约束最优化问题中一个全局误差界及其应用

合集下载

非线性模型预测控制的若干问题研究

非线性模型预测控制的若干问题研究

非线性模型预测控制的若干问题研究一、概述随着现代工业技术的快速发展,非线性模型预测控制(Nonlinear Model Predictive Control,NMPC)已成为控制领域的研究热点。

非线性系统广泛存在于实际工业过程中,其特性复杂、行为多样,且具有不确定性,这使得传统的线性控制策略在面对非线性系统时往往难以取得理想的效果。

研究非线性模型预测控制策略,对于提高控制系统的性能、稳定性和鲁棒性具有重要意义。

非线性模型预测控制是一种基于非线性模型的闭环优化控制策略,其核心思想是在每个采样周期,以系统当前状态为起点,在线求解有限时域开环最优问题,得到一个最优控制序列,并将该序列的第一个控制量作用于被控系统。

这种滚动优化的策略使得非线性模型预测控制能够实时地根据系统的状态变化调整控制策略,从而实现对非线性系统的有效控制。

非线性模型预测控制的研究也面临着诸多挑战。

由于非线性系统的复杂性,其预测模型的建立往往较为困难,且模型的准确性对控制效果的影响较大。

非线性模型预测控制需要在线求解优化问题,这对计算资源的需求较高,限制了其在实时性要求较高的系统中的应用。

非线性模型预测控制的稳定性和鲁棒性也是研究的重点问题。

本文旨在深入研究非线性模型预测控制的若干关键问题,包括非线性模型的建立、优化算法的设计、稳定性和鲁棒性的分析等。

通过对这些问题的研究,旨在提出一种高效、稳定、鲁棒的非线性模型预测控制策略,为实际工业过程的控制提供理论支持和实践指导。

1. 非线性模型预测控制(NMPC)概述非线性模型预测控制(Nonlinear Model Predictive Control,简称NMPC)是一种先进的控制策略,广泛应用于各种动态系统的优化控制问题中。

NMPC的核心思想是在每个控制周期内,利用系统的非线性模型预测未来的动态行为,并通过求解一个优化问题来得到最优控制序列。

这种方法能够显式地处理系统的不确定性和约束,因此非常适合于处理那些对控制性能要求较高、环境复杂多变的实际系统。

【优化试验设计】优化设计(方差分析)2016

【优化试验设计】优化设计(方差分析)2016
fA×B = fA ×fB 试验误差的自由度fe = f总 - f因+交
• 总偏差平方和S及其自由度还满足下列关系:
a
S S j S j S j S j
j 1
c因
c交
c空
a
f f f j f j f j
j 1
c因
c交
c空
• 总偏差平方和等于正交表所有列偏差平方和之和,等于所有 试验因素、试验考察交互作用和空列偏差平方和之和;其自 由度等于各列自由度之和,等于试验因素、试验考察交互作 用和空列的自由度之和。
差,则有:
(n 1)S 2
2
~
2 (n 1)
25
F分布:
设 U ~ 2 (n1) ,V ~ 2 (n2 ) ,且U、V独立,则称随机变量:
F U / n1 V / n2
服从自由度为(n1,n2)的F分布,记为F~F(n1,n2)。
F临界值是根据统计数学原理而编制的F分布表(Fα(f1, f2)),对 于不同的 α值,设计了不同的F分布表
P[FA F ( f A , fe )] 1
如果 FA F ( f A , fe ) ,就可以拒绝接受原假设,并认为在显著
水平 下,因素 A的水平变动对试验指标有显著的影响,而作
这一结论的置信度为1- ,犯错误的几率为 。
常用的F表有α=0.01、0.05、0.10、0.25几种, α称为置信度
S j
a b
b
( y jk
k 1
y)2
其中:y jk
y jk a
b
ab 2 b [ k 1 ( y jk
2
y
2yy
jk )]
a b 2
2
b

增广拉格朗日乘子法及其在约束优化问题的应用

增广拉格朗日乘子法及其在约束优化问题的应用

毕业论文题目增广拉格朗日乘数法及在其在约束优化问题的应用学院数学科学学院专业信息与计算科学班级计算1001班学生高亚茹学号20100921032指导教师邢顺来二〇一四年五月二十五日摘要增广拉格朗日乘子法作为求解约束优化问题的一种重要方法,近年来研究增广拉格朗日乘子法的应用显得更加重要。

