21.3-实际问题与一元二次方程(第1课时)

合集下载

九年级数学: 21.3实际问题与一元二次方程(1)

九年级数学: 21.3实际问题与一元二次方程(1)

21.3实际问题与一元二次方程(1)1.鸡瘟是一种传播速度很强的传染病,一轮传染为一天时间,红发养鸡场于某日发现一例,两天后发现共有169只鸡患有这种病.若每例病鸡传染健康鸡的只数均相同,则每只病鸡传染健康鸡的只数为( )A.10只B.11只C.12只D.13只2.某种植物的主干长出a个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为_____.3.某生物实验室需培育一群有益菌.现有60个活体样本,经过两轮培植后,总和达24 000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌. (1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?4.在一次商品交易会上,参加交易会的每两家公司之间都要签订一份合同,会议结束后统计共签订了78份合同,问有多少家公司出席了这次交易会?5.一个两位数的十位数字比个位数字大2,把这个两位数的个位数字与十位数字互换后平方,所得的数值比原来的两位数大138,求原来的两位数.6.有人利用手机发短信,获得信息的人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信一个人要向几个人发送短信?参考答案1.C2.1+a+a23.解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,根据题意,得60(1+x)2=24 000.解得x1=19,x2=-21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)经过三轮培植后,得60(1+19)3=60×203=480 000(个).答:经过三轮培植后共有480 000个有益菌.4.解:设有x家公司出席了这次交易会,根据题意,得x(x-1)=78.解这个方程,得x1=13,x2=-12(舍去).答:有13家公司出席了这次交易会.5.解:设原来的两位数的个位数字为x,则十位数字为(x+2).根据题意,得(10x+x+2)2=10(x+2)+x+138.解得x1=-(舍去),x2=1.答:原来的两位数为31.6.解:设要向x个人发送短信.根据题意,得 x(x+1)=90,解得x1=9,x2=-10(舍去).答:一个人要向9个人发送短信. 2 111 14。

21.3实际问题与一元二次方程第1课时课件

21.3实际问题与一元二次方程第1课时课件
5000(1-x) 2=3000
解方程,得: x1≈0.225,x2≈1.775
根据问题的实际意义,甲种药品成本的年平均下降率 约为22.5%
设乙种药品的下降率为y 列方程 6000 ( 1-y )2 = 3600 解方程,得
y1≈0.225,y2≈-1.775
乙种药品成本的 年平均下降率是 多少?请比较两 种药品成本的年 平均下降率.
第一轮的传染源有 1 人,有 人被传染,共有 x+1 人患流感?
第二轮的传染源有 x+1人,有 x(x+1)人被传染,共有 x+1 +x(x+1)
人患流感?
第三轮的传染源有 x+1 +x(x+1) 人,有〔 x+1 +x(x+1) 〕x 人被传染, 共有 x+1 +x(x+1) +〔 x+1 +x(x+1) 〕x 人患流感?
x
归纳小结
你能说说上面所研究的“传播问题”的基本特征 吗?解决此类问题的关键步骤是什么?
“传播问题”的基本特征是:以相同速度逐轮传播.
解决此类问题的关键步骤是:明确每轮传播中的传 染源个数,以及这一轮被传染的总数.
尝试一
某种植物的主干长出若干数目的支干,每个支干又长出同样数目 的小分支,主干、支干和小分支的总数是91,求每个支干长出 多少小分支?
2000㎏﹙全球人均目标碳排放量﹚,则小明家未来两年人
均碳排放量平均每年须降低的百分率是

【解析】设小明家未来两年人均碳排放量平均每年须降低
的百分率为x,根据题意可列出方程3125(1-x)2=2000,解
得=1.8(不合题意舍去),x=0.2=20% .

九年级数学上册21一元二次方程21.3实际问题与一元二次方程第一课时增长率与单循环赛类问题

九年级数学上册21一元二次方程21.3实际问题与一元二次方程第一课时增长率与单循环赛类问题
第10页
11.一个容器中盛满12 L纯药液,倒出纯药液后,用水加满,再倒 出等量液体,再用水加满,此时容器中药液与水之比为1∶3,问每 次倒出液体多少升.
第11页
12.(济宁)某地年为做好“精准扶贫”,投入资金1 280万元用于异 地安置,并规划投入资金逐年增加,年在年基础上增加投 入资金1 600万元. (1)从年到年,该地投入异地安置资金年平均增加率为多少?
【解】 设今年该地有a户享受到优先搬迁租房奖励, 依据题意,得1 000×8×400+(a-1 000)×5×400≥5 000 000, 解得a≥1 900, 答:今年该地最少有1 900户享受到优先搬迁租房奖励.
第8页
(2)若该县教育经费投入还将保持相同年平均增加率,请你预算 年该县投入教育经费多少万元. 【解】 因为年该县投入教育经费为8 640万元,且增加率为20%, 所以预算年该县投入教育经费为:y=8 640×(1+20%)=10 368(万元),
答:预算年该县投入教育经费10 368万元.
第9页

