5.4 平移(1)

合集下载

5.4平移(1)

5.4平移(1)

雪人乙雪人甲5.4 平移(1)授课时间: 班级: 姓名: 教学目标:1.经历观察、分析、操作、欣赏以及抽象,归纳等过程,经历探索图形平移性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

2.通过实例认识平移,理解平移的含义,理解平移前后两个图形对应点连线平行且相等的性质.. 重点:探索并理解平移的性质。

. 难点:对平移的认识和性质的探索.一、问题引入:观察课本第27至28页的几幅图片,然后思考下面问题:1、这些美丽图案有什么共同特点?能否根据其中的一部分绘制出整个图案?2、如何在一张纸上画出一排形状和大小如下图的雪人?雪人的形状、大小、位置在运动前后是否发生了变化?3、如图,雪人甲运动到雪人乙的位置时,雪人甲的鼻尖A 是怎样运动的?它运动到了什么位置?帽顶B 呢?4、连接几组对应点(如:A 与A ‘,B 与B ’,C 与C ‘)观察得到的线段,它们的位置、长短有什么关系?再作出连接其他对应点的线段,仍有前面的关系吗?5、平移一定是水平的或者竖直的吗?二、归纳概括: 1、平移的定义:一个图形沿着 移动一定的 ,图形的这种移动,叫做平移变换,简称平移。

2、平移特征: (1)、把一个图形整体沿某一个方向移动,会得到一个新的图形.新图形与原图形的 和 完全相同,改变的是 。

(2)、新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点就是 。

连接各组对应点的线段简单的说: (1)、平移不改变图形的形状和大小;改变的是图形的位置。

(2)、 对应点所连的线段平行且相等,对应角相等。

AABAED图 1FEDCB三、课堂试一试:例1、一座钟钟摆的左右摆动是不是平移?为什么?例2、在初一下学期中我们学习过平行线的作法,里面有涉及到平移的内容吗?如图,⊿ABC沿着直尺PQ平移到⊿,则(1)、对应点:点A与点,点B与点,点C与点是对应点;(2)、对应线段:AB与,BC与,CA与是对应线段;(3)、对应角:∠A与∠,∠B与∠,∠C与∠是对应角。

人教版七年级数学下册54平移[1]PPT课件

人教版七年级数学下册54平移[1]PPT课件

B′
A
A′
C
C′
9
B A
B′ A′
C
C′
它们平行且相等
AA′∥BB′∥C C′且AA′=BB′=C C′
请你再作出连接其它对应点的线段, 它们是否仍然平行且相等?
10
归纳与总结
平移特征:
1、把一个图形整体沿某一直线方向移动,会得 到一个新的图形.新图形与原图形的形状和大小完 全相同。
2、新图形中的每一点,都是由原图形中的某一 点移动后得到的,这两个点就是对应点。连接各组 对应点的线段平行且相等。
简单的说: (1)平移前后图形的形状和大小相同。 (2)对应点连线平行且相等。
11
A
B
D
C
E
F
H
G
12
图形的平移不一定是水平的, 也不一定是竖直的。
如左图 的鸟的飞行 也是平移
13
下图中的变换属于平移的有哪些?
A× C× E×

D√ F×
14
➢在下面的六幅图案中,(2)(3)(4) (5)(6)中的哪个图案可以通过平移图 案(1)得到?
添加
添加 标题
标题
标题
添加
标题
此处结束语
点击此处添加段落文本 . 您的内容打在这里,或通过 复制您的文本后在此框中选择粘贴并选择只保留文字
28
谢谢您的观看与聆听
Thank you for watching and listening
29
A2
B2
C2
A1
B1
C1
解 如上图右.△A2B2C2可以看成是△ABC经过一次平移而得
到的,平移的方向是点A到点A2的方向,平移的距离是线段

人教版七年级数学下册第五章5.4平移(教案)

