高考风向标文科数学一轮课时知能训练第3讲
新课改瘦专用2025版高考政治一轮复习第二单元第三课文化的多样性与文化传播讲义新人教版必修3

其次单元文化传承与创新第三课文化的多样性与文化传播[建学问体系][明学习目标]1.把握1对关系——民族文化与世界文化的关系2.区分2个表现——民族节日和文化遗产的表现3.驾驭3条途径——文化传播的三条途径4.理解3个意义——爱护文化遗产的意义、敬重文化多样性的意义、文化沟通与传播的意义[备核心素养]1.政治认同——关注中华民族的传统节日,树立文化自觉和文化自信2.科学精神——通过学习,能够正确对待文化的多样性,正确处理民族文化与世界文化、民族文化与外来文化的关系3.公共参加——做中外文化沟通的使者,促进中华文化走出去第一框世界文化的多样性一、世界文化的多样性1.世界文化的多样性的含义和表现(1)含义:不同民族和国家文化的内容和形式各具特色。
(2)表现民族节日文化遗产地位一个民族历史文化的长期积淀一个国家和民族历史文化成就的重要标记意义庆祝民族节日,是民族文化的集中展示对于探讨人类文明的演进和呈现世界文化的多样性具有独特作用看法挖掘民族节日的文化内涵爱护民族优秀文化遗产免遭破坏2.敬重文化多样性的缘由(1)必要性①文化具有多样性。
文化是民族的,又是世界的。
各民族文化都是世界文化中不行缺少的色调。
②文化多样性是人类社会的基本特征,也是人类文明进步的重要动力。
③文化多样性是文化创新的重要基础。
(2)意义①敬重文化多样性是发展本民族文化的内在要求。
民族文化是一个民族区分于其他民族的独特标识。
民族文化起着维系社会生活、维持社会稳定的重要作用,是本民族生存与发展的精神根基。
②敬重文化多样性是实现世界文化旺盛的必定要求。
只有保持世界文化的多样性,世界才会更加丰富多彩,充溢朝气与活力。
3.敬重文化多样性的要求(1)正确看法既要认同本民族文化,又要敬重其他民族文化,相互借鉴,求同存异,敬重世界文化多样性,共同促进人类文明旺盛进步。
(2)原则遵循各民族文化一律同等的原则。
在文化沟通中,要敬重差异,理解特性,和谐相处,共同促进世界文化的旺盛。
2017年高考数学一轮总复习第六章不等式第3讲算术平均数与几何平均数课件理

A.有最大值 C.是增函数
B.有最小值 D.是减函数
t2+1 2 3.已知 t>0,则函数 y= t 的最小值为_______.
t2+1 1 解析:y= t =t+ t ≥2 =2. 1 1 t· t =2,当且仅当 t= t 时,ymin
1 16 4.已知 x>0,y>0,且 x+4y=1,则 xy 的最大值为_______.
【互动探究】
x y 1.(2015 年福建)若直线a+b=1(a>0,b>0)过点(1,1),则 a
+b 的最小值等于( C ) A.2 B.3 C.4 D.5
1 1 1 1 解析:由已知,得a+b=1,则 a+b=(a+b)×a+b=
b a b a 2+a+b.因为 a>0,b>0,所以a+b≥2 b a 当a=b,即 a=b=2 时取等号.
2.会用基本不等式 解决简单的最大
(1)平时突出对基本不等式取
等号的条件及运算能力的强 化训练.
(小)值问题
(2)训练过程中注意对等价转
化、分类讨论及逻辑推理能 力的培养
a+b 1.基本不等式 ab≤ 2 (1)基本不等式成立的条件:a>0,b>0. (2)等号成立的条件:当且仅当 a=b 时取等号. a+b (3) 2 叫做算术平均数, ab叫做几何平均数,基本不等 式可叙述为两个正数的算术平均数不小于它们的几何平均数.
2.几个常用的重要不等式 (1)a∈R,a2≥0,|a|≥0当且仅当a=0时取“=”. ≥ ab. (2)a,b∈R,则a2+b2____2
1 (3)a>0,则 a+a≥2.
a2+b2 a+b2 (4) 2 ≥ . 2
3.最值定理
2019年《·高考总复习》数学:第五章 第3讲 等比数列

则
a1a2a3·…·an=
2
1 2
n2
7 2
n
,当
n=3
或
n=4
时,a1a2·…·an
的最大值为 26=64.
2019年4月29日
雨衣专享文档
12
方法二,设等比数列{an}的公比为 q,
由aa12+ +aa34= =15,0,
a1=8, 解得q=12.
则 an=24-n.
a1=8,a2=4,a3=2,a4=1,a5=12,…, 所以当 n=3 或 n=4 时,a1a2·…·an 的最大值为 26=64.
