1周炳坤版激光原理习题答案第七章

合集下载

激光原理第七版答案

激光原理第七版答案

激光原理第七版答案
激光,全称为“光电子激发放射”,是一种特殊的光线,具有高度的单色性、方向性和相干性。

激光的产生是通过一系列的物理过程实现的,其中包括受激辐射、自发辐射和受激吸收等过程。

激光的产生原理主要包括受激辐射原理、光放大原理和谐振腔原理。

首先,受激辐射原理是激光产生的基础。

当原子或分子处于激发态时,它们会受到外界光子的刺激而发射出与激发光子同频率、同相位和同方向的光子,这种现象就是受激辐射。

在一个受激辐射过程中,一个光子刺激原子或分子从激发态跃迁到基态,同时激发出一个与刺激光子完全一样的光子。

这些光子在原子或分子中来回反射,形成了光的放大效应。

其次,光放大原理是激光产生的关键。

在激光器中,有一个放大介质,当受激辐射发生时,会引起放大介质中光子数目的急剧增加,从而形成激光。

这种放大效应是通过受激发射和自发辐射相互作用而实现的。

放大介质可以是气体、固体或液体,其选择取决于激光器的具体应用。

最后,谐振腔原理是激光产生的空间条件。

谐振腔是由两个或
多个反射镜构成的,其中至少有一个是半透镜。

这些反射镜的作用是使光在腔内来回反射,并在放大介质中形成光的放大效应。

谐振腔中的光子会在腔内来回传播,直到其中的光子数目增加到一定程度,形成激光。

综上所述,激光的产生原理主要包括受激辐射原理、光放大原理和谐振腔原理。

这些原理相互作用,共同促成了激光的产生。

激光在现代科技中有着广泛的应用,包括激光医学、激光通信、激光加工等领域。

因此,对激光产生原理的深入理解,对于推动激光技术的发展具有重要意义。

周炳坤版激光原理习题答案第七章

周炳坤版激光原理习题答案第七章

第七章 激光特性的控制与改善习题1.有一平凹氦氖激光器,腔长0.5m ,凹镜曲率半径为2m ,现欲用小孔光阑选出TEM 00模,试求光阑放于紧靠平面镜和紧靠凹面镜处的两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基模。

)解:腔长用L 表示,凹镜曲率半径用1R 表示,平面镜曲率半径用2R 表示,则120.5m,2m,L R R ===∞由稳定腔求解的理论可以知道,腔内高斯光束光腰落在平面镜上,光腰半径为012141 ()] 0.42mmw L R L ==-≈共焦参量为22070.420.87m 632810w f ππλ-⨯==≈⨯ 凹面镜光斑半径为10.484mm w w w ==≈ 所以平面镜端光阑直径为 03.3 1.386mm D w =⨯=平 凹面镜端光阑直径为 13.3 1.597mm D w =⨯=凹2.图7.1所示激光器的M 1是平面输出镜,M 2是曲率半径为8cm 的凹面镜,透镜P 的焦距F =10cm ,用小孔光阑选TEM 00模。

试标出P 、M 2和小孔光阑间的距离。

若工作物质直径是5mm ,试问小孔光阑的直径应选多大?图7.112解:如下图所示:12P小孔光阑的直径为:31.061010022mm 0.027mm 2.5f d a λππ-⨯⨯==⨯≈⨯其中的a 为工作物质的半径。

3.激光工作物质是钕玻璃,其荧光线宽F ν∆=24.0nm ,折射率η=1.50,能用短腔选单纵模吗?解:谐振腔纵模间隔222q q c LLνηλλη∆=∆=所以若能用短腔选单纵模,则最大腔长应该为215.6μm 2L ληλ=≈∆所以说,这个时候用短腔选单纵模是不可能的。

6.若调Q 激光器的腔长L 大于工作物质长l ,η及'η分别为工作物质及腔中其余部分的折射率,试求峰值输出功率P m 表示式。

解:列出三能级系统速率方程如下:2121 (1)2 (2)R dN l NcN n dt L d nN n dtστσυ=∆-'∆=-∆式中,()L l L l ηη''=+-,η及'η分别为工作物质及腔中其余部分的折射率,N 为工作物质中的平均光子数密度,/,/R c L c υητδ'==。

1-习题集-激光原理

1-习题集-激光原理
2. 二氧化碳激光器输出光 10.6 m, 0 3mm ,用一 F 2cm 的凸透镜聚焦, 求欲得到 0 ' 20 m 及 2.5 m 时透镜应放在什么位置。
解:
f
F 20 2 0 2 2.67 m , 0 '2 ( F l )2 w2 ( z ) 2 2
z 2 2 1 ( )
(1)当 1 103 rad , 0.5145 m, z 3.8 105 km 时 光腰半径为 w0
2

