任意角的概念与弧度制教案汇总

合集下载

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1《任意角和弧度制》教案【教学目标】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.【导入新课】复习初中学习过的:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题.3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角,点O是角的顶点,射线OA,OB分别是角的终边、始边.:在不引起混淆的前提下,“角”或“”可以简记为.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与某轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例如:30,390,330都是第一象限角;300,60是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,2等等.说明:角的始边“与某轴的非负半轴重合”不能说成是“与某轴的正半轴重合”.因为某轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30k360kZ的形式;反之,所有形如30k360kZ的角都与30角的终边相同.从而得出一般规律:所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ,即:任一与角终边相同的角,都可以表示成角与整数个周角的和.说明:终边相同的角不一定相等,相等的角终边一定相同.例1在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)120;(2)640;(3)95012.解:(1)120240360,所以,与120角终边相同的角是240,它是第三象限角;(2)640280360,所以,与640角终边相同的角是280角,它是第四象限角;(3)95012129483360,所以,95012角终边相同的角是12948角,它是第二象限角.例2若k3601575,kZ,试判断角所在象限.解:∵k3601575(k5)360225,(k5)Z∴与225终边相同,所以,在第三象限.例3写出下列各边相同的角的集合S,并把S中适合不等式360720的元素写出来:(1)60;(2)21;(3)36314.解:(1)S|60k360,kZ,S中适合360720的元素是601360300,60036060,601360420.(2)S|21k360,kZ,S中适合360720的元素是21036021,211360339,212260699(3)S|36314k360,kZS中适合360720的元素是36314236035646,363141360314,36314036036314.例4写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边相同的角分别为0k360,90k360,(kZ);(3)第一象限角的集合就是夹在这两个终边相同的角中间的角的集合,我们表示为:M|k36090k360,kZ.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90k360180k360,kZ;N|90k360180k360,kZ;Q|2k360360k360,kZ.说明:区间角的集合的表示不唯一.例5写出y某(某0)所夹区域内的角的集合.解:当终边落在y某(某0)上时,角的集合为|45k360,kZ;当终边落在y某(某0)上时,角的集合为|45k360,kZ;所以,按逆时针方向旋转有集合:S|45k36045k360,kZ.二、弧度制与弧长公式1.角度制与弧度制的换算:∵360=2(rad),∴180=rad.∴1=180rad0.01745rad.1801rad57.305718.oSl2.弧长公式:lr.由公式:lnrlr.比公式l简单.r1801lR,其中l是扇形弧长,R是圆的半径.2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S注意几点:1.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略,如:3表示3rad,in表示rad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6把下列各角从度化为弧度:(1)252;(2)1115;(3)30;(4)6730.解:(1)/71(2)0.0625(3)(4)0.37556变式练习:把下列各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o.解:(1);(2)18720;(3).63例7把下列各角从弧度化为度:(1);(2)3.5;(3)2;(4)35.4解:(1)108o;(2)200.5o;(3)114.6o;(4)45o.变式练习:把下列各角从弧度化为度:(1)43;(2)-;(3).12310解:(1)15o;(2)-240o;(3)54o.例8知扇形的周长为8cm,圆心角为2rad,,求该扇形的面积.解:因为2R+2R=8,所以R=2,S=4.课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3..弧度制下的弧长公式和扇形面积公式,并灵活运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

