讲义-第二章《方程与不等式》

合集下载

2024年中考数学提高复习讲义:方程与不等式

2024年中考数学提高复习讲义:方程与不等式

中考专题复习之方程与不等式知识梳理1.一元二次方程的一般形式ax²+bx+c=0(a,b,c是常数,a≠0).在解一元二次方程时,应按方程的特点选择方法,主要方法包括:①直接开平方法;②配方法;③公式法;④因式分解法.一元二次方程的求根公式是:x=−b±√b2−4ac2a(b2−4ac≥0). (注意符号问题)2.解分式方程的基本思想将分式方程转化为整式方程,转化的方法有两种:①去分母法;②换元法.3.根的判别式一元二次方程ax²+bx+c=0(a≠0)的根的判别式为Δ=b²−4ac.当△>0时,方程有两个不相等的实数根,即x1=−b+√b2−4ac2a ,x2=−b−√b2−4ac2a;当△=0时,方程有两个相等的实数根x1=x2=−b2a;当△<0时,方程没有实数根.4.一元二次方程两根之间的关系若一元二次方程ax²+bx+c=0(a≠0)的两个实数根为x₁,x₂,则x1+x2=−ba ,x1x2=ca,(注意两根的和是ba的相反数).以。

x₁,x₂为根的一元二次方程是x²−(x₁+x₂)x+x₁x₂=0.5.不等式的解法解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变.6.一元一次不等式组的解集由两个一元一次不等式组成的一元一次不等式组的解集的四种情况见下表:典型例题例 1不等式3x-5≥5x-11的正整数解的个数为( ).A.0B.1C.2D.3解析解不等式3x-5≥5x-11,得x≤3,则其正整数的解有1,2,3,所以正整数解的个数为 3 个,选 D.例 2若|x2−9|+(y+4)2=0,则x+y的值为( ).x+3A.-1或-7B. -7C. -1D.7解析因为|x2−9|+(y+4)2=0,x+3所以x+3≠0 且|x²−9|+(y+4)²=0,所以x≠-3 且|x²−9|+(y+4)²=0.又因为|x²−9|+(y+4)²=0且|x²−9|≥0,(y+4)²≥0,所以|x²−9|=0且(y+4)²=0,所以x=±3,y=-4.因为x≠-3,所以x=3,所以x+y=3+(-4)=-1.故选C.例3某电器商家,计划购进电视机、洗衣机、冰箱总数为40台,而现在商家打算总共用 12万元,各种家电价格如下表所示.(1)若总共用的资金不超过 12万,买进的洗衣机和冰箱数量相同,电视机不超过洗衣机数量的三倍,请问商家有几种购买方式?(2)针对上述3 种电器,商家推出“满1000元送50元家电消费券一张,多买多送”,在(1)的条件下,若三种电器都售完,商家预计最多送出多少张消费券?解析 (1)设购买冰箱的数量是x 台,则购进洗衣机的数量是x 台,电视机的数量为(40-2x)台,根据总共用的资金不超过12万和电视机不超过洗衣机数量的三倍列不等式组,即解得:8≤x≤10. 因为x 是整数, 所以x 可以为8,9,10. 有三种方案如下.方案一:冰箱8台,洗衣机8台,电视机24台. 方案二:冰箱9台,洗衣机 9台,电视机22台. 方案三:冰箱10台,洗衣机10台,电视机20台.(2)题中要求最多送出的消费券,满1000 元送50元消费券,多买多送,所以要根据售价总额来求出最大售价,即可求出最多消费券.设售价总额为y 元,由题意得,y=5480x+2280x+2600(40-2x)=2560x+104000 所以当x=10时,y 最大=2560×10+104000=129600, 故送出的消费券的张数为:129600÷1000=129.6≈130(张). 则商家预计最多送出消费券130张. 例 4某项工程,如果由甲、乙两队承包, 225天完成,需付180000元;由乙、丙两队承包, 334天完成,需付150000元;由甲、丙两队承包,2 67天完成,需付160000元.现在工程由一队单独承包,在保证一周完成的前提下,哪个队承包费最少?解析 设甲、乙、丙单独承包各需x ,y ,z 天完成, { 1x +19=51219+1z =415,1x +1x =720解得 {x =4y =6z =10.再设甲、乙、丙单独工作一天,各需付u ,v ,w 元, { 125(α+v )=80000154(ν+w )=15000,207(cos +α)=16000解得 {u =45500v =29500,w =10500因为丙队不能在一周内完成, 所以丙队舍去.因为甲队单独承包的费用:4 45500×4=182000)(元); 乙队单独承包的费用: 29500×6=177000(元). 又因为 177000<182000, 所以由乙队承包费用最少. 双基训练1.若x=6是关于x 的方程3x+4m-30=0的解,则m 的值为( ). A. 0 B.1 C. 2 D. 32.一元一次方程3x−12−5x+16=0解为( ).A.0B. -1C. 1D.2 3.