3.3 104 m
一、课堂作业题答案
1. ( 习 题 2.11 ) 如 图 , 已 知 :
0 3mm, 10.6um, z1 2cm, d 50cm, f1 2cm, f 2 5cm 。求: 02 和 z2 ,并
叙述聚焦原理。
解答; 方法一。复杂方法
解答二:简单方法
聚焦原理
第一个透镜, 物距等于焦距, 具有最大焦点,
F 20 2
(1) ( F l )
0
2
f 2 1.885m2
l 1.39m
(2) ( F l )
F 20 2
0
2
f 2 568.9m2
l 23.87m
3. 如图所示,假设一高斯光束垂直入射到折射率为 n 的介质块上,试问: (1)在左图情况下,出射光束发散角为多大? (2)若将介质块的位置左移,使其左端面移至
一定成立,因此,只要满足 稳定条件。 类似的分析可以知道,
凸凹腔的稳定条件是: R1 0
R2 L ,且 R1 R2 L 。
双凹腔的稳定条件是: R1 L , R2 L

激光原理习题答案

激光原理习题答案

激光原理习题答案激光是一种特殊的光源,它具有高度的单色性、相干性、方向性和亮度。

激光的产生基于受激辐射原理,即当原子或分子被激发到高能级状态后,受到外部光子的激发,以相同的频率、相位和方向释放出光子。

以下是一些激光原理习题的答案:1. 激光的产生条件:- 粒子数反转:在激光介质中,高能级上的粒子数必须大于低能级上的粒子数。

- 光学谐振腔:激光器内部需要有一个反射镜和一个半反射镜构成的谐振腔,以形成反馈机制。

2. 激光的分类:- 固体激光器:如红宝石激光器、Nd:YAG激光器等。

- 气体激光器:如氦氖激光器、CO2激光器等。

- 半导体激光器:也称为激光二极管,广泛应用于通信和数据存储。

3. 激光的特性:- 单色性:激光的波长非常窄,颜色非常纯净。

- 相干性:激光的光波具有相同的频率和相位。

- 方向性:激光束具有很好的方向性,发散角很小。

4. 激光的应用:- 医学:用于手术切割、治疗等。

- 工业:用于材料加工,如焊接、切割、打标等。

- 通信:光纤通信中使用激光作为信号载体。

5. 激光的安全问题:- 激光可能对眼睛造成损伤,使用时应采取适当的防护措施。

- 激光器应按照安全等级分类,并遵守相应的操作规程。

6. 激光器的工作原理:- 泵浦源提供能量,将介质中的粒子激发到高能级。

- 高能级粒子在受到外部光子的激发下,通过受激辐射释放出光子。

- 释放的光子在谐振腔中来回反射,不断被放大,最终形成激光束输出。

7. 激光的调制和调Q技术:- 调制:通过改变激光的参数(如频率、强度)来传输信息。

- 调Q:通过改变谐振腔的品质因数,实现激光脉冲的压缩和放大。

8. 激光的光谱特性:- 激光的光谱非常窄,通常用线宽来描述。

- 线宽越窄,激光的单色性越好。

9. 激光的相干长度:- 相干长度是激光在保持相干性的情况下能够传播的最大距离。

10. 激光的发散角:- 发散角是激光束在传播过程中的扩散程度,与激光的模式有关。

以上是一些基本的激光原理习题答案,希望能够帮助理解激光的基本原理和特性。

激光原理 周炳琨版课后习题答案

激光原理 周炳琨版课后习题答案
(c)当 , 时:
6.某一分子的能级 到三个较低能级 、 和 的自发跃迁几率分别是 , 和 ,试求该分子 能级的自发辐射寿命 。若 , , ,在对 连续激发并达到稳态时,试求相应能级上的粒子数比值 、 和 ,并回答这时在哪两个能级间实现了集居数反转。
解:该分子 能级的自发辐射寿命 为:
在连续激发时,对能级 、 和 分别有:
即该物质的增益系数约为 。
第二章
习题
1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:
其往返矩阵为:
由于是共焦腔,有
往返矩阵变为
若光线在腔内往返两次,有
可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
当 时, 小
当 时, 小
3. 在 波长时 ,试求在内径为 的 波导管中 模和 模的损耗 和 ,分别以 , 以及 来表示损耗的大小。当通过 长的这种波导时, 模的振幅和强度各衰减了多少(以百分数表示)?
解:由

