北理工激光原理周炳琨第四章作业答案

合集下载

1-习题集-激光原理

1-习题集-激光原理
2. 二氧化碳激光器输出光 10.6 m, 0 3mm ,用一 F 2cm 的凸透镜聚焦, 求欲得到 0 ' 20 m 及 2.5 m 时透镜应放在什么位置。
解:
f
F 20 2 0 2 2.67 m , 0 '2 ( F l )2 w2 ( z ) 2 2
z 2 2 1 ( )
(1)当 1 103 rad , 0.5145 m, z 3.8 105 km 时 光腰半径为 w0
2

3.3 104 m
一、课堂作业题答案
1. ( 习 题 2.11 ) 如 图 , 已 知 :
0 3mm, 10.6um, z1 2cm, d 50cm, f1 2cm, f 2 5cm 。求: 02 和 z2 ,并
叙述聚焦原理。
解答; 方法一。复杂方法
解答二:简单方法
聚焦原理
第一个透镜, 物距等于焦距, 具有最大焦点,
F 20 2
(1) ( F l )
0
2
f 2 1.885m2
l 1.39m
(2) ( F l )
F 20 2
0
2
f 2 568.9m2
l 23.87m
3. 如图所示,假设一高斯光束垂直入射到折射率为 n 的介质块上,试问: (1)在左图情况下,出射光束发散角为多大? (2)若将介质块的位置左移,使其左端面移至
一定成立,因此,只要满足 稳定条件。 类似的分析可以知道,
凸凹腔的稳定条件是: R1 0
R2 L ,且 R1 R2 L 。
双凹腔的稳定条件是: R1 L , R2 L

周炳坤激光原理课后习题答案

周炳坤激光原理课后习题答案

《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为 0γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。

2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。

解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。

由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即: TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。

激光原理第四章习题解答

激光原理第四章习题解答

《激光原理》习题解答作者:周炳琨等 国防工业出版社 第五版解答人:广东海洋大学理学院光电科学系 石友彬(2008年修正版)习题解答说明:习题解答参考蓝信鉅的激光技术、陈家璧版激光原理及应用等,在此对上述作者表示敬意! 本章习题是在我系前外聘教授郭振华习题解答基础上汇总而成,在此表示衷心感谢。

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136)ccυυνν-+=110υλν=由以上两个式子联立可得:0λυυλ⨯+-=C C代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。

证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。

在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。

以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫ ⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 120 显然,光强是以频率cυν⋅2为频率周期变化的。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