ቤተ መጻሕፍቲ ባይዱ
第7页
*8.某省农作物秸秆资源巨大,但合理利用量十分有限,年利 用率只有30%,大部分秸秆被直接焚烧了,假定该省每年产出农作物秸秆总量不 变,且合理利用量增加率相同,要使年利用率提升到60%,则每年增 长率为____4_1_%_____.(取 2≈1.41) 9.为深入发展基础教育,自年以来,某县加大了教育经费投入,年该县投入教 育经费6 000万元.年投入教育经费8 640万元.假设该县这两年投入教育经费年平均 增加率相同. (1)求这两年该县投入教育经费年平均增加率; 【解】 设该县投入教育经费年平均增加率为x,依据题意得 :6 000(1+x)2=8 640, 解得:x1=0.2=20%,x2=-2.2(不合题意,舍去), 答:该县投入教育经费年平均增加率为20%.

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计一. 教材分析人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时,主要介绍了如何将实际问题转化为一元二次方程,并通过求解方程得到实际问题的解答。

本节课的内容是学生对一元二次方程知识的进一步拓展和应用,有助于提高学生的数学应用能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念、解法和应用。

但实际问题与一元二次方程的结合,对学生而言是一个新的挑战。

因此,在教学过程中,教师需要关注学生对实际问题转化为数学问题的能力的培养,引导学生学会用数学的眼光看待实际问题。

三. 教学目标1.理解实际问题与一元二次方程之间的关系,学会将实际问题转化为一元二次方程。

2.掌握一元二次方程的解法,并能应用于实际问题的解答。

3.培养学生的数学思维能力,提高学生的数学应用能力。

四. 教学重难点1.教学重点:实际问题转化为一元二次方程的方法。

2.教学难点:如何引导学生发现实际问题与一元二次方程之间的联系。

五. 教学方法1.案例分析法:通过分析具体案例,引导学生发现实际问题与一元二次方程之间的关系。

2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。

3.合作交流法:鼓励学生之间相互讨论、分享心得,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示实际问题与一元二次方程之间的关系。

2.案例素材:准备一些实际问题,作为教学案例。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考实际问题与数学问题之间的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师展示几个实际问题,让学生尝试将其转化为一元二次方程。

学生在课堂上进行讨论,分享自己的思路。

教师引导学生总结实际问题转化为一元二次方程的方法。

3.操练(10分钟)教师给出一些实际问题,学生独立将其转化为一元二次方程,并求解。

人教版九年级上册数学《21-3实际问题与一元二次方程第1课时传播问题》课件

人教版九年级上册数学《21-3实际问题与一元二次方程第1课时传播问题》课件

1、 爱国守法,明礼诚信,团结友善, 勤俭自强,敬业奉献。 2、 讲文明,懂礼仪。
3、 讲文明语,做文明事,当文明人。 4、 微笑是打开心锁的钥匙。 5、 文明礼仪,从我做起。 6、 不学礼,无以立。
活动2 探究新知
你若和班级所有 同学都握手,你需 握手多少次?
在某次聚会上,每两人都握了一次手,所有人共握手10次,求有多 少人参加这次聚会.
活动2 探究新知
设有x个人参加这次聚会, 思考: 1.则每个人与 ( x - 1 ) 人握手;
x x 1
2.全班共握手 2 次(用含有x的式子表示);
x x 1
活动2 探究新知
1.通过对上述问题的探究,你对类似的传播问题中的数量关系有新 的认识吗?
数量关系: 第一轮传播后的量=传播前的量× (1+传播速度) 第二轮传播后的量=第一轮传播后的量× (1+传播速度)=传 播前的量× (1+传播速度)2
2.解决这类传播问题有什么经验和方法? (1)审题,设元,列方程,解方程,检验,作答; (2)可利用表格梳理数量关系; (3)关注起始值、新增数量,找出变化规律.
5 活动5 完成《名师测控》《精英新课堂》附赠手册内容
6 活动6 课堂小结 1.列一元二次方程解决实际问题的一般步骤:
审清题意 设未知数 列方程
解方程
验根作答
2.传播问题
①传染源参与两轮传染 ②传染源只参与第一轮传染
作业布置
(1)教材P25复习题21第7题; (2)《名师测控》《精英新课 堂》对应练习.
教学重难点
重点
列一元二次方程解决传播、握手等问题.
难点
找出传播、握手等问题中的等量关系.
教学设计