已知代数式2x−35与代数式 35x −25的和为5,则x 的值为( ).A.4B.5C.6D.7 4.解方程2x−13−5x−32=3时,去分母后,正确的结果是( ).A.4x-1-15x+3=18B.4x-2-15x-3=18C.4x-2-15x-9=18D.4x-2-15x+9=185.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( ).A. 100(1+x)=121B.100(1-x)=121C.100(1+x )²=121D.100(1−x )²=121 6.方程 x²−5x +5=0的根为( ). A.5+√5 B.−5+√52C.5±√52 D.−5−√527.已知m ,n 是关于x 的一元二次方程 x²+mx +n =0的两个相等的实数根,且满足 1m +1n =3,则 m 的值为( ).A. -1B. 43或--1理C. 43D.−438.方程 x²−6x +5=0的两个根分别为.x ₁,x ₂,则 x 2x 1+x1x 2的值为( ).A. 265B.−265C. 365D. 659. 已知 {x =2y =−1是方程组 {mx −y =3x −ny =6的解,则m 和n 的值分别为( ).A.1,4B.4,1C. 2.-1D. -2,110.一元二次方程 x²−5x +4=0根的情况为( ).A.有一个根B.有两个相等的实根C.有两个不相等的实根D. 无解11.已知实数a≠b,且满足( (a +1)²=3−3(a +1),(b +1)²=3−3(b +1),则 ba +ab 的值为( ). A.23 B. -23 C. -2 D. -1312.用配方法解方程 4x²−12x −1=0,配方后的方程为( ). A.(2x −3)²=0 B.(2x +3)²=0 C.(2x −3)²=10 D.(2x +3)²=1013.若关于x 的一元二次方程 kx²−9x +6=0有两个不相等的实数根,则实数 k 的取值范围为( ). A. k≠0 B.k <278C. k≠0 且 k <278D.k >27814.已知(x−8)(x+3)|x|−3的值为0,则x 的值为( ).A.±3B. -3C.8D. -3 或815.毕业班同学合影拍照,已知冲一张底片需要0.8元,洗一张相片需要0.35 元,在每位同学得到一张照片,共用一张底片的前提下,平均每人分摊的钱不超过0.5元,那么参加合影的同学人数为( ).A.至多6人B.至少6人C. 至多5人D. 至少5人 16.不等式组 {5x −1>3(x +1)12x −1≤7−32x的解集是( ). A. x>2 B. x≤4 C. x<2或x≥4 D.2<x≤417.关于x 的分式方程 nx+1−4x 2−1=1无解,则n 的取值范围为 . 18.不等式 2+x+13>x +x+36的解是 .19.当k 取何值时,( (k +1)x²−4kx +3=0分别有两个不相等实数解?20.某公司做电饭锅促销活动,按照进价提高35%,然后“打九折,外送30元”的广告,每个电饭锅最后仍然获利200元,则每台电饭锅进价是多少元?能力提升21.设二元一次方程4x+3y-12=0,5x+3y--18=0,x+y+k=0有公共解,则k 的值是( ). A. -3 B. -2 C. -1 D. 0 22.方程 x+1x 2−x −13x =x+53x−3去分母后的结果为( ). A.x²+3x −4=0 B.x²−5x −2=0 C.x²+3x −2=0 D.x²−5x +4=023.如图所示,已知抛物线 y₁=−x²+4x 和直线 y₂=2x.我们约定:当x 任取一值时,x 对应的函数值分别为y ₁,y ₂,若. y₁≠y₂,取 y ₁,y ₂中的较大值记为N ;若 y₁=y₂,记 M =y₁=y₂.下列判断:①当x>2时, N =y₂; ②当x<0时,x 值越大,N 值越大; ③使得 N 大于 4 的x 值不存在; ④若N=2,则x=1.其中正确的判断有( ). A.1个 B.2个 C.3个 D. 4 个24. 关于方程 ax²−(3a +1)x +2(a +1)=0有两个不相等的实根x ₁,x ₂,.且有 x₁−x₁x₂ +x₂=1−a,则a 的值为( ).A. 1B. -1C. 1 或-1D.225.已知方程 23x −3k =5(x −k )+1的解为负数,则k 的取值范围为 .26.已知 5xᵃ⁺²ᵇ⁻⁵−4y³ᵃ⁻ᵇ⁻³=9是二元一次方程,那么a+3b= .27.若方程组 {x +y =93x −5y =11,则3(x+y)-(3x-5y)的值是 .28.解不等式方程组: {7x −3y =204x +3y =24.29.某物体从 P 点运动到Q 点所用时间为7s ,其运动速度V(m/s)关于时间t(s)的函数关系如图所示.