2019年4月29日
雨衣专享文档
23
【互动探究】
2.(2017年新课标Ⅱ)已知等差数列{an}的前n项和为Sn,等 比数列{bn}的前n项和为Tn,a1=-1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通项公式; (2)若T3=21,求S3. 解:设{an}的公差为d,{bn}的公比为q, 则an=-1+(n-1)d,bn=qn-1. 由a2+b2=2,得d+q=3. ①
解得a1=14, q=2,
则 a8=14×27=32.
答案:32
2019年4月29日
雨衣专享文档
15
【规律方法】在解决等比数列问题时,已知a1,an,q, n,Sn中任意三个,可求其余两个,称为“知三求二”.而求 得a1和q是解决等比数列{an}所有运算的基本思想和方法.
2019年4月29日
雨衣专享文档
16
考点 2 等比数列的基本性质及应用
例 2:(1)(2016 年河北衡水中学调研)在等比数列{an}中,若
a4,a8 是方程 x2-3x+2=0 的两根,则 a6 的值是( )
高考数学一轮复习讲练测(新教材新高考)专题3-3函数的奇偶性与周期性-教师版

专题3.3函数的奇偶性与周期性练基础1.(2021·海南海口市·高三其他模拟)已知函数()(0)f x kx b k =+≠,则“(0)0f =”是“函数()f x 为奇函数”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】化简“(0)0f =”和“函数()f x 为奇函数”,再利用充分必要条件的定义判断得解.【详解】(0)0f =,所以0b =,函数()f x 为奇函数,所以()()0f x kx b f x kx b -=-+=-=--=,所以0b =.所以“(0)0f =”是“函数()f x 为奇函数”的充分必要条件.故选:C2.(2021·福建高三三模)若函数()y f x =的大致图象如图所示,则()f x 的解析式可能是()A .()1xf x x =-B .()1x f x x=-C .()21x f x x =-D .()21x f x x =-【答案】C 【解析】利用排除法,取特殊值分析判断即可得答案解:由图可知,当(0,1)x ∈时,()0f x <,取12x =,则对于B ,112(101212f ==>-,所以排除B ,对于D ,1122()012314f ==>-,所以排除D ,当0x >时,对于A ,()1111x f x x x ==+--,此函数是由1y x =向右平移1个单位,再向上平移1个单位,所以1x >时,()1f x >恒成立,而图中,当1x >时,()f x 可以小于1,所以排除A,故选:C3.(2021·广东高三其他模拟)下列函数中,既是奇函数又在区间()0,1上单调递增的是()A.y =B .1y x x=+C .xx y ee =-﹣D .2log y x=【答案】C 【解析】利用函数奇偶性的定义和函数的解析式判断.【详解】A.函数y =的定义域是[0,)+∞,所以函数是非奇非偶函数,故错误;B.1y x x=+在()0,1上单调递减,故错误;C.因为()()()xx x x f x ee e ef x --=---=-=﹣,所以函数是奇函数,且在()0,1上单调递增,正确;D.因为()()22log =log f x x x f x -=-=,所以函数是偶函数,故错误;故选:C .4.(2021·湖南高三月考)定义函数1,()1,x D x x ⎧=⎨-⎩为有理数,为无理数,则下列命题中正确的是()A .()D x 不是周期函数B .()D x 是奇函数C .()yD x =的图象存在对称轴D .()D x 是周期函数,且有最小正周期【答案】C 【解析】当m 为有理数时恒有()()D x m D x +=,所以()D x 是周期函数,且无最小正周期,又因为无论x 是有理数还是无理数总有()()D x D x -=,所以函数()D x 为偶函数,图象关于y 轴对称.当m 为有理数时,()1,1,x D x m x ⎧+=⎨-⎩为有理数为无理数,()()D x m D x ∴+=,∴任何一个有理数m 都是()D x 的周期,()D x ∴是周期函数,且无最小正周期,∴选项A ,D 错误,若x 为有理数,则x -也为有理数,()()D x D x ∴=-,若x 为无理数,则x -也为无理数,()()D x D x ∴=-,综上,总有()()D x D x -=,∴函数()D x 为偶函数,图象关于y 轴对称,∴选项B 错误,选项C 正确,故选:C5.【多选题】(2021·淮北市树人高级中学高一期末)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD 【解析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-= ,()f x 的图象关于(1,1)对称,正确.故选:ACD.6.【多选题】(2020·江苏南通市·金沙中学高一期中)已知偶函数()f x 在区间[)0,+∞上是增函数,则满足1(21)()3f x f -<的x 的取值是()A .0B .12C .712D .1【答案】BC 【解析】根据偶函数和单调性求得不等式的解,然后判断各选项..【详解】由题意1213x -<,解得1233x <<,只有BC 满足.故选:BC .7.【多选题】(2021·广东高三二模)函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,则下列说法正确的是()A .