任意角的概念教案

任意角的概念教案

任意角的概念教案教案标题:任意角的概念教案教案目标:1. 理解任意角的概念及其特点。

2. 能够正确使用角度单位进行角的度量。

3. 能够在平面坐标系中绘制和标记任意角。

4. 能够通过已知角度的运算求解未知角度。

教学资源:1. 平面坐标系图纸和直尺。

2. 角度测量工具,如量角器或半圆规。

3. 白板、黑板或投影仪。

4. 角度计算练习题。

教学步骤:引入活动:1. 向学生展示一个直角,并询问他们对角的概念的理解。

2. 引导学生思考是否只有直角才是角,或者是否存在其他类型的角。

3. 引出任意角的概念,并解释任意角是介于0度和360度之间的角。

知识讲解:1. 介绍角的度量单位:度和弧度。

2. 解释度的概念,即一个圆共分为360度。

3. 介绍弧度的概念,即一个圆的周长为2π,因此一个圆共分为2π弧度。

4. 比较度和弧度的关系,强调在数学中常用度作为角的度量单位。

示范与实践:1. 在平面坐标系中示范绘制一个任意角,并解释如何使用直尺和角度测量工具进行角度的绘制和度量。

2. 要求学生在自己的平面坐标系图纸上练习绘制和度量不同的任意角。

3. 引导学生讨论他们绘制和度量角的过程中遇到的困难和技巧。

角度计算:1. 引导学生思考如何通过已知角度进行角度计算。

2. 解释角度计算的基本运算法则,如角的加法、减法、乘法和除法。

3. 提供一些角度计算的练习题,让学生运用所学知识进行解答。

总结与评价:1. 总结任意角的概念和特点。

2. 回顾学生在绘制和度量角以及角度计算方面的学习成果。

3. 对学生的表现进行评价,并提供必要的反馈和指导。

拓展活动:1. 鼓励学生探索其他类型的角,如锐角、钝角等,并比较它们与任意角的异同。

2. 引导学生思考角度在日常生活和实际问题中的应用,如测量角度、导航等。

教案评估:1. 观察学生在绘制和度量角以及角度计算练习中的表现。

2. 收集学生在课堂讨论和活动中的参与程度和回答问题的准确性。

3. 评估学生对任意角概念的理解程度和能力的提升。

高中数学教案《任意角和弧度制》

高中数学教案《任意角和弧度制》

教学计划:《任意角和弧度制》一、教学目标1.知识与技能:学生能够理解并掌握任意角的概念,熟悉角度制与弧度制的转换方法,掌握利用弧度制进行简单三角函数的计算。

2.过程与方法:通过直观演示和抽象概括,引导学生自主探究任意角与弧度制的定义及性质;通过例题解析和课堂练习,提高学生的逻辑思维能力和数学运算能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生严谨的科学态度和探究精神;通过学习任意角和弧度制,让学生体会到数学知识的连续性和统一性。

二、教学重点和难点●教学重点:任意角的概念,角度制与弧度制的转换,弧度制下三角函数的基本性质。

●教学难点:理解并接受弧度制作为角的另一种度量方式,以及利用弧度制进行三角函数的计算。

三、教学过程1. 引入新课(约5分钟)●情境导入:以生活中的实例(如钟表指针的转动、体操运动员的旋转动作)为例,引导学生思考角的度量不仅仅局限于0°到360°之间,从而引出任意角的概念。