21.3 实际问题与一元二次方程(1)

21.3 实际问题与一元二次方程(1)

新增: x(1+x)人
解:设每轮传染中平均一个人传染了x个人.
x+1+x(x+1)=121
x1=10, x2=-12(舍)
分享用了
什么方法
解该方程?
答:每轮传染中平均一个人传染了10个人
思考1:如果按照该传染速度,经过三轮后有多少人受患流感?
121× + = ( + ) =
人教版.九年级上册
21.3 实际问题与一元二次方程
(第1课时)
复习引入
1.回顾应用题的解题过程,解决应用题有那些基本的步骤?
审、设、列、解、验、答
2.审题时,怎样才算审清题意?有那些辅助审题的方法?


1.知已知量和未知量
设未
知数
2.知各个量之间的关系
3.知等量关系
列方程


1.列表法
2.画图
3.语言分析
多少个分支?
探究:利用收获的知识,分析问题并分享你的分析过程?
主干
1支
枝干
x支
小支干
总数:1+x+

解:每个枝干画出x个分支.
+ + =
x1=9, x2=-8(舍)
答:每个枝干画出9个分支
2.某种电脑病毒传播非常快,某学校有2台电脑被感染,经过
两轮感染后就会有50台电脑被感染,请你用学过的知识分析,
( + )
变式练习
变式1:若有3人患了流感,经过两轮传染后共有108人患了流感,
每轮传染中平均一个人传染了几个人?
解:设每轮传染中平均一个人传染了x个人.
( + ) =

21-3实际问题与一元二次方程(第1课时传播问题)-

21-3实际问题与一元二次方程(第1课时传播问题)-

病源A 第1轮
第2轮传染后患病人数_1_+_2_+_(_1_+_2_)_×_2_人.
第2轮
合作探究
人教版数学九年级上册
探究1 有一人患了流感,经过两轮传染后共有121人患了 流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x个人. 第1轮传染后患病人数_(_1_+_x_)_人;
第2轮传染后患病人数_[_1_+_x_+_(_1_+_x_)_x_]人. 规律发现
传染源 第1轮传染后 第2轮传染后的人数 人数 的人数 1 1+x=(1+x)1 1+x+x(1+x)=(1+x)2
合作探究
人教版数学九年级上册
探究1 有一人患了流感,经过两轮传染后共有121人患了 流感,每轮传染中平均一个人传染了几个人?
课堂小结
人教版数学九年级上册
传播问题公式1:1+x+x(1+x)=(1+x)2 传播问题公式2: 1+x+x2 列一元二次方程解应用题的步骤: 1.审:理解题意,明确未知量、已知量以及它们之间的数量关系. 2.设:根据题意,可直接设未知数,也可间接设未知数. 3.列:根据题中的等量关系,用含所设未知数的代数式表示其他 未知量,从而列出方程. 4.解:准确求出方程的解. 5.验:检验所求出的根是否符合方程和实际问题. 6.答:写出答案.
A.x+(x+1)x=36
B.1+x+(1+x)x=36
C.1+x+x2=36
D.x+(x+1)2=36
课堂检测

