物往往难以分
离和鉴定,这使得该领域的研究备受关注。

分离技术
细胞色素P450酶代谢产物的分离技术是研究该领域的重要方
法之一。

近年来,高效液相色谱(HPLC)技术在该领域中得到广
泛的应用。

该技术可以将复杂的混合液体分离出各自的分子成分,减小分析物在分离过程中的相互干扰,提高鉴定的准确性。

此外,毛细管电泳也是一种常用的分离技术,该技术通过电泳力的作用,将混合物分离成各自的组成部分。

鉴定技术
细胞色素P450酶代谢产物的鉴定技术也是该领域的重要研究
方向。

较为常见的鉴定方法有质谱分析、核磁共振(NMR)技术
等。

质谱分析技术是一种通过测量样品中化合物的质量分子比,
来对化学成分进行鉴定的方法。

该技术具有高度灵敏性和分辨率,能够分析非常广泛的分子量区间。

NMR技术是另一种常用的鉴定技术,它通过测量核磁共振信
号来对样品的成分进行鉴定。

该技术对于小分子的谱线特别清晰,可以对等体、环境等作出高度区分。

总结
细胞色素P450酶代谢产物的分离和鉴定是该领域中的一项重
要研究内容。

随着科学技术不断的发展,人们不断地开发出更高效、更快捷、更准确的方法来进行该领域的研究。

未来,我们也
期待更多优秀的研究成果的出现,以推动该领域的不断发展。

生物分离工程复习资料

生物分离工程复习资料

第一章绪论生物工程学:亦称生物技术,是指通过技术手段,利用生物体或生物过程生产有经济价值产品的学科。

研究领域:基因工程、细胞工程、微生物工程、酶工程。

生物分离工程:指从发酵液、酶反应液或动植物细胞培养液中分离、纯化生物产品的过程,因它处于整个生物产品生产过程的后端,又称为生物工程下游技术。

研究内容:研究目标产品及基质的性质;分离、纯化技术的选择。

直接产物:由发酵直接生产,分离过程由发酵罐流出物开始;间接产物:由发酵过程得到的细胞或酶,再经转化和修饰得到产品。

分离:指利用混合物中各组分在物理性质或化学性质上的差异,通过适当的装置和方法,使各组分分配至不同的空间区域或者在不同的时间依次分配至同一空间区域的过程。

生物分离纯化过程:指利用产物与杂质理化性质的不同,从发酵液中提取、分离、纯化产物的过程。

生物分离工程流程:1、发酵液的预处理:离心和过滤是最基本的单元操作,凝聚和絮凝可加速固液两相的分离。

2、产物的提取:主要是去除与目标产物性质有很大差异的杂质,使目标产物的纯度和浓度有较大程度的提高。

吸附,萃取,沉淀。

3、产物的精制:用于去除与目标产物有类似化学功能和物理性质的杂质。

首选色谱分离技术,涉及色谱技术有层析、离子交换、亲和色谱、吸附色谱等。

4、成品的加工处理:产品的加工方式是由产物的最终用途和要求所决定的,浓缩、结晶和干燥。

生物分离纯化工艺过程的选择依据:1生产成本要低;2工艺步骤要少;3操作程序要合理;4适应产品的技术规格;5生产要有规模;6产品具有稳定性;7环保和安全要求;8生产方式。