某学习小组经过研究发现:该物体前进3s 运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前t(3<t≤7)s 运动路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题: (1) 当3<t≤7时,用含 t 的式子表示V.(2)分别求物体在0≤t≤3和3<t≤7时,运动路程S(m)关于时间t(s)的函数关系式; 并求该物体从 P 点运动到Q 点中总路程的 710时所用的时间.30.某食品加工厂准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现在主要原料有可可粉410克,核桃粉520 克.计划利用两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13 克,需核桃粉 4 克;加工一块益智核桃巧克力需可可粉5克,需核桃粉 14 克.加工一块原味核桃巧克力的成本是 1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味巧克力x 块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为y 元,求y 与x 的函数关系式,并说明哪种加工方案使成本最低.总成本最低是多少元?拓展资源31.已知关于x ,y 的方程组 {x +3y =4−ax −y =3a,其中-3≤a≤1,给出下面结论:①{x =5y =−1是方程组的解;②当a=-2时,x ,y 的值互为相反数;③当a=-1时,方程组的解也是方程x+y=4-a的解;④若x≤1,则1≤y≤4.其中正确的是( ).A. ①②B. ②③C.②③④D. ①③④32.已知关于x 的方程 kx²+(1−k )x −1=0,下列说法正确的是( ). A.当k=0时,方程无解B. 当 k =1时,方程有一个实数解C. 当 k =−11时,方程有两个相等的实数解D.当 k ≠0时,方程总有两个不相等的实数解33.若关于 t 的不等式组 {t −a ≥02t +1≤4恰有三个整数解,则关于x 的一次函数 y =14x −a 的图像与反比例函数 y=3a+2x的图像的公共点的个数是 .34.若x,y,z 为整数,且满足不等式 {4x ≥z ≥3yy +z ≥4,则x 的最小值为 .35.解方程组: {|x +y|=43|x|+2|y|=101-5 DCCDC 6-10 CCAAC 11-16 ACCCBD17. -6<n<2 18.x <11519.k >3+√738或 k <3−√73820.约为 1070元21-24 BABC 225. k< 1226.8 27.1628.{x =4y =8329.(1) V=2t-4; (2)S ={2t (0≤t ≤3)2t 2−4t(3<t ≤7),所用时间为 6 秒30.(1)有三种方案.方案一:原味核桃巧克力18块,益智核桃巧克力32块; 方案二:原味核桃巧克力19块,益智核桃巧克力31块; 方案三:原味核桃巧克力20块,益智核桃巧克力30块.(2)当原味核桃巧克力20块,益智核桃巧克力30块时,总成本最低为84元.31. 解方程组 {x +3y =4−a x −y =3a ,得 {x =1+2ay =1−a因为-3≤a≤1,所以-5≤x≤3,0≤y≤4.circle1{x =5y =−1不符合-5≤x≤3,0≤y≤4,结论错误.②当a=-2时,x=1+2a=-3,y=1-a=3,x,y 的值为互为相反数,结论正确. ③当a=-1时,x+y=2+a=3,4-a=3,方程x+y=4-a 两边相等,结论正确.④当x≤1时,1+2a≤1,解得a≤0,故当x≤1时,且-3≤a≤1,所以-3≤a≤0,所以1≤1-a≤4,所以1≤y≤4,结论正确.选 C. 32. C33. 解 {t −a ≥02t +1≤4,得 a ≤t ≤32.因为不等式组恰好有3个整数解, 所以-2<a≤-1.求交点,联立方程组 {y =14x −a y =3a+2x 得 14x 2−ax −3a −2=0.Δ=a²+3a +2=(a +1)(a +2)因为-2<a≤-1,所以a+1≤0,a+2>0,所以△=(a+1)(a+2)≤0,所以交点的个数为0或1. 34.原不等式组 {4x ≥z ≥3yy +z ≥4可以化为 {4x ≥z circle1z −3y ≥0circle2,y +z ≥4circle3解②③得 {4x ≥zz ≥3y ≥1将z≥3代入①得: x ≥34,因此x 的最小值为3/4.35.(1) 若xy≥0时,原方程组为: {|x|+|y|=43|x|+2|y|=10,得|x|=2,|y|=1,所以x=2,y=1.(2) 若xy<0时,原方程组为: {|x|−|y|=43|x|+2|y|=10或 {|x|−|y|=−43|x|+2|y|=10,解得 {|x|=185|y|=25舍) {|x|=2|y|=6所以 {x =2y =−6,{x =−2y =6。