, 。
当 时, ,
4.试计算用于 波长的矩形波导的 值,以 及 表示,波导由 制成, , ,计算由 制成的同样的波导的 值,计算中取 。

10m
1m
10cm
0
2.00cm
2.08cm
2.01cm
2.00cm
2.40
22.5
55.3
56.2
从上面的结果可以看出,由于f远大于F,所以此时透镜一定具有一定的聚焦作用,并且不论入射光束的束腰在何处,出射光束的束腰都在透镜的焦平面上。
17. 激光器输出光 , =3mm,用一F=2cm的凸透镜距角,求欲得到 及 时透镜应放在什么位置。

激光原理部分课后习题答案

激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e

原荣版激光原理--习题解答第7章

原荣版激光原理--习题解答第7章

第七章习题 1.有一平凹氦氖激光器,腔长m 5.0,凹镜曲率半径为m 2,现欲用小孔光阑选出00TEM模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基横模。

)解:由RL g -=1,可计算出75.01=g ,0.12=g ,满足1021<⋅<g g ,故该腔为一稳定腔。

对He-Ne 激光器的nm 8.632=λ,则m L os 41017.3-⨯==πλω。

由公式(2.8.7),当光阑放于紧靠凹面镜的情况下,44/121121082.4])1([1-⨯=⋅-=g g g g oss ωω,故小孔直径应为m d s 311059.13.31-⨯=⋅=ω。

当光阑放于紧靠平面镜的情况下,44/121211017.4])1([2-⨯=⋅-=g g g g os s ωω,故小孔直径应为m d s 321038.13.32-⨯=⋅=ω。

2.图7.1所示激光器的1M 是平面输出镜,2M 是曲率半径为cm 8的凹面镜,透镜P 的焦距cm F 10=,用小孔光阑选00TEM模。

试标出P 、2M 和小孔光阑间的距离。

若工作物质直径是mm 5,试问小孔光阑的直径应选多大?解:m f 5.1820==λπωmm F f 0135.0)(120=+='ωω小孔光阑直径为mm 027.020='ω 距透镜P :cm FF F l 10])(1[22022=+-='λπω 距凹面镜2M :cm F l 4222==。

3.激光工作物质是钕玻璃,其荧光线宽nm F 0.24=∆λ,折射率50.1=η,能用短腔选单纵模吗?解:1421014.2)1(-⨯=∆=∆m λλλHz c 12104.6)1(⨯=∆⋅=∆λν由短腔选模条件:ν∆>'L c 2(7.1.3)5103.22-⨯=∆<'νc Lm L μη6.15103.25max ≈⨯=-。

周炳坤激光原理课后习题答案

周炳坤激光原理课后习题答案

《激光原理》习题解答第一章习题解答1 为了使氦氖激光器的相干长度达到1KM ,它的单色性0λ∆应为多少?解答:设相干时间为τ,则相干长度为光速与相干时间的乘积,即 c L c ⋅=τ根据相干时间和谱线宽度的关系 cL c ==∆τν1又因为 0γνλλ∆=∆,00λνc=,nm 8.6320=λ由以上各关系及数据可以得到如下形式: 单色性=0ννλλ∆=∆=cL 0λ=101210328.61018.632-⨯=⨯nmnm解答完毕。

2 如果激光器和微波激射器分别在10μm、500nm 和Z MH 3000=γ输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。

解答:功率是单位时间内输出的能量,因此,我们设在dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即d νnh E =,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在dt 时间辐射跃迁到低能级的数目(能级间的频率为ν)。