●定义揭示:明确任意角的定义,包括正角、负角和零角,强调角的旋转方向和度量范围。

●激发兴趣:简述历史上角度制与弧度制的发展过程,引起学生对弧度制的好奇心。

2. 讲授新知(约15分钟)●弧度制介绍:详细介绍弧度制的定义,即弧长与半径的比值,强调弧度制在三角学和微积分中的重要性。

●转换方法:讲解角度制与弧度制之间的转换公式,并通过具体例子演示转换过程。

●性质探讨:引导学生探讨弧度制下三角函数的基本性质,如正弦、余弦和正切函数的周期性、奇偶性等。

3. 直观演示与操作(约10分钟)●单位圆与弧度制:利用多媒体或实物教具展示单位圆上的角度与弧度的对应关系,加深学生对弧度制的理解。

●互动操作:让学生在纸上绘制单位圆,并尝试用尺子量取特定弧长,计算对应的弧度值,以增强感性认识。

●小组讨论:组织学生讨论角度制与弧度制的优缺点,促进知识的内化和吸收。

4. 例题解析与练习(约15分钟)●例题解析:选取典型例题,如角度制与弧度制的转换、利用弧度制计算三角函数值等,进行详细解析,展示解题步骤和思路。

人教版高中必修41.1任意角和弧度制教学设计

人教版高中必修41.1任意角和弧度制教学设计

人教版高中必修4-1.1 任意角和弧度制教学设计一、教学目标1.知识目标:理解弧长、辐角和弧度的概念,掌握弧度制与角度制的相互转换方法。

2.技能目标:能够准确地表示任意角的大小,计算圆的周长和面积。

3.情感目标:通过实际操作,培养学生良好的数学思维和解决问题的能力。

二、教学重点难点1.重点:弧长、辐角和弧度的概念,弧度制与角度制的相互转换。

2.难点:如何正确理解并计算任意角的大小,如何正确应用弧度制与角度制。

三、教学方法1.讲授与示范相结合的方法。

通过讲解和演示弧长、辐角和弧度的概念,引导学生理解概念。

2.反思式探究的方法。

通过完成一些练习题和实际操作,引导学生独立思考、合作探究和反思总结。

3.讨论交流的方法。

引导学生在小组内相互探讨、交流解题经验,加深对概念的理解和掌握技能。

四、教学过程1. 导入(5分钟)通过实际操作,向学生呈现“用刀割一个披萨”的活动,引导学生认识切割的式样以及分数的概念。

2. 概念讲解(25分钟)1.弧和弧长的概念:引导学生理解弧的概念,了解计算弧长的公式及其证明过程。

2.辐角和角的概念:引导学生掌握辐角和角的概念,了解任意角的大小的概念及其计算方法。

3.弧度制:介绍弧度制的概念及其优缺点,讲解弧度制与角度制的相互转换方法及应用。

3. 讲解示范(15分钟)示范如何计算各种角的大小及弧长的计算、圆的周长和面积的计算,并且提供实例进行实操。

4. 练习与应用(25分钟)1.对学生提供练习题及实际问题,引导学生计算弧长、辐角、面积和周长。

2.在小组内讨论交流、合作解题,加深对概念及计算方法的理解。

5. 总结反思(5分钟)互相交流解题经验,讲述探究过程,反思总结此次学习内容。

五、教学评价方法1.作业评价:检查学生的学习状况,对正确掌握本节课内容的学生进行表扬和奖励,帮助没有学好的学生弥补差漏。

2.学生综合评价:通过学生自我评价、小组评价、教师评价的方式,将本节课的学习成果进行综合评价。

教学设计4:任意角、弧度制及任意角的三角函数

教学设计4:任意角、弧度制及任意角的三角函数

4.1 任意角、弧度制及任意角的三角函数【教学目标】1.考查三角函数的定义及应用. 2.考查三角函数值符号的确定.【复习指导】从近几年的高考试题看,这部分的高考试题大多为教材例题或习题的变形与创新,因此学习中要立足基础,抓好对部分概念的理解.【基础梳理】 1.任意角 (1)角的概念的推广①按旋转方向不同分为 、 、 . ②按终边位置不同分为 和 . (2)终边相同的角终边与角α相同的角可写成α+k ·360°(k ∈Z ). (3)弧度制①1弧度的角: 叫做1弧度的角.②规定:正角的弧度数为 ,负角的弧度数为 ,零角的弧度数为 ,|α|=lr ,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制,比值lr 与所取的r 的大小 ,仅与角的大小有关.④弧度与角度的换算:360°= 弧度;180°= 弧度. ⑤弧长公式: ,扇形面积公式:S 扇形=12lr =12|α|r 2.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为r (r >0),那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=yx ,它们都是以角为 ,以比值为 的函数. 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M ,则点M 是点P 在x 轴上的 .