()f x 是周期为2的周期函数B .()f x 是周期为4的周期函数C .()2f x +为奇函数D .()3f x +为奇函数【答案】BD 【解析】AB 选项,利用周期函数的定义判断;CD 选项,利用周期性结合()1f x -,()1f x +为奇函数判断.【详解】因为函数()f x 的定义域为R ,且()1f x -与()1f x +都为奇函数,所以()()11f x f x --=--,()()11f x f x -+=-+,所以()()2f x f x =---,()()2f x f x =--+,所以()()22f x f x --=-+,即()()4f x f x +=,故B 正确A 错误;因为()()()3341f x f x f x +=+-=-,且()1f x -为奇函数,所以()3f x +为奇函数,故D 正确;因为()2f x +与()1f x +相差1,不是最小周期的整数倍,且()1f x +为奇函数,所以()2f x +不为奇函数,故C 错误.故选:BD.8.(2021·吉林高三二模(文))写出一个符合“对x R ∀∈,()()0f x f x +-=”的函数()f x =___________.【答案】3x (答案不唯一)【解析】分析可知函数()f x 的定义域为R ,且该函数为奇函数,由此可得结果.【详解】由题意可知,函数()f x 的定义域为R ,且该函数为奇函数,可取()3f x x =.故答案为:3x (答案不唯一).9.(2021·全国高三二模(理))已知()y f x =为R 上的奇函数,且其图象关于点()2,0对称,若()11f =,则()2021f =__________.【答案】1【解析】根据函数的对称性及奇函数性质求得函数周期为4,从而()2021(1)1f f ==.【详解】函数关于点()2,0对称,则()(4)f x f x =--,又()y f x =为R 上的奇函数,则()(4)(4)f x f x f x =--=-,因此函数的周期为4,因此()2021(1)1f f ==.故答案为:1.10.(2021·上海高三二模)已知函数()f x 的定义域为R ,函数()g x 是奇函数,且()()2x g x f x =+,若(1)1f =-,则(1)f -=___________.【答案】32-【解析】通过计算(1)(1)g g +-可得.【详解】因为()g x 是奇函数,所以(1)(1)0g g +-=,即1(1)2(1)02f f ++-+=,所以53(1)122f -=-=-.故答案为:32-.练提升1.(2021·安徽高三三模(文))若把定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,则关于函数()f x 的性质叙述一定正确的是()A .()()0f x f x -+=B .()()11f x f x -=-C .()f x 是周期函数D .()f x 存在单调递增区间【答案】C 【解析】通过举例说明选项ABD 错误;对于选项C 可以证明判断得解.【详解】定义域为R 的函数()f x 的图象沿x 轴左右平移后,可以得到关于原点对称的图象,也可以得到关于y 轴对称的图象,∴()f x 的图象既有对称中心又有对称轴,但()f x 不一定具有奇偶性,例如()sin 3f x x π⎛⎫=+⎪⎝⎭,由()()0f x f x -+=,则()f x 为奇函数,故选项A 错误;由()()11f x f x -=-,可得函数()f x 图象关于0x =对称,故选项B 错误;由()0f x =时,()f x 不存在单调递增区间,故选项D 错误;由已知设()f x 图象的一条对称抽为直线x a =,一个对称中心为(),0b ,且a b ¹,∴()()2f a x f x +=-,()()2f x f b x -=-+,∴()()22f a x f b x +=-+,∴()()()2222f a x b f b x b f x +-=-+-=-,∴()()()()442222f x a b f b x b f x a b f x +-=-+-=-+-=,∴()f x 的一个周期()4T a b =-,故选项C 正确.故选:C2.(2021·天津高三二模)已知函数()f x 在R 上是减函数,且满足()()f x f x -=-,若31log 10a f ⎛⎫=- ⎪⎝⎭,()3log 9.1b f =,()0.82c f =,则a ,b ,c 的大小关系为()A .a b c >>B .c b a >>C .b a c >>D .c a b>>【答案】B 【解析】根据对数运算性质和对数函数单调性可得331log log 9.1210->>,根据指数函数单调性可知0.822<;利用()f x 为减函数可知()()0.8331log log 9.1210f f f ⎛⎫-<< ⎪⎝⎭,结合()f x 为奇函数可得大小关系.【详解】33331log log 10log 9.1log 9210-=>>= ,0.822<即:0.8331log log 9.1210->>又()f x 是定义在R 上的减函数()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭又()f x 为奇函数3311log log 1010f f⎛⎫⎛⎫∴-=- ⎪ ⎪⎝⎭⎝⎭()()0.8331log log 9.1210f f f ⎛⎫∴-<< ⎪⎝⎭,即:c b a >>.故选:B.3.