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

中考数学 精讲篇 考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

则可列方程组为
( A)
A.yx++2231xy==5500,B.xy--1223yx==5500,C.2xx++23yy==5500,D.2xx--23yy==5500,
10.(2021·成都第 26 题 8 分)为改善城市人居环境,《成都市生活垃圾 管理条例》(以下简称《条例》)于 2021 年 3 月 1 日起正式施行.某区域 原来每天需要处理生活垃圾 920 吨,刚好被 12 个 A 型和 10 个 B 型预处 置点位进行初筛、压缩等处理.已知一个 A 型点位比一个 B 型点位每天 多处理 7 吨生活垃圾. (1)求每个 B 型点位每天处理生活垃圾的吨数;
x=1,则 a+m 的值为
( C)
A.9 B.8 C.5 D.4
x=1 6.(2021·凉山州第 14 题 4 分)已知y=3,是方程 ax+y=2 的解,则 a 的值为__--11__. 7.(2020·泸州第 14 题 3 分)若 xa+1y3 与12x4y3 是同类项,则 a 的值是__33__.
3.(RJ 七下 P111 复习题 T7 改编)用 1 块 A 型钢板可制成 4 件甲种产品和 1 件乙种产品.用 1 块 B 型钢板可制成 3 件甲种产品和 2 件乙种产品;要 生产甲种产品 37 件,乙种产品 18 件,则恰好需用 A,B 两种型号的钢板 共 1 111 块.
4.(RJ 七下 P106 习题 T3 改编)一个两位数,十位数字比个位数字大 3, 若将十位数字和个位数交换位置,所得的新两位数比原两位数的13多 15, 则这个两位数是 6 633.
∵w 随 m 的增大而减小,∴费用越少,m 越大. 故方案③费用最少.
重难点 1:从实际问题中抽象一次方程(组)
我国古代数学名著《孙子算经》中记载:“今有木,不知长短.引绳

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

第二章方程与不等式

第二章方程与不等式

第二章知识系统网络:一元一次分式方程一元一次方程二元一次方程组(与实际结合)方程与方程组根的判别式根与系数的关系一元二次方程二次三项式的因式分解一元二次分式方程不等式及其性质不等式的解集不等式与不等式组一元一次不等式的解法一元一次不等式组的解法及其应用(与实际相联系)重要知识点与难点:(一)方程1.一元二次方程根的判别式:△> 0 方程有_____________实数根△= 0 方程有_____________实数根△< 0 方程 _____________实数根2.一元二次方程根与系数的关系:若一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1、x2,则x1+x2= ,x1x2= 。

(二)不等式不等式的性质(1)不等式的两边都加上(或减去)同一个整式或常数,不等号的方向不变。

(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

易错点:1.解分式方程时忘了验根2.应用根的判别式的时候忽略二次项的系数不为03.不等式的两边都乘以(或除以)同一个负数,改变不等号的方向时易出错4.解系数是字母的不等式时,忽略字母的符号方程与方程组【命题趋势】一元一次方程和一元一次方程组是初中有关方程的基础,必考。

一元二次方程主要以填空,选择,解答和综合题(尤其与实际生活热点联系的题目)来考察一元二次方程的解法。

分式方程只考察能化简为一元一次分式方程的分式方程(即无论题目看上去多复杂,一定能通过化简化为一元一次分式方程),但分式方程是比较容易在化简过程中出错的,要仔细! 方程和方程组在中考中分值比例在14分~20分左右,主要考察概念与解法,形式比较固定。

【例题】1.(2009年四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .2 2.(2009年上海市)用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=3.(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 (A )18%)201(400160=++x x (B )18%)201(160400160=+-+x x (C )18%20160400160=-+x x (D )18%)201(160400400=+-+xx 4.(2009年杭州市)已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为_____________.5.(2009贺州)解分式方程:163104245--+=--x x x x6.(2009年福州)整理一批图书,如果由一个人单独做要花60小时。

高中数学第二章一元二次函数方程和不等式2.1第1课时实数大小的比较与不等式课件新人教A版必修第一册

高中数学第二章一元二次函数方程和不等式2.1第1课时实数大小的比较与不等式课件新人教A版必修第一册
20 ≤ + ≤ 30,
则ቐ28 + 58 ≤ 1 800,
, ∈ ∗ .
探索点二 比较数(式)的大小
【例 2】 若 a=2x2+1,b=x2+2x,c=-x-3,试比较 a,b,c 的
大小.
【解题模型示范】
【跟踪训练】
3.变式练将本例中条件变为 a=(x+5)(x+7),b=(x+6)2,
(2)抓关键词,找到不等关系;
(3)用不等式(组)表示不等关系.
(4)利用不等式(组)表示不等关系时,思维要严密、规范,要
注意不等关系中的等号是否能够取到.
【跟踪训练】
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的
4.5 倍还要高.设太阳表面温度为 t ℃,那么 t 应满足的不等
式是 4.5t<28 000 .
表示它们之间的 不等关系 .含有这些不等号的式子叫做不等式.
2.重要不等式
一般地,∀a,b∈R,有 a2+b2≥ 2ab ,当且仅当 a=b 时,等号成立.
【思考】
根据不等式中文字语言与数学符号之间的关系完成
下表中的内容.
文字语言 大于
数学符号
至多