由三角函数的定义知,点P 的坐标为 ,即P ,其中cos α= ,sin α= ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α= .我们把有向线段OM 、MP 、AT 叫做α的 、 、 .三角函数线有向线段 为正弦线有向线段为余弦线有向线段 为正切线考向分析考向一 角的集合表示及象限角的判定【例1】►(1)写出终边在直线y =3x 上的角的集合;(2)若角θ的终边与6π7角的终边相同,求在[0,2π)内终边与θ3角的终边相同的角;(3)已知角α是第二象限角,试确定2α、α2所在的象限.【训练1】 角α与角β的终边互为反向延长线,则( ). A .α=-β B .α=180°+β C .α=k ·360°+β(k ∈Z ) D .α=k ·360°±180°+β(k ∈Z )考向二 三角函数的定义【例2】►已知角θ的终边经过点P (-3,m )(m ≠0)且sin θ=24m ,试判断角θ所在的象限,并求cos θ和tan θ的值.【训练2】已知角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线y =2x 上,则cos 2θ=( ).A .-45B .-35 C.35 D.45考向三 弧度制的应用【例3】►已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S .【训练3】 已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?考向四 三角函数线及其应用【例4】►在单位圆中画出适合下列条件的角α的终边的范围.并由此写出角α的集合: (1)sin α≥32; (2)cos α≤-12.【训练4】 求下列函数的定义域: (1)y =2cos x -1; (2)y =lg(3-4sin 2x ).提升演练1.下列与9π4的终边相同的角的表达式中正确的是( ).A .2k π+45°(k ∈Z )B .k ·360°+94π(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )2.若α=k ·180°+45°(k ∈Z ),则α在( ). A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限3.若sin α<0且tan α>0,则α是( ). A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角 4.已知角α的终边过点(-1,2),则cos α的值为( ). A .-55 B.255 C .-255 D .-125.已知角θ的顶点为坐标原点,始边为x 轴非负半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.答案【基础梳理】 1.(1)①正角、负角、零角 ②象限角和轴线角. (3)弧度制①把长度等于半径长的弧所对的圆心角 ②正数 负数 零 ③无关 ④2π π ⑤ l =|α|r2.自变量 函数值3.正射影 (cos α,sin α) P (cos α,sin α) OM MP AT 余弦线、正弦线、正切线.MPOMAT【例1】►[审题视点] 利用终边相同的角进行表示及判断. 解: (1)在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪α=π3+k π,k ∈Z .(2)∵θ=6π7+2k π(k ∈Z ),∴θ3=2π7+2k π3(k ∈Z ).依题意0≤2π7+2k π3<2π⇒-37≤k <187,k ∈Z .∴k =0,1,2,即在[0,2π)内终边与θ3相同的角为2π7,20π21,34π21.(3)∵α是第二象限角,∴k ·360°+90°<α<k ·360°+180°,k ∈Z . ∴2k ·360°+180°<2α<2k ·360°+360°,k ∈Z .∴2α是第三、第四象限角或角的终边在y 轴非正半轴上. ∵k ·180°+45°<α2<k ·180°+90°,k ∈Z ,当k =2m (m ∈Z )时,m ·360°+45°<α2<m ·360°+90°;当k =2m +1(m ∈Z )时,m ·360°+225°<α2<m ·360°+270°;∴α2为第一或第三象限角. 方法总结: (1)相等的角终边一定相同,但终边相同的角却不一定相等,终边相同的角有无数个,它们之间相差360°的整数倍.(2)角的集合的表示形式不是唯一的,如:终边在y 轴非正半轴上的角的集合可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪ x =2k π-π2,k ∈Z ,也可以表示为⎩⎨⎧⎭⎬⎫x ⎪⎪x =2k π+3π2,k ∈Z .