(2021·陕西高三三模(理))已知函数f (x )为R 上的奇函数,且()(2)f x f x -=+,当[0,1]x ∈时,()22x xaf x =+,则f (101)+f (105)的值为()A .3B .2C .1D .0【答案】A 【解析】根据函数为奇函数可求得函数的解析式,再由()(2)f x f x -=+求得函数f (x )是周期为4的周期函数,由此可计算得选项.【详解】解:根据题意,函数f (x )为R 上的奇函数,则f (0)=0,又由x ∈[0,1]时,()22xx a f x =+,则有f (0)=1+a =0,解可得:a =﹣1,则有1()22xxf x =-,又由f (﹣x )=f (2+x ),即f (x +2)=﹣f (x ),则有f (x +4)=﹣f (x +2)=f (x ),即函数f (x )是周期为4的周期函数,则1313(101)(1)2,(105)(1)22222f f f f ==-===-=,故有f (101)+f (105)=3,故选:A .4.(2021·上海高三二模)若()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,则下列结论:①|()|y f x =是偶函数;②对任意的x ∈R 都有()|()|0f x f x -+=;③()()y f x f x =-在(,0]-∞上单调递增;④反函数1()y fx -=存在且在(,0]-∞上单调递增.其中正确结论的个数为()A .1B .2C .3D .4【答案】C 【解析】根据奇函数定义以及单调性性质,及反函数性质逐一进行判断选择.【详解】对于①,由()f x 是R 上的奇函数,得()()f x f x -=-,∴|()||()||()|-=-=f x f x f x ,所以|()|y f x =是偶函数,故①正确;对于②,由()f x 是R 上的奇函数,得()()0f x f x -+=,而()|()|f x f x =不一定成立,所以对任意的x ∈R ,不一定有()|()|0f x f x -+=,故②错误;对于③,因为()f x 是R 上的奇函数,且()f x 在[0,)+∞上单调递增,所以()f x 在(,0]-∞上单调递增,且()(0)0f x f £=,因此2()()[()]y f x f x f x =-=-,利用复合函数的单调性,知()()y f x f x =-在(,0]-∞上单调递增,故③正确.对于④,由已知得()f x 是R 上的单调递增函数,利用函数存在反函数的充要条件是,函数的定义域与值域是一一映射,且函数与其反函数在相应区间内单调性一致,故反函数1()y f x -=存在且在(,0]-∞上单调递增,故④正确;故选:C5.【多选题】(2021·全国高三专题练习)已知函数()f x 是偶函数,(1)f x +是奇函数,并且当[]1,2x ∈,()1|2|f x x =--,则下列选项正确的是()A .()f x 在(3,2)--上为减函数B .()f x 在(3,2)--上()0f x <C .()f x 在(3,2)--上为增函数D .()f x 在(3,2)--上()0f x >【答案】CD 【解析】根据题意,分析可得(4)()f x f x +=,结合函数的解析式可得当(3,2)x ∈--时函数的解析式,据此分析可得答案.【详解】解:根据题意,函数(1)f x +为奇函数,则有(1)(1)f x f x +=--+,即(2)()f x f x +=--,又由()f x 为偶函数,则()()f x f x -=,则有(2)()f x f x +=-,即有(4)()f x f x +=,当[1x ∈,2]时,()1|2|1f x x x =--=-,若(3,2)x ∈--,则4(1,2)x +∈,则(4)(4)13f x x x +=+-=+,则当(3,2)x ∈--时,有()3f x x =+,则()f x 为增函数且()(3)0f x f >-=;故()f x 在(3,2)--上为增函数,且()0f x >;故选:CD .6.【多选题】(2021·全国高三专题练习)若函数()f x 对任意x ∈R 都有()()0f x f x +-=成立,m R ∈,则下列的点一定在函数()y f x =图象上的是()A .(0,0)B .(,())m f m --C .(,())m f m --D .(,())m f m -【答案】ABC 【解析】根据任意x ∈R 满足()()0f x f x +-=,得到()f x 是奇函数判断.【详解】因为任意x ∈R 满足()()0f x f x +-=,所以()f x 是奇函数,又x ∈R ,所以令0x =,则(0)(0)f f -=-,得(0)0f =,所以点(0,0),且点(,())m f m --与(,())m f m --也一定在()y f x =的图象上,故选:ABC .7.【多选题】(2021·浙江高一期末)已知函数()y f x =是定义在[1,1]-上的奇函数,当0x >时,()(1)f x x x =-,则下列说法正确的是()A .函数()y f x =有2个零点B .当0x <时,()(1)f x x x =-+C .不等式()0f x <的解集是(0,1)D .12,[1,1]x x ∀∈-,都有()()1212f x f x -≤【答案】BCD 【解析】根据函数奇偶性定义和零点定义对选项一一判断即可.