激光原理周炳琨参考书

激光原理周炳琨参考书

激光原理周炳琨参考书激光,这个词儿听起来是不是有点儿高大上?可别急,今天咱们就轻松聊聊这玩意儿。

激光其实是个光的魔法师,能把普通的光变成那种超专一、超亮的“光束”。

它的原理嘛,简单来说,就是通过激发一些分子,让它们发出光,然后再把这些光“聚集”起来。

想象一下,一个小小的派对,几个人在那儿随便聊,可一旦把大家都聚到一起,气氛立马热闹起来。

嘿,这就是激光的魅力。

要说激光的发明,那可是个传奇故事。

最早在上世纪五十年代,科学家们像是在拼图游戏一样,拼出了一种叫做“受激辐射”的现象。

听上去有点儿复杂,但其实就像是给光加了一剂兴奋剂,光一下子活跃了起来。

你能想象吗?光在那儿欢快地跳舞,咱们要做的就是把它引导到一个地方,结果就变成了激光。

这种光啊,不仅仅是亮,它的能量集中得很,可以穿透各种材料,简直是科技界的“超人”。

说到激光的应用,真是无处不在!从医疗到通信,再到工业制造,激光无所不在。

你去医院的时候,看到医生用激光做手术,嘿,那可是比刀子还精准,简直就像是给病人打了一针“精准疫苗”。

再比如,咱们平时用的光盘、激光打印机,都是激光在帮忙。

激光打印出来的东西,清晰得像是刚刚出炉的饼干,酥脆可口。

而在通信领域,激光更是个大功臣,帮助信息在光纤里飞速传递,快得让人眼花缭乱。

哦,对了,激光还有一种特别的“性格”,那就是单色性。

也就是说,激光光束几乎是单一颜色的,像一条直直的彩虹,不像普通光那样杂乱无章。

你想想,平时我们看到的灯光,有红有蓝有黄,但激光却能把这种“杂货铺”变成一条美丽的直线,简直就是视觉的享受。

这种独特的性格让激光在科学研究中大放异彩,比如在光谱分析中,它能够帮忙鉴别各种物质,简直就是科学家们的“金钥匙”。

激光的使用,真是有些“无所不能”的感觉。

不过,玩激光也得小心,别以为它光看起来帅气,实际上如果不小心照到眼睛上,那可是要出大事的。

就像开车一样,得遵守交通规则。

激光也有自己的“法规”,使用不当可不是什么好事。

激光原理习题与答案

激光原理习题与答案

解: 1
1

q( z) R( z) i 2 ( z)
q0

i


2 0

,q

q0

l
q(0) 0.45i,q(0.3) 0.45i 0.3
q() 0
21.已知一二氧化碳激光谐振腔由曲个凹面 镜构成,R1=l m,R2=2m,L=0.5m。如 何选样南斯束腰斑0的大小和位置才能使它 成为该谐振腔中的自再现光束?
第二章
8.今有一球面腔,Rl=1.5m,R 2=—1m,L =80cm。试证明该腔为稳定腔;求出它的等 价共焦腔的参数;在图上画出等价共焦腔的具 体位置。
13.某二氧化碳激光器,采用平—凹腔,凹面 镜的R=2m,胶长L=1m。试给出它所产生 的高斯光束的腰斑半径0的大小和位置、该 高斯束的f及0的大小。
束腰处R1右0.37mR2左边0.13m。半径为1.28mm
第四章习题解答
第五章习题
精品课件!
精品课件!
第七章习题
z解1 : (L
L(R2 L) R1) (L
R2 )

0.37
z2

(L
L(R1 L) R1) (L
R2 )

0.13
f

sqrt(
L(
R1 L)(R2 L)(R1
(L R1) (L R2
R2
)2ຫໍສະໝຸດ L))0.48
0
f 1.28 *103 m
解: g1g2 0.5 z1 0, z2 1, f 1
0
f 1.84 *103m
0 2
3.68 *103 rad f

激光原理周炳坤-第4章习题答案

激光原理周炳坤-第4章习题答案

第四章 电磁场和物质的共振相互作用习题(缺7)1.解:根据多普勒效应,有ccz z /1/10υυυυ-+=则ccc c cc z z z z /1/1/1/1/0υυλυυυυλ+-=+-== 当c z 1.0=υ时,nm 4.5721≈λ 当c z 4.0=υ时,nm 3.4142≈λ 当c z 8.0=υ时,nm 9.2103≈λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为:这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)v cνν'=+2(1)(1)(12)vv v c c cνννν'''=+=+≈+因而光屏P 上的总光场为:光强正比于电场振幅的平方,所以P 上面的光强为:它是t 的周期函数,单位时间内的变化次数为:由上式可得在dt 时间内屏上光强亮暗变化的次数为:(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S :式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

激光原理 第六版 周炳昆编著 第0-1章

激光原理 第六版 周炳昆编著 第0-1章
g B21h[n2 (z) n1 (z)]
۩ 小信号 dn2 dz dn1 dz 0 g g 0
۩大信号
dI ( z) I (z)

g(z)dz

I (z)

I0
exp(
g 0 z)
n2

n1

n20 n10 1 I Is
......饱. 和光强,解释增益饱和效应
g(I
3. 受激辐射
W21

(
dn21 dt
) st
1 n2
W21
B21
W21受激辐射跃迁几率; B21受激辐射跃迁Einstein系数
intensity(a.u.)
1-5
2.5
2.0
1.5
1.0
1.2 at %
0.1 at % 0.5
0.0
-10
0
10
20
30
40
Lifetime(ms)
三. Einstein系数A21、B12 、 B21的相互关系 热平衡状态标志:
波动性:频率、波矢、干涉、衍射、偏振等 粒子性:质量、能量、动量等
一. 光子的基本性质
۩能量:
h: Planck常数, :光波频率
۩质量:运动质量-静止质量-- 0 ,
Einstein质能关系 10-54Kg
۩动量:
p
mcn0

h
c
n0

h
2

2
n0

k
۩两种可能的独立偏振状态,对应于光波场的两个独立偏振方向。
( )2
c

c3
2 ( )2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档