>
小于
至少
<

文字语言 大于等于 不少于小于等于 不多于
216 m2,靠墙的一边长为 x m,其中的不等关系可用不
等式(组)如何表示?
解:矩形菜园靠墙的一边长为 x

即(14- )m,根据已知,得

-
m,则另一边长为

< ≤ ,

(- ) ≥ .

第二章 一元二次函数、方程和不等式(单元解读课件)

第二章 一元二次函数、方程和不等式(单元解读课件)

2.利用不等式的性质证明不等式注意事项 1利用不等式的性质及其推论可以证明一些不等式.解决此类问题 一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中 灵活准确地加以应用. 2应用不等式的性质进行推导时,应注意紧扣不等式的性质成立 的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.
能说明基本不等式的几何解释;能借助二次函数图象,说明二次函数与一元 二次方程、不等式的联系;能根据二次函数二次项系数和一元二次方程的根 画出二次函数图象,能够借助函数图象,求解一元二次不等式.
能将比较两个代数式大小的问题转化为两个代数式的差与0比大小的问题, 能将解方程 ax2 +bx+c=0 (a≠0) 的问题转化为研究函数 y ax2 bx c ,当 自变量为何值时,函数值 y=0的问题,能将解不等式 ax2 bx c>0 的问题 转化为研究函数 y ax2 bx c ,当自变量在什么范围时,函数值 y>0的 问题
人教A版2019必修第一册
第二章 一元二次函数、 方程和不等式单元解读
一:本章知识结构图
二: 单元目标
1.能够理解不等式的概念,掌握不等式的性质. 2.能够掌握基本不等式,能用基本不等式解决简单的最大值或最小值问题 3.经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现 实意义 4.能够借助二次函数的图象,了解一元二次不等式与相应函数、方程的联系. 5.能够借助二次函数求解一元二次不等式,并能用集合表示一元二次不等式的 解集 6.能够从函数的观点认识方程和不等式,感悟数学知识之间的关联,认识函数 的重要性.体会数学的整体性. 7.能够在本章的学习中,重点提升逻辑推理、数学运算和数学建模素养
6.利用基本不等式求最值 利用基本不等式求最值的关键是获得满足基本不等式成立条件,即 “一正、二定、三相等”.解题时应对照已知和欲求的式子运用适当的 “拆项、添项、配凑、变形”等方法创设应用基本不等式的条件.具体 可归纳为三句话:若不正,用其相反数,改变不等号方向;若不定应 凑出定和或定积;

第二章 一元二次函数、方程和不等式 考点与题型解析(解析版)