人教版九年级数学上册21.3 实际问题与一元二次方程-解决代数问题(第1课时)公开课优质教案

人教版九年级数学上册21.3 实际问题与一元二次方程-解决代数问题(第1课时)公开课优质教案

21.3实际问题与一元二次方程第1课时解决代数问题教学目标知识技能1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题,百分率问题中的数量关系列一元二次方程并求解,熟悉解题解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.数学思考与问题解决1.通过列一元二次方程解决实际问题,培养学生的“模型思想”和对数学的“应用意识”.2.在病毒的传播问题中要弄清每一轮的传播源(即每一轮的感染者也是下一轮的传播者),同时要注意与细胞分裂、电脑病毒的传播等问题的区别与联系;在百分率问题中,注意弄清数量与百分率的关系,会归纳总结出增长率(降低率)问题的等量关系.情境态度通过列方程解决实际问题,让学生体会方程是刻画现实世界的一个有效的数学模型,学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,感知数学与生活的密切联系,体会数学知识应用的价值,不断提高学生学习数学的兴趣.重点难点重点利用一元二次方程解决传播问题、百分率问题.难点如何理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题、百分率问题中的数量关系.教学设计活动1 创设情境一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?分析:设这个小组x人,那么每个人要送给除了他自己以外的人,共送张贺卡,由此可列方程: .提出问题:列一元二次方程解决实际问题的步骤有哪些?总结:(1)审:认真审题,分清题意,弄清已知量和未知量,寻找相等关系;(2)设:就是设未知数,分直接设未知数和间接设未知数,到底选择何种方式设未知数,要以有利于列出方程为准则;(3)列:就是根据题目中的已知量和未知量之间的关系列出方程;(4)解:就是求出所列方程的解;(5) 就是检验方程的解.首先检验计算是否正确,然后检验每个解是否复合问题的实际意义,再正确取舍;(6)答:就是对实际问题进行回答.提出问题:列一元二次方程解决实际问题的步骤与列一元一次方程解决实际问题的一般步骤有哪些相同点和不同点?活动2 探究新知例1 教材第19页探究2变化率问题.提出问题:(1)如何比较哪种药品成本的年平均下降率较大?(2)本题中应该如何设未知数?如何列方程?(3)讨论:在本题解方程的过程中,方程有两个解应该怎么办?(4)哪种药品成本的年平均下降率较大?哪种药品成本的年平均下降额较大?(5)讨论:经过计算,你能得出什么结论?成本下降额较大的药品,它的下降率一定也较大吗?应怎样全面地比较几个对象的变化状况?总结:变化率问题的公式若平均增长(或降低)的百分率为x ,增长(或降低)前的量是a ,增长(或降低)n 次后的量是b ,则它们的数量关系可表示为b x a n=±)1((其中增长取+,降低取-).例2 教材第19页探究1传播问题.提出问题:(1)本题中的已知量未知量分别是什么?(2)本题中我们设直接未知数还是间接未知数?(3)本题中的数量关系是什么?设每轮传染中平均一个人传染x 个人,那么①患流感的这个人在第一轮传染中传染了 人;第一轮传染后,共有 人患了流感.②在第二轮传染中传染源是 人,这些人中每一个人有传染了 人,第二轮传染后,共有 人患流感.(4)怎么列方程?(5)方程的解是多少?10和-12都是这个实际问题的解吗?(6)如果按这样的传染速度,三轮传染后有多少人患了流感?(7)请观察式子)1(1x x x +++与[])1(1)1(1x x x x x x x +++++++能不能化简?请在课后写出表示四轮传染、五轮传染后的患病人数的代数式,并猜测n 轮传染后的患病人数.活动3 练习巩固1.参加篮球联赛的每两队之间都进行了两次比赛(双双循环比赛),共要比赛90场,共有多少个队参加了比赛?2.某商场2014年的经营中,一月份的营业额为200万元.一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求平均每月营业额的增长率.3.某种细菌,一个细菌经过两轮繁殖后共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌? 活动4 课堂小结与作业布置课堂小结1. 列一元二次方程解决实际问题的一般步骤是哪些?2.列一元二次方程解决实际问题中,最关键是那一步?检验应该要注意什么?3.变化率问题和传播问题有什么规律?布置作业教材21-22页习题21.3第2—7题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

