哈工大 激光原理 第三、四章作业答案

合集下载

激光原理MOOC答案4

激光原理MOOC答案4

激光原理MOOC答案44.1-4.4测验已完成成绩:100.0分下列说法不正确的是:a、对于等距共焦腔,其共汪参数f=l/2,l为腔短b、基模高斯光束在横截面内的场振幅原产按高斯函数所叙述的规律从中心向外光滑地迫降c、高斯光束的等增益面就是以rz为半径的球面d、对于通常平衡球面腔,其共汪参数f=l/2,l为腔短正确答案:d我的答案:d得分:10.0分当透镜的焦距等同于高斯光束入射光在透镜表面上的波面曲率半径的几倍时,透镜对该高斯光束野扇重现转换?a、1/4b、4c、2d、1/2恰当答案:d我的答案:d罚球:10.0分后在何种条件下,可将高斯光束近似处理为几何光学情况?a、物高斯光束须弥座处于透镜物方焦面上b、物高斯光束须弥座处于透镜表面上c、物高斯光束须弥座与透镜距离足够多离正确答案:c我的答案:c得分:10.0分以下观点错误的就是:a、当透镜对高斯光束作自再现变换时,像方腰斑与物方腰斑关于透镜是对称的b、对任意稳定腔,只要适当选择高斯光束的束腰位置及腰斑大小,就可使它成为该腔的本征模c、当反射镜对高斯光束作自再现变换时,此反射镜与高斯光束的波前相匹配d、某腔内存在着高斯光束型的本征模,该腔不一定是稳定腔恰当答案:d我的答案:d罚球:10.0分后关于高斯光束的准直,下列说法正确的是:a、用单个透镜可以将高斯光束转换成平面波b、使用单个透镜,l=f时,像是方收敛角达至极小值c、在l=f的条件下,像是高斯光束的方向性只与f的大小有关d、一个取值的望远镜对高斯光束的电子束倍率仅与望远镜本身的结构参数有关正确答案:b我的答案:b得分:10.0分用单透镜对高斯光束著眼,以下观点不恰当的就是:a、用短焦距透镜可对高斯光束进行聚焦b、取l=0不一定有聚焦作用c、f小于f,任取l值可实现聚焦d、l取无穷大一定有聚焦作用恰当答案:b我的答案:b罚球:10.0分后下列说法不正确的是:a、高斯球面波的为丛藓科扭口藓曲率半径q相等于普通球面波的曲率半径rb、物高斯光束须弥座距透镜足够多离时,可以把高斯光束看作几何光束c、q参数在自由空间的传输满足用户q2=q1+ld、l=f时,也可以把高斯光束看作几何光束正确答案:d我的答案:d得分:10.0分以下观点不恰当的就是:a、用参数w(z)和r(z)可以表征高斯光束b、用q参数来研究高斯光束的传输规律将非常方便c、方形孔径的稳定球面腔中存在拉盖尔-高斯光束d、包含在远场发散角内的功率占高斯基模光束总功率的86.5%恰当答案:c我的答案:c罚球:10.0分后下列说法正确的是:a、高斯光束在其传输轴线附近可以对数看做就是一种光滑球面波b、高斯光束的等增益面的曲率中心随z相同而维持不变c、d、离束腰无限远的等相位面是平面,其曲率中心在无限远处恰当答案:c我的答案:c罚球:10.0分后高斯光束的聚焦和准直中,在f一定时,像方腰斑随l变化的情况正确的说法是:a、当l大于f时,像是方腰斑随l的增大而减小b、当l大于f时,像是方腰斑随l的增大而增大c、当l大于f时,像是方腰斑随l的减小而单调地减小正确答案:b我的答案:b第四章作业已完成成绩:100.0分后高斯光束的等相位面是以r为半径的球面,下面判断不正确的是当z=0时,r(z),说明须弥座所在处的等增益为平面当z=f时,r(z)=2f,且r(z)达到极大值当z→∞时,r(z)→∞,说明距须弥座无穷远处的等增益面亦为平面d、等相位面的球心是不断变化的恰当答案:b我的答案:b罚球:12.5分后下列哪种说法更科学?a、b、m2因子越大,表明激光束空域质量越好c、远场收敛角越大,表明激光束空域质量越不好正确答案:b我的答案:b得分:12.5分用单透镜对高斯光束涌入时,在物高斯光束的腰斑距透镜甚远的情况下,以下观点恰当的就是?a、l愈小,f愈小,聚焦效果愈好b、l愈小,f愈大,聚焦效果愈好c、l愈大,f 愈大,聚焦效果愈好d、l愈大,f愈小,聚焦效果愈好恰当答案:d我的答案:d罚球:12.5分后关于基模高斯光束的说法中不正确的是?a、其曲率中心和曲率随其传输过程不断变化b、其振幅在横截面内维持高斯分布c、高斯光束在其传输轴线附近可以对数看做就是一种光滑球面波d、其强度在横截面内维持高斯分布正确答案:c我的答案:c得分:12.5分以下观点恰当的就是:当入射在球面镜上的高斯光束波前曲率半径等于球面镜的曲率半径2倍时,像高斯光束与物高斯光束完全重合当入射光在球面镜上的高斯光束波前曲率半径刚好等同于球面镜的曲率半径时,像是高斯光束与物高斯光束全然重合当入射在球面镜上的高斯光束波前曲率半径等于球面镜的曲率半径一半时,像是高斯光束与物高斯光束全然重合d、圆形孔径的稳定球面腔中存在着厄米特-高斯光束恰当答案:b我的答案:b罚球:12.5分后以下说法错误的是?a、方形孔径平衡球面腔中存有的高阶高斯光束为厄米特-高斯光束b、基模高斯光束具备最轻的m2值c、用单个透镜可以将高斯光束转换成平面波d、基模高斯光束在横截面内的场振幅原产按高斯函数所叙述的规律从中心向外光滑地迫降正确答案:c我的答案:c得分:12.5分某二氧化碳激光器,波长10.6m,使用平-凹腔,凹面镜的r=2m,腔短l=1m。