【详解】对A ,当0x >时,由()(1)0f x x x =-=得1x =,又因为()y f x =是定义在[1,1]-上的奇函数,所以()()()00,110f f f =-=-=,故函数()y f x =有3个零点,则A 错;对B ,设0x <,则0x ->,则()()()()11f x f x x x x x =--=----=-+⎡⎤⎣⎦,则B 对;对C ,当01x <≤时,由()(1)0f x x x =-<,得01x <<;当10x -≤≤时,由()(1)0f x x x =-+<,得x 无解;则C 对;对D ,12,[1,1]x x ∀∈-,都有()()()()12max min 1111122442f x f x f x f x f f ⎛⎫⎛⎫⎛⎫-≤-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则D 对.故选:BCD .8.【多选题】(2021·苏州市第五中学校高一月考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[ 3.5]4-=-,[2.1]2=.已知函数()[1]f x x x =+-,下列说法中正确的是()A .()f x 是周期函数B .()f x 的值域是[0,1]C .()f x 在(0,1)上是减函数D .x ∀∈R ,[()]0f x =【答案】AC 【解析】根据[]x 定义将函数()f x 写成分段函数的形式,再画出函数的图象,根据图象判断函数的性质.【详解】由题意可知[]1,210,1011,012,12x x x x x --≤<-⎧⎪-≤<⎪⎪+=≤<⎨⎪≤<⎪⎪⎩,()[]1,21,1011,012,12x x x x f x x x x x x x ---≤<-⎧⎪--≤<⎪⎪∴=+-=-≤<⎨⎪-≤<⎪⎪⎩,可画出函数图像,如图:可得到函数()f x 是周期为1的函数,且值域为(]0,1,在()0,1上单调递减,故选项AC 正确,B 错误;对于D ,取1x =-()11f -=,则()11f -=⎡⎤⎣⎦,故D 错误.故选:AC .9.【多选题】(2021·湖南高三月考)函数()f x 满足以下条件:①()f x 的定义域是R ,且其图象是一条连续不断的曲线;②()f x 是偶函数;③()f x 在()0,∞+上不是单调函数;④()f x 恰有2个零点.则函数()f x 的解析式可以是()A .2()2f x x x =-B .()ln 1f x x =-C .2()1f x x x =-++D .()2xf x e =-【答案】CD 【解析】利用函数图象变换画出选项A ,B ,C ,D 对应的函数图象,逐一分析即可求解.【详解】解:显然题设选项的四个函数均为偶函数,但()ln 1f x x =-的定义域为{}0x x R ≠≠,所以选项B 错误;函数2()2f x x x =-的定义域是R ,在(),1-∞-,()0,1单调递减,在()1,0-,()1,+∞单调递增,但()()()2020f f f -===有3个零点,选项A 错误;函数2()1f x x x =-++的定义域是R ,当()0,x ∈+∞时,2()1f x x x =-++的图象对称轴为12x =,其图象是开口向下的抛物线,故()f x 在1,2⎛⎫-∞- ⎪⎝⎭,10,2⎛⎫ ⎪⎝⎭单调递增,在1,02⎛⎫- ⎪⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭单调递减,由图得()f x 恰有2个零点,选项C 正确;函数()2xf x e =-的定义域是R ,在(),ln 2-∞-,()0,ln 2单调递减,在()ln 2,0-,()ln 2,+∞单调递增,且()()ln 2ln 20f f -==有2个零点,选项D 正确.故选:CD.10.(2021·黑龙江大庆市·高三二模(理))定义在R 上的函数()f x 满足()2()f x f x +=,当[]1,1x ∈-时,2()f x x =,则函数()f x 的图象与()3x g x =的图象的交点个数为___________.【答案】7由题设可知()f x 的周期为2,结合已知区间的解析式及()3x g x =,可得两函数图象,即知图象交点个数.【详解】由题意知:()f x 的周期为2,当[1,1]x ∈-时,2()f x x =,∴()f x 、()g x 的图象如下:即()f x 与()g x 共有7个交点,故答案为:7.【点睛】结论点睛:()()f m x f x +=有()f x 的周期为||m .练真题1.(2020·天津高考真题)函数241xy x =+的图象大致为()A.B.C.D.【解析】【分析】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【详解】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选:A.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )()A.是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,22-单调递减C.是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.3.(2020·海南省高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是()A.[)1,1][3,-+∞ B.3,1][,[01]-- C.[1,0][1,)-⋃+∞D.[1,0][1,3]-⋃【答案】D 【解析】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <,所以由(10)xf x -≥可得:021012x x x <⎧⎨-≤-≤-≥⎩或或001212x x x >⎧⎨≤-≤-≤-⎩或或0x =解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.4.