生物分离过程的特点:一、体系特殊:1、原料液的特点:原料液体系复杂;存在与目标分子结构相近的分子及异构体;产物浓度很低;产物活性易降低或失活。

2、对产物的要求:目标物具有活性;产物高纯度;副作用小。

二、工艺流程特殊:1、工艺设计:操作条件特殊;多种高选择技术结合使用;优化设计分离过程和各个单元操作;要求设计工艺流程具有一定的适用范围。

第八章产物的分离和纯化

第八章产物的分离和纯化

6/4/2024
17
3. 凝聚与絮凝
采用凝聚和絮凝技术能有效改变细胞、细 胞碎片及溶解大分子物质的分散状态,使其聚 结成较大的颗粒,便于提高过滤速率。除此之外, 还能有效地除去杂蛋白质和固体杂质,提高滤 液质量。因此,凝聚和絮凝是目前工业上最常用 的预处理方法之一。常用于菌体细小而且粘度 大的发酵液的预处理。
6/4/2024
22
• 工业上常用的过滤分离设备有板框压 滤机、膜过滤机和离心沉降分离机等。
• 这些过滤装置各有其优缺点,根据不 同产品的具体实际加以选择。
6/4/2024
23
6/4/2024
24
6 其它方法
• 1. 高 价 无 机 离 子 的 去 除 ( Ca2+ 、 Mg2+ 、 Fe2+等)
6/4溶/202液4 称为萃取液。
52
• 工业上萃取的操作包括三个步骤:
• 一是混合
• 将料液和萃取剂充分混合形成乳浊液, 让溶质自料液转入萃取剂中,此过程通常 在搅拌罐中进行,也可以在很高速度的管 道内混合。
例如:在枯草芽孢杆菌发酵液中,加入氯化
钙和磷酸氢二钠,两者生成庞大的凝胶,把蛋白 质、菌体及其他不溶性粒子吸附并包裹在其中而 除去,从而可加快过滤速率。
6/4/2024
28
③变性法
蛋白质由有规则的排列到无规则结构的变化过程成为变性。变 性的蛋白溶解性小。
使蛋白质变性的方法有:加热,大幅度调节pH,加酒精等有机 溶剂或表面活性剂等 。
6/4/2024
2
• 2)、培养液是复杂的多相分散体系:

是多相体系,一般情况下,分散介质是水。
分散在其中的固体和胶体物质组成复杂,不仅

细胞代谢产物提取物中分解产物的鉴定

细胞代谢产物提取物中分解产物的鉴定

细胞代谢产物提取物中分解产物的鉴定摘要:分析细胞代谢产物的方法大多数都需要从细胞中提取代谢产物。

这些方法关注的是由于提取不完整造成对代谢水平的估计不足。

然而,通过这些提取方法的比较,似乎提取一个特定的代谢产物最好的方法是使产量达到最大。

在以不同浓度甲醇水溶液提取大肠杆菌的实验中:通过液相色谱-串联质谱法对提取结果进行分析,我们观察到使用含水量≥50%的溶液进行提取得到的核苷和碱基的产量比使用含水量≤20%的溶液进行提取要高。

然而,在提取物中添加标记了同位素的核苷进行示踪显示,核苷和碱基的高产量是由于核苷和核苷酸在水分充足条件下分解导致的,而不是因为采用了良好的提取方法。

同位素示踪标记法是检测细胞代谢物提取物中分解产物普遍采用的一个方法。

甲醇水溶液提取大肠杆菌实验中,低温和高浓度的甲醇最大限度的降低了代谢物的分解。

关键词:代谢组学;新陈代谢;提取;细菌;取样;稳定性;液相色谱-质谱/质谱法;三重四极杆;小分子细胞代谢网络在生物学,将吸收的营养物质转化成能源,生物大分子亚基和信号分子中起着基础性作用。

由于这些过程的重要性,人们对尽可能完整的理解细胞代谢活动有很大的兴趣。

为此,在过去5年研究中,在并行文献中看到试图对细胞代谢网络的许多组成成分的研究显著加快,普遍关注的是通过改变营养状况造成细胞环境的扰动而导致代谢产物浓度的定量变化。

代谢产物分析遇到的一个长期挑战是从生物样品中提取感兴趣的化合物。

尽管避免了需要通过直接在居住环境范围内对感兴趣的分析物进行提取来衡量,这种可能性是很吸引人的(例如,采用核磁共振[NMR]),绝大多数的代谢产物分析仍继续通过提取完成。

提取物的使用在样品的浓缩和分离中具有重要优势。

此外,使用质谱(MS)有利于分析,质谱对于从复杂的混合物中鉴定和定量低含量的组成成分来说是一项独特的强大技术。

在努力使基于细胞的代谢更加定量和系统的一部分研究中,已经有越来越多的研究来确定适合广泛的代谢产物谱的提取条件,同时也了解这些提取过程的局限性。

微生物分离纯化的方法

微生物分离纯化的方法

微生物分离纯化的方法微生物分离纯化的方法是一种将复杂微生物混合物分离为纯化菌株的过程。

这是研究微生物多样性,发现新的微生物物种,以及从微生物中获得新的代谢产物等研究领域的关键步骤之一、以下是几种常见的微生物分离纯化的方法:1.常规分离法:常规分离方法是一种最常用的微生物分离技术。