第二章一元二次函数、方程和不等式考点与题型解析一、本章知识体系二、考点与题型解读考点一本章考点方法梳理1.不等式的核心性质(1)a>b⇔b<a;(2)a>b,b>c⇒a>c;(3)a>b⇔a+c>b+c;(4)a>b,c>0⇒ac>bc;(5)a>b,c<0⇒ac<bc;(6)a>b,c>d⇒a+c>b+d;(7)a>b>0,c>d>0⇒ac>bd;(8)a>b>0,n∈N,n≥2⇒an>bn.2.不等式的性质是不等式理论的基础,在应用不等式性质进行论证时,要注意每个性质的条件,不要盲目乱用或错用性质,特别是乘法性质容易出错,要在记忆基础上加强训练,提高应用的灵活性.3.一元二次不等式的解法是根据一元二次方程的根与二次函数图像求解的,在求解含参数的一元二次不等式时,要注意相应方程根的情况的讨论.4.二元一次不等式的平面区域的确定,首先是画出直线(有虚实之分),然后用特殊点,一般选择原点去验证,以帮助选择直线的哪一侧.5.简单线性规划问题的解法称为图解法,针对应用题时,一定要正确地找到目标函数和线性约束条件,另外还应注意最优解问题以及移动直线时在y 轴上截距的正负与所求线性目标函数的最值之间的关系.当目标函数的几何意义为截距的正数倍时,截距最大时目标函数取最大值;而几何意义为截距的负数倍时,截距最大时目标函数取最小值.6.应用基本不等式求函数最值时,有三个条件:一是a 、b 为正;二是a +b 与a ·b 有一个为定值;三是等号要取到.这三个条件缺一不可,为了达到使用基本不等式的目的,常常需要对函数式(代数式)进行通分、分解等变形,构造和为定值或积为定值的模型.考点二 基本不等式及应用基本不等式:ab ≤a +b2(a>0,b>0)是每年高考的热点,主要考查命题判断、不等式证明以及求最值问题,特别是求最值问题往往与实际问题相结合,同时在基本不等式的使用条件上设置一些问题,实际上是考查学生恒等变形的技巧,另外,基本不等式的和与积的转化在高考中也经常出现.【例1】设a >0,b >0,2a +b =1,则1a +2b 的最小值为________.解析 ∵a >0,b >0,且2a +b =1,∴1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=4+b a +4ab≥4+2b a ·4ab=8, 当且仅当⎩⎪⎨⎪⎧2a +b =1,b a =4a b ,即⎩⎪⎨⎪⎧a =14,b =12时等号成立.∴1a +2b 的最小值为8.答案 8【变式训练1】已知关于x 的不等式()224300x ax a a -+<>的解集为()12,x x ,则1212ax x x x ++的最小值是______.【答案】433考点三 一元二次不等式的解法对于一元二次不等式的求解,要善于联想两个方面的问题:①相应的二次函数图象及与x 轴的交点,②相应的一元二次方程的实根;反之对于二次函数(二次方程)的问题的求解,也要善于联想相应的一元二次不等式的解与相应的一元二次方程的实根.【例2】若不等式组⎩⎨⎧x 2-x -2>0,2x 2+2k +5x +5k <0,的整数解只有-2,求k 的取值范围.解:由x 2-x -2>0,得x <-1或x >2. 对于方程2x 2+(2k +5)x +5k =0有两个实数解 x 1=-52,x 2=-k .(1)当-52>-k ,即k >52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-k <x <-52,显然-2∉⎝ ⎛⎭⎪⎫-k ,-52.(2)当-k =-52时,不等式2x 2+(2k +5)x +5k <0的解集为∅.(3)当-52<-k ,即k <52时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-52<x <-k .∴不等式组的解集由⎩⎪⎨⎪⎧x <-1,-52<x <-k 或⎩⎪⎨⎪⎧x >2,-52<x <-k 确定.∵原不等式组整数解只有-2, ∴-2<-k ≤3,故所求k 的范围是-3≤k <2.【变式训练2】二次函数2y ax bx c =++的图象如图所示,反比例函数ay x=与正比例函数()y b c x =+在同一坐标系中的大致图象可能是()A .B .C .D .【答案】B考点四 不等式的恒成立问题不等式中的恒成立问题,既是学习中的难点,又是高考中的热点,在求解不等式中的恒成立问题时,要注意转化,利用数形结合的方法,构造不等式或不等式组进行探讨.常见的解决恒成立问题的方法有:(1)判别式法;(2)数形结合法;(3)分离参数法;(4)分类讨论法.【例3】不等式(m 2-2m -3)x 2-(m -3)x -1<0对一切实数x 恒成立,求m 的取值范围. 解:当m 2-2m -3=0时,m =-1或3. 而m =3时,-1<0符合题意,所以m =3; 当m 2-2m -3≠0时,应有⎩⎨⎧m 2-2m -3<0-m +32+4m 2-2m -3<0⇒⎩⎪⎨⎪⎧-1<m <3-15<m <3⇒-15<m <3.综上可得,m的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪-15<m ≤3. 【变式训练3】已知0,0x y >>且191x y+=,求使不等式x y m +≥恒成立的实数m 的取值范围. 【答案】16<m考点五 线性规划问题1.高考中线性规划主要考查平面区域的表示和图解法的具体应用,命题形式以选择题、填空题为主,命题模式是以线性规划为载体,考查区域的划分、区域的面积,涉及区域的最值问题、决策问题、整点问题、参数的取值范围问题等.2.简单线性规划问题的图解法就是利用数形结合的思想,根据线性目标函数的几何意义,求线性目标函数在线性约束条件下的最优解,一般步骤如下: ①作图:画出约束条件(不等式组)所确定的平面区域; ②找初始直线:列目标函数,找初始直线l 0;③平移:将直线l 0平行移动,以确定最优解所对应的点的位置;④求值:解有关的方程组,求出最优解,再代入目标函数,求出目标函数的最值.【例4】设关于x ,y 的不等式组⎩⎨⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ) A .⎝ ⎛⎭⎪⎫-∞,43B .⎝ ⎛⎭⎪⎫-∞,13C .⎝ ⎛⎭⎪⎫-∞,-23D .⎝ ⎛⎭⎪⎫-∞,-53【解析】当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2, 因此m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 选C【变式训练4】若变量x ,y 满足约束条件11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,12z x y =+的最大值为m ,212y z x -=+的最小值为n ,则m n +=( ) A .2-B .2C .1D .1-【答案】C考点六 均值不等式的应用均值不等式通常用来求最值问题:一般用a +b ≥2ab (a ≥0,b ≥0)求“定积求和,和最小”问题,用ab ≤⎝⎛⎭⎪⎫a +b 22求“定和求积、积最大”问题.一定要注意适用的范围和条件:“一正、二定、三相等”.特别是利用拆项、添项、配凑、分离变量、减少变元等方法,构造定值条件的方法,及对等号能否成立的验证.若等号不能取到,则应用函数单调性来求最值,还要注意运用均值不等式解决实际问题. 【例5】已知0<x <2,求函数y =x (8-3x )的最大值.解:∵0<x <2,∴0<3x <6,∴8-3x >0,∴y =x (8-3x )=13·3x ·(8-3x )≤13·⎝ ⎛⎭⎪⎫3x +8-3x 22=163, 当且仅当3x =8-3x ,即x =43时,取等号.∴当x =43时,y =x (8-3x )取得最大值,最大值为163.【变式训练5】已知函数()218f x ax bx =++,()0f x >的解集为()3,2-.(1)求()f x 的解析式;(2)当1x >-时,求()211f x y x -=+的最大值.【答案】(1)()23318f x x x =--+;(2)max 3y =-.。