激光原理第四章答案

激光原理第四章答案

第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。

试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。

证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。

由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。

将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。

在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+0cos(2)I E E t v πν=⎡⎤因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。

对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。

激光原理部分习题答案

激光原理部分习题答案

第二章5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。

若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。

【参考例2-1,例2-2】 解:(1)J hcE E E 206834121098.310510310626.6---⨯=⨯⨯⨯⨯==-=∆λ (2)52320121075.63001038.11098.3exp ---∆-⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-==T k Eb e N N10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。

试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。

104.0*)(0)(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I me I I G z G ZzG Z ααα即且解:第三章2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。

求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1) 解:衍射损耗:1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ输出损耗:1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ4.分别按图(a)、(b)中的往返顺序,推导旁轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝⎛D C B A ,并证明这两种情况下的)(21D A +相等。

(a )(b )解: 矩阵乘法的特点:1、只有当乘号左边的矩阵(称为左矩阵)的列数和乘号右边的矩阵(右矩阵)的行数相同时,两个矩阵才能相乘;这条可记为左列=右行才能相乘。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

激光原理及应用1-6章部分课后答案

激光原理及应用1-6章部分课后答案

激光原理及应用部分课后答案1-4为使He-Ne 激光器的相干长度达到1KM ,它的单色性0λλ∆应是多少?2-2当每个模式内的平均光子数(光子简并数)大于1时,以受激辐射为主。

2-3如果激光器和微波激射器分别在um 10=λm 500n =λ和z 3000MH =ν输出1W 连续功率,问美秒从激光上能级向下能级跃迁的粒子数是多少?2-4当一对激光能级为E2和E1(f1=f2),相应的频率为v (波长为λ),能级上的粒子数密度分别为n2和n1,q 求:(1)当v=3000MHZ ,T=3000K 时,n2/n1=?(2)当λ=1um ,T=3000K 时,n2/n1=?(3)当λ=1um ,n2/n1=0时,温度T=?解:2-5激发态的原子从能级E2跃迁到E1时,释放出λ=5um的光子,求这个两个能级的能量差。