(2018年理全国卷II)已知op 是定义域为(−∞,+ ∞)的奇函数,满足o1−p =o1+p .若o1)=2,则o1)+o2)+o3)+⋯+o50)=()A.−50B.0C.2D.50【答案】C 【解析】因为op 是定义域为(−∞,+ ∞)的奇函数,且o1−p =o1+p ,所以o1+p =−o −1)∴o3+p =−o +1)=o −1)∴=4,因此o1)+o2)+o3)+⋯+o50)=12[o1)+o2)+o3)+o4)]+o1)+o2),因为o3)=−o1),o4)=−o2),所以o1)+o2)+o3)+o4)=0,∵o2)=o −2)=−o2)∴o2)=0,从而o1)+o2)+o3)+⋯+o50)=o1)=2,选C.5.(2019·全国高考真题(文))设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则()A.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B.233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C.23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D.23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C 【解析】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222log 422---->==>>∴>> ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C.6.(2019·全国高考真题(理))已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】因为()f x 是奇函数,且当0x >时0x ->,()()ax f x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e-=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.。
第一章 第3讲 充分条件与必要条件-2021届高三数学一轮高考总复习课件(共27张PPT)

【规律方法】充分条件、必要条件的应用,一般表现在参 数问题的求解上.解题时需注意:
(1)把充分条件、必要条件或充要条件转化为集合之间的关 系,然后根据集合之间的关系列出关于参数的不等式(或不等式 组)求解;
(2)一定要注意端点值的取舍,处理不当容易出现漏解或增 解的现象;
(3)注意区别以下两种不同说法: ①p 是 q 的充分不必要条件,是指p⇒q 但q p; ②p 的充分不必要条件是 q,是指q⇒p 但p q.
解:p:A={x|-2≤x≤10},q:B={x|1-m≤x≤1+m}. (1)∵ p 是 q 的必要而不充分条件, 即 q⇒ p, p q,∴p⇒q 且 q p.如图 1-3-1.
图 1-3-1 ∴A B,[-2,10] [1-m,1+m],
m>0, 即1-m≤-2,解得m≥9,
1+m≥10. ∴实数 m 的取值范围是[9,+∞).
数列”的必要而不充分条件.故选 B. 答案:B
(3)(2019 年新课标Ⅱ)设α,β为两个平面,则α∥β的充要条 件是( )
A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面 解析:α内有两条相交直线与β平行,则根据面面平行的判 定定理α∥β,显然 B 正确. 答案:B
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
解析:求解不等式 x3>8 可得 x>2,求解绝对值不等式|x|>2
可得 x>2 或 x<-2,据此可知:“x3>8”是“|x|>2”的充分而不
必要条件.故选 A.
答案:A
(2)(2018 年北京)设 a,b,c,d 是非零实数,则“ad=bc”
2024届新高考一轮复习北师大版 高考专题突破一 第3课时 利用导数研究函数的零点 课件(40张)

在(0,+∞)上单调递增;
当
a>0
时,由
f′(x)>0,得
1 x>a
;由
f′(x)<0,得
1 0<x<a
,
Hale Waihona Puke 返回导航∴函数 f(x)在1a,+∞ 上单调递增,在0,1a 上单调递减. 综上所述,当 a<0 时,函数 f(x)在(0,+∞)上单调递增;当 a>0 时, 函数 f(x)在1a,+∞ 上单调递增,在0,1a 上单调递减. (2)∵当 x∈1e,e 时,函数 g(x)=(ln x-1)ex+x-m 的零点,即当 x∈1e,e 时,方程(ln x-1)ex+x=m 的根.
返回导航
所以 g(x)在(-∞,+∞)单调递增.故 g(x)至多有一个零点, 从而 f(x)至多有一个零点. 又 f(3a-1)=-6a2+2a-13 =-6a-16 2 -16 <0, f(3a+1)=13 >0, 故 f(x)有一个零点. 综上,f(x)只有一个零点.
返回导航
思维升华 讨论函数零点的个数,可先利用函数的导数,判断函数的 单调性,进一步讨论函数的取值情况,根据零点存在定理判断(证明)零点的 存在性,确定函数零点的个数.
综上,a 的取值范围为(0,+∞).