该方法基于微生物菌落形态和特性的观察和比较,通过选取和分离菌落来获取纯化的微生物。

常见的常规分离方法包括移植法、罐培养法和环扩散法等。

2.筛选培养基:筛选培养基是通过优化微生物的培养条件,选择能够选择性生长其中一特定微生物的培养基。

这种方法常用于分离特定类型的微生物,例如革兰氏阳性菌、细菌等。

常见的筛选培养基包括含有特定抗生素、特定营养物质或特定pH值的培养基。

3.稀释分离法:稀释分离法是一种通过连续稀释样品来使微生物单个分离的方法。

首先,将样品连续稀释,然后在培养基上接种稀释液,并进行培养。

稀释分离法适用于稀释样品中含有少量微生物的情况,可以帮助分离纯化微生物。

4.毛细管扩散法:这是一种通过毛细管将微生物分离到培养基上的方法。

首先,将培养基注入玻璃毛细管中,并将其将培养基表面用火焰加热,使其与空气接触。

然后,将毛细管插入样品中,微生物通过毛细管扩散到培养基中。

这种方法使用较少的培养基和试剂,能够直接从样品中获得纯化的微生物。

5.细胞分离技术:细胞分离技术是通过分离微生物细胞来纯化微生物的方法。

这种方法包括细胞离心、滤膜分离和凝胶过滤等。

通过这些方法,可以将微生物细胞从细胞混合物中分离出来,从而获得纯化的微生物。

以上是几种常见的微生物分离纯化的方法。

根据具体的实验目的和样品特点,可以选择合适的方法进行微生物的分离纯化。

这些方法在微生物研究和应用中起着至关重要的作用,有助于深入了解微生物的多样性和功能。

生物发酵过程与产物的分离纯化技术

生物发酵过程与产物的分离纯化技术

生物发酵过程与产物的分离纯化技术生物发酵过程是一种将有机物质转化为有用产物的生化过程。

人类在发现这种过程后,就不断地开展了相关的研究和开发工作。

经过多年对生物发酵过程的探索和研究,现在已经开发出了许多种适合于大规模生产的工业微生物育种方式。

在生物发酵过程中,需要将微生物和发酵基质混合加热,随着时间的推移,微生物会不断地将基质转化成有用产物,并释放出一些废物。

因此在发酵过程中,需要对产物和废物进行分离和纯化,以便于产物可以进一步加工,转化成最终的成品。

首先,生物发酵过程中产物的分离应该始于发酵液中产物的初步分离。

在此步骤中,可以通过使用压滤法,离心等方法,将微生物和一些浮游颗粒物从发酵液中分离出来。

这种分离技术称为粗分离技术。

具体来说,用离心机从混合液中剥离细胞,并将有机物和小颗粒等混合物从浆液中清除。

在此过程中,发酵液处于高速离心状态,微生物和固体物质分离出来。

这种分离方法不仅可以分离出微生物,还可以分离出细菌产生的蛋白质、多肽等产物。

不过,由于离心法不能分离大分子物质,所以需要针对不同的产物而采用不同的分离方法。

其次是微生物转化产物的特征决定了分离技术的选择。

微生物分离和纯化技术包括固定化细胞技术、离子交换技术、凝胶层析技术、透析技术和滤膜技术等方法。

其中,离子交换技术被广泛应用于蛋白质分离和纯化。

这种方法依靠离子可逆吸附或占据离子交换树脂的硫酸根、氯酸根等残基,从而实现原料分离的目的。

凝胶层析技术是一种在空心管中使用高分子纯化材料的技术。

其优点是分离效率高,纯化效果好。

与离子交换技术相比,凝胶层析技术可实现大规模分离和工艺优化,并且不需要前处理。

而透析法和滤膜法主要应用于分离小分子量的有机物,如葡萄糖、氨和微量元素。

透析法和滤膜法基本上都要求使用某种特殊的膜来进行操作,因此无法针对不同的产物采取相应的分离方法。

此外,现代分离技术还包括反渗透法、气体扩散、电弧压滤以及超临界流体萃取等技术。

其中,反渗透法是一种通过压力差来将水和溶液分离的技术。

生化分离技术 细胞破碎分离

生化分离技术  细胞破碎分离
生物分离过程的一般流程
细胞-胞内产物 细胞-胞内产物 路线一B 包含体 溶解(加盐酸胍、脲 加盐酸胍、脲 ) 复性 细胞破碎 碎片分离 碎片分离
原料液 原料液
细胞分离 ( 细胞分离 ( 离心,过滤 离心,过滤 )) 路线一 路线二 清液-胞外产物
路线一A
粗分离( 盐析、萃取、超过滤等 盐析、萃取、超过滤等 ) 纯化( 层析、电泳 层析、电泳 ) 脱盐( 凝胶过滤、超过滤 凝胶过滤、超过滤 )