若能级E1和E2上的原子数分别为N1和N2,试计算室温T=300K的N2/N值。

2-7如果工作物质的某一跃迁是波长为100nm的远紫外光,自发辐射跃迁概率1621s10-=A,试问:(1)改跃迁的受激辐射爱因斯坦系数B21是多少?(2)为使受激辐射跃迁概率比自发辐射跃迁概率大三倍,腔内的单色能量密度νρ应为多少?2-9某一物质受光照射,沿物质传播1mm的距离时被吸收了1%,如果该物质的厚度是0.1m,那么入射光中有百分之几能通过该物质?并计算该物质的吸收系数α。

2-10激光在0.2m 长的增益介质中往复运动过程中,其增强了30%。

求该介质的小信号增益系数0G 。

假设激光在往复运动中没有损耗。

3-2CO2激光器的腔长L=100cm,反射镜直径D=1.5cm,两镜的光强反射系数分别为r1=0.985,r2=0.8.求由衍射损耗及输出损耗所分别引起的δ,τ。

3-4,分别按下图中的往返顺序,推导近轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝⎛D C B A ,并证明这两种情况下的)(D A +21相等。

激光原理作业答案

激光原理作业答案

J / K *300K
47.99
21
n1
h c
(3)n2
e
kT
T
h c
6252.9K
n1
k ln
n2 n1

2:
n2
E2 E1
e kbT
其中
h*c
h*c
n1
E E2 E1
E h *c h
(1) n e e e 1 2
h*c kb *T
6.63*1034 *3*109 1.38*10 23 *300
*
8
*
3.14 * 6.63 *1034 (6*107 )3
7.71*105 s1
s
1 A21
1.297 *106 s
(3) 60nm时 A21 7.71*108 s1
(4) 0.6nm时 A21 7.71*1014 s1
(5) v
I S
10 106
105 w / m2
W 21 B21 * 1019 *105 1014 m * s3
目录
第一章 ..............................................................................................................................................2 第二章 ..............................................................................................................................................2 第三章 ..............................................................................................................................................7 第四章 ............................................................................................................................................17 第五章 ............................................................................................................................................28 第六章 ............................................................................................................................................30 第七章 ............................................................................................................................................31 第八章 ............................................................................................................................................32 第九章 ............................................................................................................................................33

激光原理答案

激光原理答案

激光原理答案测验1.11、梅曼(TheodoreH.Maiman)于I960年发明了世界上第一台激光器一—红宝石激光器,其波长为694.3nm。

其频率为:A:4.74某10^14(14是上标)HzB:4.32某10人14(14是上标)HzC:3.0某10人14(14是上标)Hz您的回答:B参考答案:Bnull满分:10分得分:10分2、下列说法错误的是:A:光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置B:微观粒子的坐标和动量不能同时准确测定C:微观粒子在相空间对应着一个点您的回答:C参考答案:Cnull满分:10分得分:10分3、为了增大光源的空间相干性,下列说法错误的是:A:采用光学滤波来减小频带宽度B:靠近光源C:缩小光源线度您的回答:B参考答案:Bnull满分:10分得分:10分4、相干光强取决于:A:所有光子的数目B:同一模式内光子的数目C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分5、中国第一台激光器——红宝石激光器于1961年被发明制造出来。

其波长为A:632.8nmB:694.3nmC:650nm您的回答:B参考答案:Bnull满分:10分得分:10分6、光子的某一运动状态只能定域在一个相格中,这说明了A:光子运动的连续性B:光子运动的不连续性C:以上说法都不对您的回答:参考答案:Bnull满分:10分得分:10分7、3-4在2cm的空腔内存在着带宽(A入)为1某10m、波长为0.5m的自发辐射光。