„„ x 主 干
支干
4.归纳小结
你能说说本节课所研究的“传播问题”的基本特征 吗?解决此类问题的关键步骤是什么?
“传播问题”的基本特征是:以相同速度逐轮传播. 解决此类问题的关键步骤是:明确每轮传播中的传 染源个数,以及这一轮被传染的总数.
1.分析平均变化率问题的数量关系
问题1 思考,并填空: 1.某农户的粮食产量年平均增长率为 x,第一年 60 000 (1+ x )kg, 的产量为 60 000 kg,第二年的产量为____________ 2 60 000 1+ x ( ) 第三年的产量为______________ kg.
1.分析“传播问题”的特征
列方程解应用题的一般步骤是什么? 第一步:审题,明确已知和未知; 第二步:找相等关系; 第三步:设元,列方程,并解方程; 第四步:检验根的合理性; 第五步:作答.
2.解决“传播问题”
探究 有一个人患了流感,经过两轮传染后共有 121个人患了流感,每轮传染中平均一个人传染了几个 人? 分析: (1)本题中的数量关系是什么? (2)每一轮的传染源和传染之后的患流感人数是 多少?
解:设每轮传染中平均一个人传染了 x 个人. 1+ x + x(1+ x) =121 x1 =______ ,x2 =______ 10 -12 (不合题意,舍去) . 答:平均一个人传染了 10 个人.
2.解决“传播问题”
(5)如果按照这样的传染速度,三轮传染后有多 少个人患流感?
121+121×10 = 1 331(人) (6)通过对这个问题的探究,你对类似的传播问 题中的数量关系有新的认识吗?
探究 有一个人患了流感,经过两轮传染后共有 121个人患了流感,每轮传染中平均一个人传染了几个 人?
分析: (3)如何理解经过两轮传染后共有 121 个人患了 流感?
传染源数、第一轮被传染数和第二轮被传染数的总 和是 121 个人.
2.解决“传播问题”
探究 有一个人患了流感,经过两轮传染后共有 121个人患了流感,每轮传染中平均一个人传染了几个 人? 分析: (4)如何利用已知数量关系列出方程,并解方程 得出结论?
2.解决实际问题
解:设甲种药品成本的年平均下降率为 x 一年后甲种药品成本为 5 000(1 - x ) 元, 2 两年后甲种药品成本为 5 000(1 - x) 元. 2 列方程得 5 000(1 - x) =3 000 . 解方程,得 x1≈0.225, x2≈1.775. 根据问题的实际意义,成本的年平均下降率应是小 于 1 的正数,应选 0.225.所以,甲种药品成本的年平均 下降率约为 22.5%.
3.巩固训练
某种植物的主干长出若干数目的支干,每个支干又 长出同样数目的小分支,主干,支干和小分支的总数是 91,每个支干长出多少个小分支? 解:设每个支干长 小 小 小 小 „„ 出 x 个小分支,则 分 分 分 分
„„ „„
1 + x + x· x = 91



支 x
x
x1 = 9, 支干 x2 = -10(不合题意,舍去) . 答:每个支干长出 9 个小分支.
2.解决实际问题
解:类似于甲种药品成本年平均下降率的计算,由
方程
2 6 000(1 - x) =3 600 解方程,得 x1≈0.225, x2≈1.775. 得乙种药品成本年平均下降率为 0.225. 两种药品成本的年平均下降率相等,成本下降额较 大的产品,其成本下降率不一定较大.成本下降额表示 绝对变化量,成本下降率表示相对变化量,两者兼顾才 能全面比较对象的变化状况.
2.解决“传播Βιβλιοθήκη 题”设每轮传染中平均一个人传染了 x 个人, 1 x (x + 1)人被传染. 第二轮的传染源有 x+1 人,有 x
被 传 染 人 被 传 染 人
„„
被 传 染 人
被 传 染 人
被 传 染 人
被 传 染 人
x
被传染人
x „„ x
开始传染源 被传染人
„„
……
„„
x
开始传染源
1
2.解决“传播问题”
1.分析平均变化率问题的数量关系
2.某糖厂 2012 年食糖产量为 a 吨,如果在以后两 年平均减产的百分率为 x,那么预计 2013 年的产量将是 2 _________ . a (1 - x) .2014 年的产量将是__________ a (1 - x)
1.分析平均变化率问题的数量关系
问题2 你能归纳上述两个问题中蕴含的共同等量 关系吗? 两年后:
2 变化后的量 = 变化前的量 × (1 ± x)
2.解决实际问题
问题3 两年前生产 1 t 甲种药品的成本是 5 000 元,生产 1 t 乙种药品的成本是 6 000 元,随着生产技 术的进步,现在生产 1 t 甲种药品的成本是 3 000 元, 生产 1 t 乙种药品的成本是 3 600 元,哪种药品成本的 年平均下降率较大? 甲种药品成本的年平均下降额为 (5 000 - 3 000 ) ÷ 2 = 1 000(元), 乙种药品成本的年平均下降额为 (6 000 - 3 600) ÷ 2 = 1 200(元).
4.归纳小结
问题4 你能概括一下“变化率问题”的基本特征 吗?解决“变化率问题”的关键步骤是什么?
“变化率问题”的基本特征:平均变化率保持不变; 解决“变化率问题”的关键步骤:找出变化前的数量、 变化后的数量,找出相应的等量关系.
5.布置作业
教科书复习题 21
第 7 题,第9题。
21.3 实际问题与一元二次方程 (第1课时)
课件说明
• 本节课以流感为问题背景,学习用一元二次方程解决 实际问题.
课件说明
• 学习目标: 1.能根据实际问题中的数量关系,正确列出一元二 次方程; 2.通过列方程解应用题体会一元二次方程在实际生 活中的应用,经历将实际问题转化为数学问题的 过程,提高数学应用意识. • 学习重点: 正确列出一元二次方程,解决有关的实际问题.
相关文档
最新文档