人教版七年级数学下册第五章5.4平移(教案)
在讲授环节,我尝试通过生动的案例和实际操作来帮助学生理解平移。看到他们在小组讨论和实验操作中积极参与,我感到很高兴。但我也注意到,有些学生在操作过程中仍然感到困惑,特别是在进行平移作图时。这告诉我,需要进一步加强对这部分学生的个别指导。
此外,小组讨论的环节让我看到了学生们的思维火花。他们能够将平移知识应用到日常生活中的各种场景中,这种学以致用的能力让我感到欣慰。但同时,我也发现部分小组在分享成果时表达不够清晰,这提醒我在今后的教学中,需要加强对学生表达能力的培养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平移的基本概念。平移是图形在平面内按照某个方向作相同距离的移动。它是几何变换中的一种基本操作,对于理解图形的位置关系非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了平移在实际中的应用,比如移动机器人按照程序指令进行平移,以及如何通过平移解决几何作图问题。
-平移方向的确定:学生在确定平移方向时容易出错,需要指导学生如何根据题意或实际情况判断移动方向。
-平移作图技巧:学生在作图过程中可能无法熟练使用直尺和圆规,需要教师示范并指导学生进行多次实践。
-平移在实际问题中的应用:学生可能难以将理论知识与实际问题相结合,需要通过案例分析、讨论等形式,帮助学生理解并运用平移知识解决具体问题。
3.重点难点解析:在讲授过程中,我会特别强调平移的“相同距离”和“方向”这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解,比如通过实际操作教具,展示不同点在平移中的移动情况。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平移相关的实际问题,如教室里物品的排列调整。
在总结回顾环节,学生们对于平移知识点的掌握程度比我预期的要好。但我也意识到,要想让这些知识真正内化为学生们的几何素养,还需要在课后进行更多的巩固练习和拓展延伸。

(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)

(新人教版)数学七年级下册:5.4《平移》教案和习题(含答案)

《平移》教案一、教学目标1.经历观察、分析、操作、欣赏以及抽象、归纳等过程,以及与他人合作交流探索的过程,进一步发展空间观念,增强审美意识,学会用运动的观点分析问题.2.通过实例,认识图形平移,了解平移的特征,理解平移的含义,会进行点的平移.3.理解平移前后两个图形对应点连线平行且相等的性质,能解决简单的平移问题.二、教学重点与难点重点:图形平移的特征和作平移图形.难点:平移的性质探索和理解.三、教学过程(一)创设情境,引入新课1.感受平移,体验新知你坐过公车和搭过电梯吗?它是一种什么样的运动?这样的运动在生活中还有哪些现象?(活动1:学生讨论)2.观察图形,形成印象生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,并回答问题.(1)它们有什么共同的特点?(2)能否根据其中的一部分绘制出整个图案?(活动2:师生交流.)这些美丽的图案是由若干个相同的图案组合而成的,每个图形都有“基本图形”,而“基本图形”是什么?如第一个图形是中间一个正方形,上、下有正立与倒立的正三角形,下排的左图中的“基本图形”是鸽子与橄榄枝;下排右图中的“基本图形”是上、下一对面朝右与面朝左的人头像组成的图案.3.实践探索,得出新知探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案如:引导学生找规律,发现平移特征,回答下面问题:1、图形经过平移后,_______图形的位置,________图形的形状,________图形的大小.(填“改变”或“不改变”)2、经过平移,每一组对应点所连成的线段________.归纳 (活动3:分组讨论)平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同. (2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点. (3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移简单归纳为两点:1.平移的方向. 2.平移的距离四、典例剖析,深化巩固1. 把鱼往左平移8cm.(假设每小格是1cm2)五、小结(学生回答):这节课你学了什么?知道了什么?学会了什么?六、课后作业必做题:教科书习题:3.6题《平移》习题1、决定平移的基本要素是____和____。

5.4平移(1)

5.4平移(1)

可以发现:AA′∥BB′∥CC′, 并且AA′=BB′=CC′ 再作出连接其他对应点的线段,仍有 前面的关系吗?
归纳:
1、把一个图形整体沿某一个直线方向移动, 会得到一个新的图形。新图形与原图形的 形状和大小完全相同。 2、新图形中的每一点,都是由原图形中的 某一点移动后得到的,这两个点是对应点。 连接各组对应点的线段平行(或在同一条直 线上)且相等。 图形的这种移动,叫做平移变换,简称 平移。
图形的平移的方向 不一定是水平的或者竖 直的,可以是倾斜的。
注意: 1、平移只改变图形的位置,不改变图形的 形状、大小。 2、平移是由平移的方向和距离决定。 图形中的每一个点都移动了相同的方向 和距离。
生活中的平移现象 如:教室内铝合金窗户的移动, 工厂里传输带上的物品的移动, 电梯上的人的移动等。
C B F
E
解:三角形DEF就是所作的三角形
按要求做平移图形的方法:
1、找图形的关键点; 2、确定一组对应点,连接对应点; 3、过其它关键点作对应点连线的平行线; 4、在平行线上截取等长的线段,得到其它 关键点的对应点; 5、按原图关键点顺序连接各点; 6、写结论:图形即为所求。
将图中的小船向左平移6格
思考: 1、雪人甲运动到雪人乙的位置时,雪人甲的 鼻尖A是怎样运动的?它运动到了什么位置? 帽顶B呢? A运动到A’,B运动到B’, C运动到C’。 2、连接几组对应点 (如:A与A‘,B与B’, C与C‘)观察得到的线 段,它们的位置、大小 有什么关系?
雪人甲
雪人乙
B
B′ A′
A
D C
D′ C′
门 打 开 或 关 上 是 平 移 吗 ?
不 是
不是
荡秋千是平移吗?