求此光的频带范围A V°A:120GHzB:3某10八18(18为上标)Hz您的回答:B参考答案:Anull满分:10分得分:0分8、接第7题,在此频带宽度范围内,腔内存在的模式数?A:2某10八18(18为上标)B:8某10八10(10为上标)您的回答:A参考答案:Bnull满分:10分得分:0分9、由两个全反射镜组成的稳定光学谐振腔腔长为L腔内振荡光的中心波长为求该光的波长带宽的近似值。

激光原理第四章习题解答

激光原理第四章习题解答

1 静止氖原子的4223P S →谱线中心波长为632.8纳米,设氖原子分别以0.1C 、O.4C 、O.8C 的速度向着观察者运动,问其表观中心波长分别变为多少? 解答:根据公式(激光原理P136) 由以上两个式子联立可得:代入不同速度,分别得到表观中心波长为:nm C 4.5721.0=λ,nm C 26.4144.0=λ,nm C 9.2109.0=λ解答完毕(验证过)2 设有一台麦克尔逊干涉仪,其光源波长为λ,试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期性的变化L 2次。

证明:对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度υ移动,存在多普勒效应。

在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。

以上是分析内容,具体解答如下:无多普勒效应的光场:()t E E ⋅=πνν2cos 0 产生多普勒效应光场:()t E E ⋅=''02cos ''πνν在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上) 第一次多普勒效应:⎪⎭⎫⎝⎛+=c υνν1'第二次多普勒效应:⎪⎭⎫⎝⎛+≈⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=c c c υνυνυνν21112'''在观察者处:()⎪⎭⎫ ⎝⎛⋅⋅⎪⎭⎫ ⎝⎛⋅+⋅==⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛++⋅=+=t c t c t E t c t E E E E πνυπνυπνυπνπν2cos 22cos 2212cos 2cos 0021观察者感受到的光强:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⋅⎪⎭⎫ ⎝⎛⋅+=t c I I υνπ22cos 12显然,光强是以频率cυν⋅2为频率周期变化的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章
2.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν∆=1.5⨯l09Hz 。

今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少? 答:Hz L c
q 88
105.11121032⨯=⨯⨯⨯==∆μν,10105.1105.189=⨯⨯=∆∆=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则:
m c L L c q 2.010
5.1103298=⨯⨯=∆<∴=∆<∆νμμνν 故腔长最长不得大于m 2.0。

5.(a)计算腔长为1m 的共焦腔基横模的远场发散角,设λ=6328Å,10km 处的光斑面积多大。

(b)有一普通探照灯,设发散角为2︒,则1km 远处的光斑面积多大?
答:(1)基横模的远场发散角rad L 310
10269.110632822222--⨯=⨯⨯==π
πλθ (2)10km 处的光斑尺寸m L z L z 347.6]1041[2106328])2(1[2810210=⨯+⨯=+=-=π
πλω 10km 处的光斑面积2225572.126347.6m S =⨯==ππω
(3)1km 处的光斑尺寸m tg r o
455.1711000=⨯=
1km 处的光斑面积2221711.957455.17m r S =⨯=⨯=ππ 7.一共焦腔(对称)L =0.40m ,λ=0.6328μm ,束腰半径mm w 2.00=,求离腰56cm 处的光束有效截面半径。

答:mm z z 6.0))
102(56.0106328(1102.0)(1224103220056.0=⨯⨯⨯⨯+⨯=+=---=ππωλωω 第四章
1.腔长30 cm 的氦氖激光器荧光线宽为1500MHz ,可能出现三个纵横。

用三反射镜法选取单纵横,问短耦合腔腔长(23L L +)应为若干。

答:L L L c
⨯⨯=+∆2103)(28
32μν=短; m L L L 2.02105.1329<+=⇒<∆⨯短ν
3.一高斯光束束腰半径0w =0.2mm ,λ=0.6328μ,今用一焦距f 为3cm 的短焦距透镜聚焦,已知腰粗0w 离透镜的距离为60cm ,在几何光学近似下求聚焦后光束腰粗。

答:mm s f 01.02.060300
=⨯=='ωω。

相关文档
最新文档