通过改变微生物生长环境(温度、pH、缓 冲液),可以诱发产生自溶酶或激发产生其 它的自溶酶,以达到自溶目的。
缺点是:易引起所需蛋白质的变性,自溶后 细胞悬浮液粘度增大,过滤速度下降。

(2)物理法
渗透压冲击法 冻结-融化法 干燥法
①渗透压冲击法
将细胞放在高渗透压的溶液中(如一定 浓度的甘油或蔗糖溶液),由于渗透压的作 用,细胞内水分便向外渗出,细胞发生收缩, 当达到平衡后,将介质快速稀释,或将细胞
之间的互相剪切、碰撞,使细胞破碎,
释放出内含物。
WSK卧式高效全能珠磨机
②影响珠磨法破碎的因素

破碎作用公式:
ln[1/(1-R)]=Kt


R — 破碎率;K— 一级反应速度常数; t—时间。 K与搅拌转速、细胞悬浮液浓度和循环 速度、玻璃小珠装量和珠体直径,以及 温度等相关。
②影响珠磨法破碎的因素
某些植物细胞,当生长停止后,在细胞质 和初生细胞壁之间形成了次生细胞壁。次 生壁一般较厚 (4μm以上 ) ,常有三层组成。
n
在次生壁中,纤维素和半纤维素含量比初 生壁增加很多,纤维素的微纤丝排列得更 紧密和有规则,而且存在木质素的沉积。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在分离毒芹总碱中的毒芹碱和羟基毒芹碱时,以 及分离石榴皮中的伪石榴皮碱、异石榴皮碱和甲 基异石榴皮碱时,均可利用常压或减压分馏方法 进行初步分离,然后再精制纯化。
经典分离方法——分子蒸馏技术
一种特殊的蒸馏分离技术 在通常的蒸馏(精馏)过程中,存在着两股分子
流向:一股是被蒸液体的气化,由液相流向气相 的蒸气分子流;另一股是蒸气返回至液相的分子 流。当气液两相达到平衡时,表观上蒸气分子不 再从液面逸出。假若采用某种措施,使蒸气分子 不再返回(或减少返回)液相,就会大大提高分 离效率。
经典分离方法——液相微萃取法
影响因素
萃取溶剂的影响
萃取温度的影响
盐效应和pH 值的影响 搅拌速度的影响
应用
环境分析:水样、土壤、大气
药物分析:血样、尿样、唾液、乳汁
食品分析:饮用水、酒、饮料、蔬菜
经典分离方法——蒸馏和分馏法
利用提取成分具有不同沸点的性质,可使用蒸馏 和分馏法对植物成分进行分离。
经典分离方法——液相微萃取法
连续流动液相微萃取法(CFME)是在直接液相 微萃取方法上改进而来。先用泵将被萃取的水溶 液充满PEEK管以及萃取单元的玻璃容器中,再将 所需体积的有机溶剂用微量注射器从玻璃容器的 注射口注射到样品水溶液中,并在针尖形成液滴 悬挂,在蠕动泵的作用下,不停流动的水溶液不 断与有机液滴接触,分析物不断被富集到微滴中, 萃取完成后将有机液滴吸回,直接进样分析。
经典分离方法——液-液萃取法
被萃取组分在萃取相中的溶解度要大于被萃取 相。
一般一相为水相,一相为有机相。在水相中增 加盐离子浓度可以降低有机相在水中的溶解度。
萃取应采用少量多次原则。 从水相中萃取有机物质时,单级萃取时一般选
择该物质的最佳溶剂。多级萃取溶剂选择一般 从弱极性→强极性。 密度:石油醚、乙醚、乙酸乙酯、丁醇、苯<水 <二氯甲烷、氯仿
经典分离方法
液相微萃取法
经典分离方法——液相微萃取法
中空纤维液相微萃取(HF-LPME) 以多孔的中空纤 维为微萃取溶剂(接收相)的载体,将有机萃取溶剂 固定到中空纤维壁内的微孔里,通过有机溶剂在纤 维壁孔中形成的液膜进行传质,在多孔的中空纤维 腔中进行微萃取。根据接受相与微孔中溶剂的异同, HF-LPME 分为两相和三相液相微萃取。 优点:避免了单滴液相微萃取溶剂容易损失、移位、 无法提高搅拌速度等缺点;具有突出的样品净化功 能,扩大了分析底物范围,可用于复杂基质样品的 直接分析;具有较高的富集倍数和灵敏度。