【训练1】【解析】对于角α与角β的终边互为反向延长线,则α-β=k ·360°±180°(k ∈Z ). ∴α=k ·360°±180°+β(k ∈Z ). 【答案】D【例2】► [审题视点] 根据三角函数定义求m ,再求cos θ和tan θ. 解 由题意得,r =3+m 2,∴m 3+m 2=24m ,∵m ≠0, ∴m =±5,故角θ是第二或第三象限角.当m =5时,r =22,点P 的坐标为(-3,5),角θ是第二象限角, ∴cos θ=x r =-322=-64,tan θ=y x =5-3=-153.当m =-5时,r =22,点P 的坐标为(-3,-5),角θ是第三象限角. ∴cos θ=x r =-322=-64,tan =y x =-5-3=153.方法总结: 任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的. 【训练2】【解析】 取终边上一点(a,2a ),a ≠0,根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.【答案】 B 【例3】►[审题视点] (1)由已知条件可得△AOB 是等边三角形,可得圆心角α的值;(2)利用弧长公式可求得弧长,再利用扇形面积公式可得扇形面积,从而可求弓形的面积. 解: (1)由⊙O 的半径r =10=AB ,知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·1032=12×10×1032=5032,∴S =S 扇形-S △AOB =50⎝⎛⎭⎫π3-32.方法总结: 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式. 【训练3】解: 设圆心角是θ,半径是r ,则2r +rθ=40, S =12lr =12r (40-2r )=r (20-r )≤⎝⎛⎭⎫2022=100. 当且仅当r =20-r ,即r =10时,S max =100.∴当r =10,θ=2时,扇形面积最大,即半径为10,圆心角为2弧度时,扇形面积最大. 【例4】►[审题视点] 作出满足sin α=32,cos α=-12的角的终边,然后根据已知条件确定角α终边的范围. 解:(1)作直线y =32交单位圆于A 、B 两点,连接OA 、OB ,则OA 与OB 围成的区域(图中阴影部分)即为角α的终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π3≤α≤2k π+23π,k ∈Z .(2)作直线x =-12交单位圆于C 、D 两点,连接OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .方法总结: 利用单位圆解三角不等式(组)的一般步骤是: (1)用边界值定出角的终边位置; (2)根据不等式(组)定出角的范围; (3)求交集,找单位圆中公共的部分; (4)写出角的表达式. 【训练4】解 (1)∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示).∴定义域为⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ). (2)∵3-4sin 2x >0, ∴sin 2x <34,∴-32<sin x <32. 利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴定义域为⎝⎛⎭⎫k π-π3,k π+π3(k ∈Z ).提升演练 1.【解析】与9π4的终边相同的角可以写成2k π+94π(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确. 【答案】C 2.【解析】当k =2m +1(m ∈Z )时,α=2m ·180°+225°=m ·360°+225°,故α为第三象限角; 当k =2m (m ∈Z )时,α=m ·360°+45°,故α为第一象限角. 【答案】A 3.【解析】由sin α<0知α是第三、四象限或y 轴非正半轴上的角,由tan α>0知α是第一、三象限角.∴α是第三象限角. 【答案】C 4.【解析】由三角函数的定义可知,r =5,cos α=-15=-55.【答案】A 5.【解析】根据正弦值为负数且不为-1,判断角在第三、四象限,再加上横坐标为正,断定该角为第四象限角,∴y <0,sin θ=y 16+y 2=-255⇒y =-8.【答案】-8。