本文首要介绍了增广拉格朗日乘子法的产生,通过解释增广拉格朗日乘子法是罚函数法和拉格朗日乘子法的有机结合,引出了现在对增广拉格朗日法的发展状况,概述了增广拉格朗日乘子法基本理论。

然后具体说明了增广拉格朗日法在科学领域上的实际应用,如在供水系统和图像复原的应用,也证明了增广拉格朗日乘子法的实际应用性。

关键词:增广拉格朗日乘子法;罚函数法;供水系统;图像复原ABSTRACTAugmented lagrange multiplier methods as an important method for solving constrained optimization problems, recent studies in applications of augmented lagrange multiplier methods is even more important. This paper describes the generation of primary augmented lagrange multiplier method. By interpreting the augmented lagrangian multiplier methods is the combination of penalty function methods and Lagrange multiplier methods, It is given to a recent development of augmented lagrangian methods. Then is shown the basic theories of augmented lagrangian multiplier methods. Finally it is specified the augmented lagrangian method on the practical applications of scientific fields, such as water supply ystems and image restorations, also proved augmented lagrangian multiplier methods of practical application.Key words:Augmented Lagrange Multiplier Methods;Penalty Function Methods Water Supply Systems ;Image Restorations目录摘要.....................................................................................I ABSTRACT........................................................................................II 1前言.. (1)1.1增广拉格朗日函数法的产生与应用 (1)1.2研究增广拉格朗日函数法应用的意义 (1)2增广拉格朗日乘子法 (3)2.1约束非线性规划 (3)2.2罚函数外点法 (4)2.3拉格朗日乘子法....................................... (6)2.4增广拉格朗日乘子法.............................. (7)2.4增广拉格朗日乘子法的计算........................... (10)3 增广拉格朗日乘子法的应用................................................. ...... (12)3.1供水系统调度的增广拉格朗日函数优化方法.......................... . (12)3.2图像复原的增广拉格朗日函数优化方法 (14)结论 (17)参考文献 (18)致谢 (19)1前言1.1 增广拉格朗日函数法的产生与应用在求解有约束条件的优化题目时,有一个重要方法,便是用适合的方法把约束优化问题,转变成无约束优化问题来进行求解。