经典分离方法——液相微萃取法
与液液萃取法比较 适应了绿色分析技术发展的需要(液液萃取消耗
mL 级有机溶剂,液相微萃取仅需μL 级) 富集倍数大,萃取效率高(富集倍数达1000 倍),
可使分析方法的灵敏度提高两个数量级以上 便于与具有微量进样方法的特定仪器联用。 样品溶液用量少(l~10mL 左右)
经典分离方法——分子蒸馏技术
Bronsted和Hevesy在1922年设计了世界上第一套 真正的实验用分子蒸馏装置,利用该装置进行水 银同位素分离的研究
经典分离方法——液相微萃取法
直接液相微萃取:萃取溶剂液滴直接浸渍于样品中, 对分离富集洁净样品中的低浓度分析物效果较好, 但对含固体颗粒或含有能乳化有机溶剂的复杂基质 样品的萃取效果较差。
顶空液相微萃取:萃取溶剂液滴与样品基质不直接 接触,适用于复杂基质中微量挥发性或半挥发性成 分的萃取。
经典分离方法——液-液萃取法
用一种强极性溶剂直接提取后再用极性不同的溶剂 与强极性溶剂的提取液进行液/液两相梯度萃取
经典分离方法——液相微萃取法
根据液滴状态的不同可分为单滴液相微萃取( SDLPME) 和中空纤维液相微萃取(HF-LPME) ;
根据悬挂液滴位置的不同可以分为直接液相微萃取 (D-LPME) 和顶空液相微萃取(HS-LPME) ;
经典分离方法——液相微萃取法
经典分离方法——液相微萃取法
举例 测定乳制品中的三聚氰胺:将中空纤维 切成2.3~2.5cm 小段,放入有机溶剂磷酸三丁 酯(TBP) 中超声10s,使中空纤维壁孔充满TBP, 再将其套在微量进样器(已经吸入25μL 接受相) 针尖上,接受相推入中空纤维,两端用热钳子 封住,使中空纤维保持约2 cm 长度。放入给出 相内,在恒温磁搅拌仪上以一定速率搅拌,萃 取一定时间后取出,剪开封口,用进样针抽回 接收相,用5μL 进行高效液相色谱测定。
根据操作方式的不同可以分为静态液相微萃取( SLPME) 、动态液相微萃取(D-LPME) 和连续流动 ห้องสมุดไป่ตู้相微萃取(CFME) ;
根据作用相的多少可分为两相液相微萃取和三相液 相微萃取(LLLME )
经典分离方法——液相微萃取法
单滴液相微萃取( SD-LPME)是将萃取用的有机溶 剂液滴悬挂在微量进样器的针端。同液-液萃取一 样,单滴液相微萃取也是基于分析物在不同相中分 配系数不同而达到萃取的目的。有机相液滴体积一 般为1-5微升,远远小于样品体积,所以可以达到 对待测物的富集。
经典分离方法——液相微萃取法
经典分离方法——液相微萃取法
静态模式萃取:将有机溶剂液滴悬挂于微量进样器 的针头上,萃取一定时间后将溶剂抽回针头中,直 接进样分析。操作简单,但易受溶剂的溶解或挥发 损失以及脱落的影响,且富集效果相对较差。
动态模式萃取:用微量进样器抽取一定量溶剂,置 于萃取位置后抽取空气或水样进入针头,停留一定 时间,萃取被吸入微进样器的试样中的目标分析物, 而后推出空气或水样但不推出溶剂,如此反复数次, 最后将有机溶剂相直接进样分析。动态萃取通过变 溶剂微滴为溶剂薄膜,大大增加了萃取的表面积, 使萃取效率更高。
样品的预处理 细胞产物的提取 细胞产物的分离 产物的分析鉴定
经典分离方法 色谱分离法
紫外可见光谱 红外光谱
核磁共振谱 质谱
经典分离方法——液-液萃取法
利用组分在两个互不相溶的液相中的溶解度差异而 将其从一个液相转移到另一个液相的分离过程称为 液液萃取,也叫溶剂萃取,简称萃取。
待分离的一相称为被萃相,萃取后成为萃余相,用 做分离剂的相 称为萃取相。
相关文档
最新文档