七年级数学《54平移》课件

七年级数学《54平移》课件

Y
X
A’
A
B’
C’
BC
思考 :
△A’B’C’是否可以看成△ABC经过一次平移得到 的?如果是,那么平移的方向和距离是什么?
(学生仔细观察,交流探究结果)
G
B
C
归纳:1.平移的概念
在平面内,将一个图形沿某个方向 移动一定的距离,
这样的图形运动称为平移变换,简称平移。
(平移不改变图形的形状和大小)
设计意图
定义的探究过程,
可以用问题串的形式
引导学生开展思考、
讨论。
问题
(1)是从整体上把握
平移前后物体的特征;
问题(2)是从局部分
析,把握平移的两个
要素“方向”和“距
南平铝厂办公楼“平移” 创闽北之最
大楼沿着砖砌的“轨道”缓缓平 移
南平铝厂办公楼于2005年6 月18日-2005年6月21日向 山脚平移了72 m,整个工 程耗资60万元,7月底大楼 恢复使用。
精打细 算
Oh,what 建筑物“平移”3D模?拟动画
“用不到造价1/3的钱保留 了办公楼,而且节省了两年 的工程时间,划算得很。”
知识技能
通过具体实 例认识和理 解平移的基 本含义,发 现、归纳图 形平移的特 征。
课程目

数学思考
学生经历操 作、探究、 归纳、总结 图形平移基 本特征的过 程,发展学 生的抽象概 括能力。
解决问题
体会从数学 的角度理解 问题,并能 综合运用所 学的知识和 技能解决问 题,发展应 用意识。
情感态度
形的相似等,通过将图形平移、旋转、折叠等活动,使图形动起来,有助
于在运动变化的过程中发现图形不变的几何性质,因此图形的变换是研究

人教版数学七年级下册5.4平移 课件

人教版数学七年级下册5.4平移 课件

感悟新知
解题秘方:找准对应元素,根据平移的性质求出各 个未知量. 解:根据平移后的新图形与原图形的形状、大小完 全相同,得到BC=EF=2,三角形DEF 的面积= 三角 形ABC 的面积=3,∠ DEF= ∠ B=48°,平移的距离 为BE=BC+CE =2+5=7.
感悟新知
2-1. 如图, 将三角形ABC 沿射线AB 的方向移动到三角形 DEF 的位置,移动距离为2 cm.
感悟新知
解:如图5.4-6,找到小船的7 个关键点,并依次标上字母 A,B,C,D,E,F,G. 把点A 向右平移6 个单位长度, 到达点A1,然后把点A1 向上平移3 个单位长度,到达点A′, 用同样的方法分别将小船的其 他关键点B,C,D,E,F,G 平移,得到各自的对应点,顺 次连接对应点即可得到平移后 的图形.
感悟新知
特别提醒 平移图形中,原图形上的点到它对应点的方向
就是平移的方向;任意一对对应点所连线段的长度 就是平移的距离.
感悟新知
例 1 在以下现象中:①用打气筒打气时,打气筒里活塞的 运动;②传送带上瓶装饮料的移动;③旗帜的随风摆 动;④钟摆的摆动. 属于平移的是( B ) A. ① B. ①② C. ①②③ D. ①②③④
课堂小结
平移
定义 平移
性质 依据
作图
感悟新知
(1)AB ∥ A′B′,AC ∥ A′C ′,BC ∥ B′C ′,AA′ ∥ BB′ ∥CC ′;
(2)AB=A′B′,AC=A′C′,BC=B′C′,AA′ =BB′ =CC′; (3)∠ BAC= ∠ B ′A ′C ′, ∠ ABC= ∠ A ′B ′C ′,∠ ACB=
∠ A′C ′B ′.
感悟新知

5.4平移1导学案(普通班)

5.4平移1导学案(普通班)

ABAED图 1FEDCB5.4平移(1 )授课教师:史计春班级学生姓名:学习目标:1、理解平移的概念和平移的基本特征。

2、会进行点的平移,理解平移的性质,能解决简单的平移问题学习难点:理解平移的概念和平移的基本特征学习重点:会进行点的平移,能解决简单的平移问题。

一【实践探究】自学课本第28页至29页完成填空1、如何在一张半透明的纸上,画出一排形状和大小如图的雪人?总结:平移的概念:在平面内,将一个图形整体沿某一直线方向,会得到一个新的图形,图形的这种移动称为平移。