由以上分析可以得到如下的形式:ννh dth dE n ⨯==功率 每秒钟发射的光子数目为:N=n/dt,带入上式,得到:()()()13410626.61--⨯⋅⨯====s s J h dt n N s J νν功率每秒钟发射的光子数 根据题中给出的数据可知:z H mms c13618111031010103⨯=⨯⨯==--λν z H mms c1591822105.110500103⨯=⨯⨯==--λνz H 63103000⨯=ν把三个数据带入,得到如下结果:19110031.5⨯=N ,182105.2⨯=N ,23310031.5⨯=N3 设一对激光能级为E1和E2(f1=f2),相应的频率为ν(波长为λ),能级上的粒子数密度分别为n2和n1,求(a)当ν=3000兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm ,T=300K 的时候,n2/n1=? (c)当λ=1μm ,n2/n1=0.1时,温度T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即: TK E E T k h f f n n b b )(expexp 121212--=-=ν(统计权重21f f =) 其中1231038062.1--⨯=JK k b 为波尔兹曼常数,T 为热力学温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用关系式
可以得到
时域里脉冲的宽度是 函数的半功率点所对应的时间间隔,当 时
另 时为半功率点,则
又有关系
另上两式左端相等,可以得到
求得
脉冲的宽度为
下面来求a的值,在频域中进行求解,
因为
当 的时候,
令 时为半功率点,
又因为
所以有
半功率点的带宽为
将a的值代入 的表达式中去,可以得到锁模脉宽为:
12.一锁模氩离子激光器,腔长1m,多普勒线宽为6 000MHz,未锁模时的平均输出功率为3W。试粗略估算该锁模激光器输出脉冲的峰值功率、脉冲宽度及脉冲间隔时间。
图7.1
解:如下图所示:
小孔光阑的直径为:
其中的a为工作物质的半径。
3.激光工作物质是钕玻璃,其荧光线宽 =24.0nm,折射率 =1.50,能用短腔选单纵模吗?
解:谐振腔纵模间隔
所以若能用短腔选单纵模,则最大腔长应该为
所以说,这个时候用短腔选单纵模是不可能的。
6.若调Q激光器的腔长L大于工作物质长l, 及 分别为工作物质及腔中其余部分的折射率,试求峰值输出功率Pm表示式。
第七章激光特性的控制与改善
习题
1.有一平凹氦氖激光器,腔长0.5m,凹镜曲率半径为2m,现欲用小孔光阑选出TEM00模,试求光阑放于紧靠平面镜和紧靠凹面镜处的两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基模。)
解:腔长用 表示,凹镜曲率半径用 表示,平面镜曲率半径用 表示,则
解:列出பைடு நூலகம்率方程如下:
由(2)和(3)式可以得到:
(1)式和(4)式与三能级系统速率方程完全一样,所以,脉冲终了时有
根据已知条件 可以求得
脉冲终了时
11.一锁模He-Ne激光器振荡带宽为600MHz,输出谱线形状近似于高斯函数,试计算其相应的脉冲宽度。
解:输出谱线的形状近似于高斯函数
脉冲的宽度是对时域而言的,现在知道的是频域特性。根据傅立叶分析,时域特性可以通过傅立叶逆变换由频域特性得到,即
7.图7.3所示Nd:YAG激光器的两面反射镜的透过率分别为T2=0,T1=0.1, ,l=7.5cm,L=50cm,Nd:YAG发射截面 ,工作物质单通损耗Ti=6%,折射率 =1.836,所加泵浦功率为不加Q开关时阈值泵浦功率的二倍,Q开关为快速开关。试求其峰值功率、脉冲宽度、光脉冲输出能量和能量利用率。
解:相邻纵模的频率间隔为
该锁模激光器输出脉冲的脉冲宽度为:
将 代入得:
脉冲时间间隔为:
输出脉冲的峰值功率为:
(1)使E2能级保持 所需的泵浦功率Pp;
(2)Q开关接通前自发辐射功率P;
(3)脉冲输出峰值功率Pm;
(4)输出脉冲能量E;
(5)脉冲宽度 (粗略估算)。
解:(1)欲使 ,所需要的泵浦功率为:
(2)Q开关接通前自发辐射功率
(3)
(4)由 ,可以从图7.3.5查得能量利用率 ,输出能量为:
(5)
9.若有一四能级调Q激光器,有严重的瓶颈效应(即在巨脉冲持续的时间内,激光低能级积累的粒子数不能清除)。已知比值 ,试求脉冲终了时,激光高能级和低能级的粒子数n2和n1(假设Q开关接通前,低能级是空的)。
图7.3
解:
峰值功率为:
由图7.3.5可以查得,当 的时候,能量利用率 。
所以光脉冲的输出能量为:
脉冲宽度为:
8.Q开关红宝石激光器中,红宝石棒截面积S=1cm2,棒长l=15cm,折射率为1.76,腔长L=20cm,铬离子浓度 ,受激发射截面 ,光泵浦使激光上能级的初始粒子数密度 ,假设泵浦吸收带的中心波长 ,E2能级的寿命 ,两平面反射镜的反射率与透射率分别为r1=0.95,T1=0,r2=0.7,T2=0.3。试求:
由稳定腔求解的理论可以知道,腔内高斯光束光腰落在平面镜上,光腰半径为
共焦参量为
凹面镜光斑半径为
所以平面镜端光阑直径为
凹面镜端光阑直径为
2.图7.1所示激光器的M1是平面输出镜,M2是曲率半径为8cm的凹面镜,透镜P的焦距F=10cm,用小孔光阑选TEM00模。试标出P、M2和小孔光阑间的距离。若工作物质直径是5mm,试问小孔光阑的直径应选多大?
解:列出三能级系统速率方程如下:
式中, , 及 分别为工作物质及腔中其余部分的折射率,N为工作物质中的平均光子数密度, 。
由式(1)求得阈值反转粒子数密度为:
式(1)和(2)可以改写为:
(3)式除以(4)式可得:
将(5)式积分可得:
当 时, ,忽略初始光子数密度 ,可由上式求出:
设工作物质的截面积为S,输出反射镜透射率为T,则峰值功率为:
相关文档
最新文档