高考总复习数学精品课件 第二章 一元二次函数、方程和不等式 第三节 二次函数与一元二次方程、不等式

(-a,a).
2.研究不等式ax2+bx+c>0(<0,≥0,≤0)的恒成立问题时,注意对a=0这一情
形的讨论.
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( √ )
(2)若方程ax2+bx+c=0没有实数根,则不等式ax2+bx+c>0的解集为R.( × )
()
()() ≥ 0,
()
(2)
≥0⇔
()
() ≠ 0;
()
()
()-()
(3)
>m(m≠0)⇔
-m>0⇔
>0⇔[f(x)-mg(x)]g(x)>0;
()
()
()
()
()
()-()
[()-()]() ≥ 0,
(4)
的实数根
x1,x2(x1<x2)
ax2+bx+c>0(a>0) {x|x<x ,或x>x }
1
2
的解集
ax2+bx+c<0(a>0)
的解集
{x|x1<x<x2}
Δ=0
Δ<0
有两个相等的实数
根x1=x2= ≠

b
2a


2
没有实数根
R

微点拨1.简单分式不等式的解法
()
(1)
>0⇔f(x)g(x)>0;
考点一
一元二次不等式的解法(多考向探究)

第二章一元二次函数、方程和不等式


<
������������.故该结论错误.
课堂篇 探究学习
探究一
探究二
探究三 思维辨析 随堂演练
课堂篇 探究学习
反思感悟 1.解决这类问题时,通常有两种方法:一是直接利用不 等式的性质,进行推理,看根据条件能否推出相应的不等式;二是采 用取特殊值的方法,判断所给的不等式是否成立,尤其是在选择题 中经常采用这种办法.
一二三四
课前篇 自主预习
3.做一做
若x为实数,则x2-1与2x-5的大小关系是
.
解析:∵(x2-1)-(2x-5)=x2-2x+4=(x-1)2+3>0,∴x2-1>2x-5.
答案:x2-1>2x-5
一二三四
课前篇 自主预习
三、重要不等式 1.∀a,b∈R,a2+b2与2ab大小有何关系? 提示:因为a2+b2-2ab=(a-b)2≥0恒成立,所以a2+b2≥2ab. 2.填空 ∀a,b∈R,a2+b2≥2ab,当且仅当a=b时,等号成立.
(4)由1������
>
1������,可知1������

1 ������
=
������������-������������>0.因为
a>b,所以
b-a<0,于是
ab<0.
又因为 a>b,所以 a>0,b<0.故该结论正确.
(5)依题意取
a=-2,b=-1,则������������
=
1 2
,
������������=2,显然������������
2.1 等式性质与不等式性质
-1-