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案

1.1任意角和弧度制教学设计教案第一篇:1.1 任意角和弧度制教学设计教案教学准备1.教学目标1、知识与技能(1)推广角的概念、引入正角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念.2、过程与方法通过创设情境:“转体,逆(顺)时针旋转2周”,角有正角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示.3、情态与价值通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.学会运用运动变化的观点认识事物.2.教学重点/难点重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.3.教学用具多媒体4.标签任意角教学过程【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度?[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.【探究新知】1.初中时,我们已学习了角的概念,它是如何定义的呢?[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positive angle),按顺时针方向旋转所形成的角叫负角(negative angle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zero angle).[展示课件]如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角(any angle),包括正角、负角和零角.为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。

数学教案高中弧度制

数学教案高中弧度制

数学教案高中弧度制
教学目标:
1. 了解弧度制的定义和基本概念;
2. 掌握弧度和角度的换算方法;
3. 熟练运用弧度制解决相关数学问题。

教学重点:
1. 弧度制的定义和基本概念;
2. 弧度和角度的换算;
3. 弧度制的运用。

教学难点:
1. 弧度和角度的换算方法;
2. 弧度制与角度制的转换;
3. 弧度制在解决问题中的应用。

教学准备:
1. 教案、教材、课件;
2. 黑板、彩色粉笔、橡皮;
3. 学生练习册。

教学过程:
一、导入(5分钟)
教师介绍弧度制的概念,引导学生思考角度和弧度之间的关系。

二、讲解(15分钟)
1. 弧度的定义和性质;
2. 弧度和角度的换算方法;
3. 弧度制在三角函数中的应用。

三、示范(10分钟)
教师通过例题演示如何将角度转换为弧度,以及如何运用弧度制解决三角函数问题。

四、练习(15分钟)
学生进行练习,巩固弧度制的相关知识。

五、梳理(5分钟)
教师梳理本节课的重点和难点,给予学生反馈。

六、作业(5分钟)
布置相关作业,要求学生独立完成,以巩固弧度制的知识。

教学延伸:
教师可以通过讲解弧长公式、扇形面积计算等内容,进一步拓展学生对弧度制的理解和运用。

教学反思:
本节课教学难点在于学生对弧度和角度的换算容易混淆,需要通过实例演示和练习巩固。

教师在教学过程中应引导学生思考,激发他们对数学知识的兴趣和探索欲望。

任意角和弧度制教案

任意角和弧度制教案

任意角和弧度制教案教案标题:任意角和弧度制教案教案目标:1. 了解任意角的概念,能够在坐标系中表示和定位任意角。

2. 理解弧度制的概念,能够在弧度制和度数制之间进行转换。

3. 掌握任意角的三角函数值的计算方法。

教学准备:1. 教师准备:教学投影仪、白板、笔记本电脑、教学PPT等。

2. 学生准备:纸和铅笔。

教学过程:Step 1: 引入1. 教师通过展示一张钟表图,引导学生思考角度的概念。

提问:你们平时见过哪些角度的度量方式?2. 学生回答后,教师解释度数制的概念,并引出本节课学习的内容:任意角和弧度制。

Step 2: 任意角的表示和定位1. 教师通过示意图和坐标系,解释任意角的表示方法。

提醒学生注意正角、负角和零角的特点。

2. 学生跟随教师的指导,在纸上练习绘制不同角度的示意图,并用坐标系表示和定位这些角。

Step 3: 弧度制的介绍和转换1. 教师给出弧度制的定义:1弧度是半径等于1的圆的弧所对应的角。

2. 教师通过示意图和实际物体(如一根铁丝弯成的圆弧),展示弧度制的概念和计算方法。

3. 教师引导学生进行度数制和弧度制之间的转换练习,提供一些常见的转换例题。

Step 4: 任意角的三角函数值的计算1. 教师复习正弦、余弦和正切的定义,并介绍任意角的三角函数值的计算方法。

2. 教师通过示例演示三角函数值的计算步骤,引导学生进行练习。

Step 5: 拓展应用1. 教师提供一些与任意角和弧度制相关的实际问题,引导学生运用所学知识解决问题。

2. 学生个别或小组合作完成拓展应用题。

Step 6: 总结和归纳1. 教师带领学生总结本节课所学内容,并强调重点和难点。

2. 学生将所学知识进行整理和归纳,完成课堂笔记。

Step 7: 作业布置1. 教师布置相关的课后作业,包括练习题和思考题。

2. 学生完成作业,以便巩固所学知识。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

2. 教师检查学生完成的课堂练习和作业,评估学生的掌握情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【教学过程】 1
总结的推角,已经不能反映生产、生活中的一些实际问题,需要对角的理解广的概念进行推广.意义探索新知*动脑思考概念结合,按逆时针,绕着它的端点一条
射线由原来的位置OOA 思考说明图形?旋转开始(或顺时针)方向旋转到另一位置就形成角.OB 讲解??叫做角始边叫角位置的射线,终止位置的射线的OBOA 角的?,端点叫做角顶点的.的终边O 图形,1))(规定:按逆时针方向旋转所形成的角叫做正角(如图可以理解仔细.当射线)(如图(按顺时针方向旋转所形成的角叫做负角2)加入分析没有作任何旋转时,也认为形成了一个角,这个角叫做零角.学生讲解的举关键例