平移的性质:1、平移改变的是图形的。

平移后的图形与原图形_____、______完全相同2、经过平移所得的图形与原来的图形的对应线段,对应角,对应点所连的线段(或在同一直线上)。

二、【课堂练习】:1、如图1,△ABC平移到△DEF,图中相等的线段有,相等的角有。

其中点B的对应点是点,点C的对应点是点图1线段AC的对应线段是线段,线段BC的对应线段是线段∠B的对应角是,∠C的对应角是三、【合作探究】如右图所示,将△ABC平移,可以得到△DEF,点B的对应点为点E,请画出点A的对应点D、点C的对应点F的位置.解:步骤:1、连结 EB2、过点C,A分别作EB的平行线3、分别截取CA练习:如右图。

作图:已知三角形ABC 、点D ,D 为A 的对应点。

过点D 作三角形ABC 平移后的图形。

四【课堂小结】今天你学到了什么?五【达标测评】1、下列哪个图形是由左图平移得到的( )D2、平移后的图形与原图形_____、______完全相同,新图形中的每一个点,都是由___________________移动后得到的,这两个点是对应点,连接各组对应点的线段______且________或__________。

对应线段______且________或__________。

对应角_______。

1、如下图,△DEF 是由△ABC 先向右平移__格,再向___平移___格而得到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教材:
第30页习题5.4 第1、2、3题.
第五章 相交线与平行线
5.4
平移(1)
感知图形
请观察下面几组美丽的图案.⑴它们
有什么共同的特点?⑵能否根据每幅
图中的一部分绘制出整幅图案?
动手实验
如何在一张半透明的纸上,画一排 形状和大小都如图所示的雪人呢?请 把你的方法与同伴交流后动手画图.
雪人的大小和形状改变了吗?
位置呢?
探究性质
如图,在相邻的两个雪人中,找出三组对应点: 雪人的帽顶B与B'、鼻尖A与A'、纽扣C与C', 连接AA'、BB'、CC'. ⑴观察三条线段的位置有什么关系? ⑵测量它们的长度有什么关系? ⑶再连接另一对对应点验证一下前面的到的关 系.
B A A’
B’
C
C’
可以发现:AA′∥BB′∥CC′, 并且AA′=BB′= CC′. 请你在作出连接其他对应点的线段,它们是否仍有 前面的关系? 有
平移特征:
1.把一个图形整体沿着某一直线方向移动,会 得到一个新的图形,新图形与原图形的形状和 大小完全相同. 2.新图形中的每一点,都是原图形中的某一点 移动后得到的,这两个点是对应点,连接各组 对应点的线段平行且相等.
测评题: 2.如图所示,将三角形ABC平移到三角形A’B’C’ . 在这个平移中: AA’ 移动,得到三角形A’B’C’ .三角形 (1)三角形的整体沿 A’B’C’与三角形ABC的 形状 和 大小 完全相同. (2)连接各组对应点的线段即AA’、BB’、CC’之间的数量关系是 相等 平行 __________________ ;位置关系是__________________ .
D E C
S=BC×BF
=4×1 =4(cm2).
A
F B
什么叫做平移?平移的性质有哪些?
测评题: 1.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3). l1,l2 移动,并且移动的距离都 相等 . (1)线段上所有的点都是沿_____ 平行 ;线段 因此,线段AB,A1B1,A2B2,A3B3的位置关系_______ 相等 . AB,A1B1,A2B2,A3B3的数量关系___________ (2)在平移变换中,连接各组对应点的线段之间的位置关系是 平行 相等 ;数量关系是 .
图形的这种移动,叫做平移变换,简称平移.
例1 如图,AB∥CD,AD∥BC,DE⊥AB于E 点.将三角DAE形平移,得到三角形CBF.
D C
A
E
B
⑴请画出平移后的三角形CBF . ⑵写出平移前后的对应顶点和对应相等的边.
例1 如图,AB∥CD,AD∥BC,DE⊥AB于E 点.将三角DAE形平移,得到三角形CBF.
D C
对应顶点:
点D和点C,
点A和点B,
A E B F
点E和点F.
⑴请画出平移后的三角形CBF . ⑵写出平移前后的对应顶点和对应相等的边=CF
例2 如图,已知正方形的边长为4 cm,把它 沿AB方向平移3 cm,求平移后两个正方形重 叠部分的面积. BF=4-3=1(cm). 解:
相关文档
最新文档