高中数学第二章一元二次函数方程和不等式2.2基本不等式第1课时基本不等式课件新人教A版必修第一册


6.若 a,b 都是正数,则1+ba1+4ba的最小值为(
)
A.7 B.8 C.9 D.10
答案 C
解析 因为 a,b 都是正数,所以1+ba1+4ba=5+ba+4ba≥5+2
b 4a a·b
=9,当且仅当 b=2a 时取等号.
7.已知 x>0,y>0,且 x+y=8,则(1+x)(1+y)的最大值为( ) A.16 B.25 C.9 D.36
8.若 a>b>0,则下列不等式一定成立的是( )
A.a-b>1b-1a B.ca2<cb2
2ab C. ab>a+b
D.3aa++3bb>ab
答案 C
解析 逐一考查所给的选项:当 a=2,b=13时,a-b=53,1b-1a=52,不 满足 a-b>1b-1a,A 错误;当 c=0 时,ca2=cb2=0,不满足ca2<cb2,B 错误;
x+4x=--x+-4x≤-2
-x·-4x=-4,C 错误,故选 D.
知识点二 直接利用基本不等式求最值 5.设 x>0,y>0,且 x+y=18,则 xy 的最大值为( ) A.80 B.77 C.81 D.82
答案 C 解析 因为 x>0,y>0,所以x+2 y≥ xy,即 xy≤x+2 y2=81,当且仅当 x=y=9 时,等号成立,所以 xy 的最大值为 81.
3x·1x=3-2 3,当且仅当 3x=1x,
4.设 x>0,则 x+2x+2 1-32的最小值为(
)
A.0
1 B.2
C.1
3 D.2
答案 解析
A 因为 x>0,所以 x+12>0,所以 x+2x+2 1-32=x+12+x+1 12-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章方程与不等式
★ 2.1 一元二次方程
定义:只含有1个未知数,且未知数的最高次数是 2的整式方程。

2 整式 单项式:数或字母的乘积,如 4,a, 4a , 3????2
多项式:若干个单项式的和或差 如4a+2c, a-5b
' ??
分式:形如方的式子,且A, B 为整式,B 中有字母。

无理式:带有广且广下含有字母的式子
3.解一元二次方程ax 2
+bx+c=0(a 丰0)的常用方法: (1)配方法:二次项系数化为 1 ?移向(把常数项移到方程右边)?配方(方程的两边各加上一次项系数 一半的平方),把方程化成(x+m ) 2=n 的形式?用直接开平方的方法求解。

6. 解题时要理解“且”和“或”的关系,且是取交集,表示都得满足,或是取并集,表示都 可以满足。

例如:x-3 v 0或x+4W 0的解集是?
7. 解含有绝对值的不等式的思路: 把含有绝对值的不等式转化为不含绝对值的不等式。

在解
含有绝对值的不等式时,常用数轴来表示其解集。

8. 一元二次不等式(一般形式 ax 2+bx+c > 0或ax 2+bx+c > 0, a * 0)的解法:一元二次不等 式经过配方再开方,变成含有绝对值的不等式,最后转化成一元一次不等式(组)
,从而求 出解集。

当 m > 0 时,X < m? |x| < m ,即-m < x < m
X 2> m? |x| > m 即 x > m 或 x < -m
☆你能分清不等式与不等式组的解集到底取并集还是取交集吗?
1. 2. 衔接: 有理式 代数式 (2)求根公式法:??=
-??±V ??2- 4???? 2 ,— 2 注意条件厶=b-4ac >0时,方程有2个不相等的实数根,△ =b-4ac=0 时,方程有2个相等的实数根,△ 2?? =6-4ac v 0时,方程无实数根。

(3)因式分解法或直接开平方法: 适用于缺少一次项或常数项的一元二次方程。

女口:
X 2=9X , 4 x 2=5 等 4.注意
会丢根。

★ 2.2不等式
1. (复习)任意两个实数 a,b 具有的基本性质:
a-b > 0? a > b a-b=0 ? a=b
2. 比较两个实数或代数式的大小的方法:通常用做差比较法。

方法是:把要比较的两个实数 (或代数式)做差,然后进行化简,或配方,或因式分解, 直到
能判断实数或代数式的符号为止,最后根据结果的符号来判断大小。

元二次方程的实数根或者有 2个,或者没有。

例如 x 2
=2x ,不能把 x 约去,否则 a-b v 0? a v b a > b? a+c > b+c (或 a-c > b-c ) 不等式的两边同时加上或减去同一个整式,不等号的方向不变。

(2) a > b , 、?? ??
c >0? ac >bc (或??>??)
不等式的两边同时乘以或除以同一个正数,不等号的方向不变 ?? ?? (3) a > b , c v 0? ac v bc (或??v ??) 不等式的两边同时乘以或除以同一个负数,不等号的方向改变
4.解一元一次不等式组的解集是求他们各自解的交集!遵循的口诀是:
5.表示不等式的解集常用 2种方法:
集合表示:性质描述 区间表示:开区间,闭区间及半开半闭区间
大大取较大
小小取较小 大小
交叉中间找 大大
小小无处找
例题:1.解不等式|2x-3| V 1
2.解不等式|2x-3| > 1
3. 解不等式组2x-3 > 1
2x-3 L V-1
注:
不等式组的解集等于各不等式的解集的交集,因为解集需要同时满足不等式组的每一项。

不等式的解集需要满足不等式的性质:|x| w m,即-m W x w m (取交集)
|x| > m 即x > m或x w -m (取并集)
Welcome !!! 欢迎您的下载,
资料仅供参考!。

相关文档
最新文档