2
表示角.导学概念生一观察展示数学中经常在平面直角坐标系中研究角.将角的顶点与坐步步x轴的正半轴,此时,角的终边在第标原点重合,角的始边在自然
(或者说这个角在第几第几象限的角几象限,就把这个角叫做得出象限).是390°30°如图所示,、、120°都是第一象限的角,?330°强调300°、60°是第三象限的角,?第二象限的角,120°?都是第四象特殊限的角.强调情况
、,例如,0°、90°、180°终边在坐标轴上的角叫做界限角270°、360°、角等都是界限角.270°、?90°? 强化练习运用知识* 反馈提问思考学习7-1
练习动手巡视状态.在直角坐标系中分别作出下列各角,并指出它们是第几象1 求解巩固限的角:指导 3
*动脑思考探索新知
说明强调理解??在内)终边相同的角(包括角一般地,与角,都可以概念?的形式.表
示为)?Zk?k?360( 的关?终边相同的角有无限多个,它们所组成的集合为与角强调记忆键点55 ???}.︱{?SZk?k??360,?
典型例题*巩固知识
写出与下列各角终边相同的角的集合,并把其中在1例
4
的例角终边相同的角的集合是与60°⑴解
题巩 ?? . {}︱Z ?,k ??60k ?360 固新
主动讲解,时;时当, 当0?k1k ??300?60?(?1)360?? 知 求解
.所以在时,
;当1k ?420???60?0360?6060?1360
?360°~720°之间与60°角终边相同的角为、和. 42060?300
说明 思考 角终边相同的角的集合是⑵ 与?114°
26′ 计算 部分??? {}︱.?SZ ?k ?360,k ??11426?
可以 ??;时, 当0k ?261140?360???11426? 教给 引领 理解 学生 ??;当时, 1k ?34245?1?360?11426? 完成 ??.时, 当2?k346052?360?11426??
?角终边相同的角为720°之间与所以在?360°~26114?
???. 和、 34?1146052452634 分析
领会
利用 y 轴上的角的集合. 2 写出终边在例 观察 y ,范围内,终边在90°轴正半轴上的角为 在0°~360°分析 图像总结 yy 求解轴正半轴、终边在,因此,终边在轴负半轴上的角为270° 加强 负半轴上所有的角分别是 问题 的理 ,??90180?90??2k ???k ?360 解, ???90180k270?k360????(2?1)? 讲解 理解 其中.⑴式等号右边表示180°的偶数倍再加上90°;(2)Z k ? 式等号右边表示180°的奇数倍再加上90°,可以将它们合并为 强调180°的整数倍再加上90°.
5
nn y取奇数时,当轴正半轴上;取偶数时,角的终边在当y角的终边在轴负半轴上.
70
强化练习*运用知识
5.1.2
教材练习及时思考提问范围内,找出与下列各角终边相同的角,并指~360°1.在0°
了解出它们是哪个象限的角:巡视动手学生??⑷.5421°⑶1563°;⑴405°;
⑵;165°求解知识在把其中角的集合,并的下2.写出与列各角终边相同掌握
情况~360°范围内的角写出来:?360°指导交流80 .⑷1330°⑶?220°45′;;
⑵⑴45°;?55°
培养强化思想*归纳小结
引导回忆学生本次课学了哪些内容?重点和难点各是什么?总结目标检测*自我反思反思提问反思本次课采用了怎样的学习方法?学习交流你是如何进行学习的?过程
你的学习效果如何?能力85
活动探究*继续探索
教材章节7.1.1; (1)读书部分:记录说明;7.1(2)书面作业:;练习90
实践调查:(3) 生活中角的概念的推广实例.
6
【教学过程】7
较为记忆抽象讲解r r2∠,那,圆心角若圆的半径为AOB所对的圆弧长为时注举例r2 重分∠么的大小就是AOB .弧度?2弧度r 析关:正角的弧度数为正数,负角的弧度数为负数,零角规定键点的弧度数为零.弧长分析与角l?与半径由定义知道,角的弧度数的绝对值等于圆弧长仔细领会的对l r分析?)的比,即.(rad?应关r 讲解系r半径为,故周角的弧度数为的圆的周长为r2π关键
8
主动9
10
重点5 说明思考π′.答从动轮旋转°,用角
度表示约为12834 分析7 提问题目l AB.图1m(精确到 4 如下图,求公路弯道部分0的长.例中各.)中长度单位:m
情况m.指导2.自行车行进时,车轮在1min内转过了96圈.若车轮的半80 交流径为0.33m,则自行车1小时前进了多少米(精确到1m)?
强化思想培养归纳小结*
引导回忆学生本次课学了哪些内容?重点和难点各是什么?总结
11
12。

相关文档
最新文档