高中数学解题思想方法技巧:小姐开门 何等轻松

高考风向标文科数学一轮课时知能训练:第2讲 古典概型1.已知集合A ={-1,0,1},点P 的坐标为(x ,y ),其中x ∈A ,y ∈A .记点P 落在第一象限为事件M ,则P (M )等于( )A.13B.16C.19D.292.若以连续掷两次骰子分别得到的点数m ,n 作为P 点的坐标,则点P 在圆x 2+y 2=25内的概率为( )A.12B.512C.722D.13363.下课以后,教室里最后还剩下2位男同学,2位女同学.如果没有2位同学一块儿走,则第2位走的是男同学的概率是( )A.12B.13C.14D.154.(2011年安徽)从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.155.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m ,n )与向量b =(1,-1)的夹角为θ,则θ∈⎝⎛⎦⎤0,π2的概率是( ) A.512 B.12 C.712 D.566.(2011年全国新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.347.(2010年江苏)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是________.8.从含有2件正品和1件次品的3件产品中每次任取1件,每次取出后再放回,连续取两次,则两次取出的产品中恰好有一件次品的概率是________.9.从含有3个元素的集合的子集中任取一个,则所取得的子集是含有2个元素的集合的概率是________.10.(2011年山东)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.11.(2011年广东揭阳模拟)已知集合A ={-2,0,2},B ={-1,1},设M ={(x ,y )|x ∈A ,x ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1上的概率;(2)求以(x ,y )为坐标的点位于区域D :⎩⎪⎨⎪⎧ x -y +2≥0,x +y -2≤0,y ≥-1内(含边界)的概率.12.(2011年广东六校联考)某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:(1)(2)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为m 次、n 次,每个基本事件为(m ,n ).求“m +n ≥10”的概率.第2讲 古典概型1.C 2.D 3.A 4.D 5.C 6.A 7.12 8.49 9.3810.解:(1)甲校两男教师分别用A ,B 表示,女教师用C 表示.乙校男教师用D 表示,两女教师分别用E ,F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F )共9种. 从中选出两名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F )共4种,选出的两名教师性别相同的概率为P =49. (2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F )共15种,从中选出两名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F )共6种,选出的两名教师来自同一学校的概率为P =615=25. 11.解:(1)集合M 的所有元素有(-2,-1),(-2,1),(0,-1),(0,1),(2,-1),(2,1)共6个,则基本事件总数为6.记“以(x ,y )为坐标的点落在圆x 2+y 2=1上”为事件A .因落在圆x 2+y 2=1上的点有(0,-1),(0,1)共2个,即A 包含的基本事件数为2,所以P (A )=26=13. (2)记“以(x ,y )为坐标的点位于区域D 内”为事件B .则事件B 包含的点有:(-2,-1),(2,-1),(0,-1),(0,1)共4个.故P (B )=46=23. 12.解:(1)此运动员射击的总环数为2×7+7×8+8×9+3×10=172(环),所以此运动员射击的平均环数为17220=8.6(环). (2)依题意,设满足条件“m +n ≥10”的事件为A .用(m ,n )的形式列出所有基本事件为(2,7),(2,8),(2,3),(7,2),(7,8),(7,3),(8,2),(8,7),(8,3),(3,2),(3,7),(3,8).所以基本事件总数为12.而事件A 包含的基本事件为(2,8),(7,8),(7,3),(8,2),(8,7),(8,3),(3,7),(3,8).总数为8.所以P (A )=812=23. 故满足条件“m +n ≥10”的概率为23.。
“先学后教、当堂训练”教学法在数学一轮复习中的应用

“先学后教、当堂训练”教学法在数学一轮复习中的应用摘要:考试大纲是高考的风向标,是复习备考的依据。
从理论上讲,凡是列入大纲的知识点都在高考考察的范围之内;从操作上讲,考点有“变”和“不变”之分。
变的是那些考试大纲中要求掌握的,不变的就是“必考点”。
关键词:先学后教、当堂训练、自主学习、第一轮复习一、背景情况概述从2008年9月开始,新疆全面实施新课程改革。
新疆农二师八一中学是划片区招收的二批次生源,面对生源区学生的实际情况,自2010起我校大力推广从河南永威学校学来的“先学后教、当堂训练”教学法,以抓基础,重自主学习从而培养学生终身学习的能力。
改革既是一次机遇,同时也是一种挑战。
我们的高三数学复习必须围绕“高效”这两个字做文章。
一个概念的复习、一个题目的选取、一种方法的产生、一堂课的设计、一次作业的布置、一次测试的规划等等,都要问一问是否有效?有效程度究竟有多大?“有效教学”可以体现为三个关键词:一是有效率,二是有效果,三是有效益;我们认为,”先学后教、当堂训练”教学法它可以体现这个衡量标准,即三个90%:⑴本节课90%以上的学生积极参与教学全过程;⑵本节课所学内容90%以上学生能掌握。