最优控制问题介绍

最优控制问题介绍

最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。

这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。

通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。

一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。

在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。

这个性能指标可以是时间最短、能量消耗最小、误差最小等。

为了解决这个问题,我们首先需要建立系统的数学模型。

这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。

然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。

最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。

二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。

其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。

1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。

这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。

2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。

这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。

3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。

这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。

三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。

1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。

工程学中的最优控制问题及其应用

工程学中的最优控制问题及其应用

工程学中的最优控制问题及其应用随着科学技术的发展,人们对于控制系统的要求越来越高。

在控制系统中,最优控制是一个重要的概念,其指的是在给定系统限制的情况下,使系统的运行达到最优状态的控制方法。

最优控制问题是控制理论的重要研究方向之一,广泛应用于电力、水利、交通、工业等多个领域。

本文将介绍最优控制问题的基本概念和应用。

一、最优控制问题的基本概念最优控制问题是指在给定的系统条件下,在所有可能的控制方法中选择一个最优控制方法,使系统的性能指标达到最优的控制问题。

最优控制方法的基本要求是控制系统具有最优性能,即在满足系统性能要求的前提下,系统的性能指标达到最小值或最大值。

最优控制的主要目的是使系统满足稳态和动态要求,包括响应时间、稳态误差、控制精度和系统稳定性等指标。

最优控制的基本方法可以分为两种:随机最优控制和确定性最优控制。

1. 随机最优控制随机最优控制是在随机环境下找到最优控制方法,即最小化或最大化某种性能指标。

其中,随机环境指的是随机噪声、随机干扰、随机变化等。

最优控制的关键问题是如何确定性能指标,其中包括性能指标的形式、选择和最优化方法等。

随机最优控制的主要方法有强化学习、动态规划、马尔可夫决策过程等。

2. 确定性最优控制确定性最优控制是在确定性环境下寻找最优控制方法,即最小化或最大化某种性能指标。

其中,确定性环境指的是已知的系统状态变量、控制输入和系统模型。

在确定性最优控制中,可以通过数学方法求解问题的最优解。

常见的方法有变分法、最优控制理论、优化方法等。

二、最优控制在工程中的应用1. 电力系统中的最优控制电力系统是一个大型复杂的控制系统,其最优控制问题主要在两个方面应用:发电机调度和电网优化控制。

发电机调度是指通过调度发电机的输出,使电网上的负荷得到最优分配,从而降低电网运行成本。

其中,最优控制的要求是保证电网的稳态和动态特性,例如频率稳定、电压稳定、无功平衡等。

电网优化控制是指通过调度各个电厂之间的电力输送,使得电网的运行达到最优。

带约束的非线性优化问题解法小结

带约束的非线性优化问题解法小结

(1)带约束的非线性优化问题解法小结考虑形式如下的非线性最优化问题(NLP):min f(x)「g j (x )“ jI st 彳 g j (x)=O j L其 中, ^(x 1,x 2...x n )^ R n, f : R n > R , g j :R n > R(j I L) , I 二{1,2,…m }, L ={m 1,m 2...m p}。

上述问题(1)是非线性约束优化问题的最一般模型,它在军事、经济、工程、管理以 及生产工程自动化等方面都有重要的作用。

非线性规划作为一个独立的学科是在上世纪 50年 代才开始形成的。

到70年代,这门学科开始处于兴旺发展时期。

在国际上,这方面的专门性 研究机构、刊物以及书籍犹如雨后春笋般地出现,国际会议召开的次数大大增加。

在我国, 随着电子计算机日益广泛地应用,非线性规划的理论和方法也逐渐地引起很多部门的重视。

关于非线性规划理论和应用方面的学术交流活动也日益频繁,我国的科学工作者在这一领域 也取得了可喜的成绩。

到目前为止,还没有特别有效的方法直接得到最优解,人们普遍采用迭代的方法求解: 首先选择一个初始点,利用当前迭代点的或已产生的迭代点的信息,产生下一个迭代点,一 步一步逼近最优解,进而得到一个迭代点列,这样便构成求解( 1)的迭代算法。

利用间接法求解最优化问题的途径一般有:一是利用目标函数和约束条件构造增广目标 函数,借此将约束最优化问题转化为无约束最优化问题,然后利用求解无约束最优化问题的 方法间接求解新目标函数的局部最优解或稳定点,如人们所熟悉的惩罚函数法和乘子法;另 一种途径是在可行域内使目标函数下降的迭代点法,如可行点法。

此外,近些年来形成的序 列二次规划算法和信赖域法也引起了人们极大的关注。

在文献[1]中,提出了很多解决非线性 规划的算法。

下面将这些算法以及近年来在此基础上改进的算法简单介绍一下。

1. 序列二次规划法序列二次规划法,简称SQ 方法.亦称约束变尺度法。

Maple全局优化应用

Maple全局优化应用

B5: 全局优化应用西希安工程模拟软件(上海)有限公司,2010优化介绍优化(optimization)的目标是从一组可能的答案中发现问题的最佳解。

答案通过使用一个或多个问题变量的实际值目标函数(objective function)进行对比。

可能的集合(feasible set )由约束条件(constraints)决定,约束条件通常是关于问题变量的不等式或方程(组)。

数学意义上,目的是发现目标函数的最大值(maximizes)或最小值(minimizes )、同时满足( satisfying)约束条件的点,这个点称为极值(extremum)。

优化问题定义如下。

的最大值(或最小值约束条件 , ,和 ,这里,优化模型由, , 和 的结构分类。

如果所有的函数是 x 线性函数,这个模型是一个线性规划(linear program)。

如果 是 x 的二次函数,以及 和 是 x 的线性函数,这个模型是一个二次规划(quadratic program)。

如果 是一个平方和函数,这个模型是一个非线性规划(least-squares problem)。

对于其他任意结构,模型称为非线性回归(NLP)。

Maple 9.5中的优化程序包(Optimization)提供了一系列算法分别求解这些类型的问题。

传统上,优化研究集中在局部搜索算法(local)。

局部搜索的目的是发现 f(x) 在可行区域内的局部极值。

从一个初始点出发,局部搜索算法迭代(iteratively)搜索当前点领域中的一个点,提高目标函数值,同时维持或逼近可行性、使用当前点上关于 , , 和 的迭代信息。

理想情况下,搜索会终止于一个可行的局部极值。

优化算法的不同决定它们如何衡量逼近可行,以及它们如何搜索。

当在可行区域内有唯一的局部极值时,局部搜索是有效的,这是因为搜索发现的局部解是问题的全局解。

如果, 都是凸函数(convex),并且所有的是仿射函数(affine)时,极值是唯一的。

数学建模的相关问题求解方法

数学建模的相关问题求解方法

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档