有了每一节课的两个90%,就能保证教学的最终质量,也就是第三个90%——高考时,90%以上学生都能取得合格以上的成绩。
前两个90%只是评价一节课教学效果高低的前提,还不是评价一节课好坏的全面标准。
因为一节课的好坏,除教学效果外,还应有其他方面的内容。
但保持一个较好的教学效果,是对课堂教学的基本要求。
达不到这个基本要求,其他方面的评价就没有意义了。
二、复习设计理论依据1、从学生“学”的角度来看,学生已经学习了必修1-必修5的所有必修内容,掌握高中数学所有要求的基础知识,各种数学思想都在同学们心中扎根,改练的题也练了不少了,各种题型都基本见过了,但学生缺乏系统的梳理,对知识的综合处理能力需要好好锻炼。
因此,在高三的第一轮复习中主要以复习基础知识,处理基本题型为主,不要求学生处理过多知识的综合题,不能一味的搞题海战术,让学生参与知识的建构,培养读题审题能力,把课堂还给学生,因此采取“先学后教,当堂训练”教学法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考风向标文科数学一轮课时知能训练:第3讲 算术平均数与几何平均数
1.A 为两正数a ,b 的等差中项,G 为a ,b 正的等比中项,则ab 与AG 的大小关系为( ) A .ab ≤AG B .ab ≥AG C .ab >AG D .ab <AG
2.(2011年上海)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2ab D.b a +a b
≥2 3.设a >0,b >0.若3是3a 与3b 的等比中项,则1a +1
b
的最小值为( )
A .8
B .4
C .1 D.1
4
4.(2011年重庆)若函数f (x )=x +1
x -2
(x >2)在x =a 处取最小值,则a =( )
A .1+2
B .1+3
C .3
D .4
5.对于函数f (x )=x 2+2x ,在使f (x )≥M 成立的所有常数M 中,我们把M 的最大值-1叫做f (x )
=x 2
+2x 的下确界,则对于a ,b ∈R 且a ,b 不全为0,a 2+b 2(a +b )2
的下确界为( )
A.12 B .2 C.1
4
D .4 6.(2011年湖南)设x ,y ∈R ,且xy ≠0,则⎝
⎛⎫x 2+1y 2· ⎝⎛⎭
⎫1x 2+4y 2的最小值为________. 7.(2011年浙江)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是__________.
8.(2011年湖北模拟)设a >0,b >0,称2ab
a +b
为a ,b 的调和平均数.如图K5-3-1,C 为线段
AB 上的点,且AC =a ,CB =b ,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线交半圆于D .连接OD ,AD ,BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是a ,b 的算术平均数,线段________的长度是a ,b 的几何平均数,线段________的长度是a ,b 的调和平均数.
图K5-3-1
9.已知x >0,y >0,且2x +1
y
=1,若x +2y >m 2+2m 恒成立,求实数m 的取值范围.
10.投资生产某种产品,并用广告方式促销,已知生产这种产品的年固定投资为10万元,每生
产1万件产品还需投入18万元,又知年销量W (万件)与广告费x (万元)之间的函数关系为W =
kx +1
x +1
(x ≥0),且知投入广告费1万元时,可销售2万件产品.预计此种产品年销售收入M (万元)等于年成本(万元)(年成本中不含广告费用)的150%与年广告费用50%的和.
(1)试将年利润y (万元)表示为年广告费x (万元)的函数;
(2)当年广告费为多少万元时,年利润最大?最大年利润是多少万元?
第3讲 算术平均数与几何平均数
1.A 2.D 3.B 4.C 5.A
6.9 解析:⎝⎛⎭⎫x 2+1y 2⎝⎛⎭⎫1x 2+4y 2=1+4x 2y 2+1x 2
y 2+4≥5+2 4x 2y 2×1x 2y 2=9,当且仅当4x 2y 2=1x 2y
2
时,“=”成立.
7.2 33 解析:∵x 2+y 2+xy =1,∴(x +y )2-xy =1.即(x +y )2-⎝⎛⎭⎫x +y 22≤1.∴(x +y )2≤43,-
2 3
3≤x +y ≤2 3
3
.
8.CD DE 解析:在Rt △ADB 中DC 为高,则由射影定理可得CD 2=AC ·CB ,故CD =ab .即CD 长度为a ,b 的几何平均数.
将OC =a -a +b 2=a -b 2,CD =ab ,OD =a +b 2,代入OD ·CE =OC ·CD 可得CE =a -b
a +
b ab .故
OE =OC 2-CE 2
=(a -b )22(a +b )
,
所以ED =OD -OE =2ab
a +b
,
故DE 的长度为a ,b 的调和平均数.
9.解:x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+⎝⎛⎭
⎫4y x +x y ≥4+2 4y x ·x
y
=8.
而x +2y >m 2+2m 对x >0,y >0恒成立, 则m 2+2m <8,解得-4<m <2.
10.解:(1)由题意得,2=k +11+1,解得k =3,则W =3x +1
x +1
.
于是年利润y =年销售收入-年成本-年广告费=32(18W +10)+1
2
x -(18W +10)-x =
-x 2
+63x +28
2(x +1)
(x ≥0).
(2)-x 2+63x +282(x +1)=-⎝
⎛⎭⎪⎫x +12+18x +1+652≤26.5(x =5时取等号). 所以当年广告费为5万元时,年利润最大,最大年利润是26.5万元.。