2015杭州高三数学理科二模试卷

合集下载

浙江省五校联考高考数学二模试卷 理(含解析)

浙江省五校联考高考数学二模试卷 理(含解析)

浙江省五校联考2015届高考数学二模试卷(理科)一、选择题:(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>02.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④3.(5分)为得到函数f(x)=cosx﹣sinx,只需将函数y=sinx()A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2=,有下列结论中正确的个数有()①≥0;②<0;③x的值有且只有一个;④x的值有两个;⑤点B是线段AC的中点.A.1个B.2个C.3个D.4个5.(5分)已知映射.设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M′.当点M在线段AB上从点A开始运动到点B 结束时,点M的对应点M′所经过的路线长度为()A.B.C.D.6.(5分)如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A、B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.B.5 C.D.7.(5分)半径为R的球内部装有4个半径相同的小球,则小球半径r的可能最大值为()A.B.C.D.8.(5分)某学生对一些对数进行运算,如图表格所示:x 0.021 0.27 1.5 2.8lgx 2a+b+c﹣3(1)6a﹣3b﹣2(2)3a﹣b+c(3)1﹣2a+2b﹣c(4)x 3 5 6 7lgx 2a﹣b(5)a+c(6)1+a﹣b﹣c(7)2(a+c)(8)x 8 9 14lgx 3﹣3a﹣3c(9)4a﹣2b(10)1﹣a+2b(11)现在发觉学生计算中恰好有两次地方出错,那么出错的数据是()A.(3),(8)B.(4),(11)C.(1),(3)D.(1),(4)二、填空题本大题共7小题,每小题5分,共35分.9.(5分)设全集U=R,集合A={x|x2﹣3x﹣4<0},B={x|log2(x﹣1)<2},则A∩B=,A∪B=,C R A=.10.(5分)若某多面体的三视图如图所示,则此多面体的体积为,外接球的表面积为.11.(5分)若max{a,b}表示a,b两数中的最大值,若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为,若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则t=.12.(5分)A n={x|2n<x<2n+1,x=3m,m∈N},若|A n|表示集合A n中元素的个数,则|A5|=,则|A1|+|A2|+|A3|+…+|A10|=.(5分)直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC 13.斜边上的高的长度为.14.(5分)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.15.(5分)已知动点P(x,y)满足,则x2+y2+2y的最小值为.三、解答题:(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)16.(15分)已知△ABC的面积为S,且S.(1)求cosA;(2)求a=,求△ABC周长的最大值.17.(15分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.18.(15分)函数f(x)=mx|x﹣a|﹣|x|+1(1)若m=1,a=0,试讨论函数f(x)的单调性;(2)若a=1,试讨论f(x)的零点的个数.19.(15分)如图,在平面直角坐标系xOy中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.若直线PQ斜率为时,PQ=2.(1)求椭圆C的标准方程;(2)试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.20.(15分)已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.浙江省五校联考2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题:(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0考点:特称命题;命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题,直接写出该命题的否定命题即可.解答:解:根据特称命题的否定是全称命题,得;命题“存在x0∈R,2≤0”的否定是“对任意的x∈R,都有2x>0”.故选:D.点评:本题考查了全称命题与特称命题的应用问题,解题时应根据特称命题的否定是全称命题,写出答案即可,是基础题.2.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④考点:平面与平面垂直的判定;平面与平面平行的判定.专题:空间位置关系与距离;简易逻辑.分析:从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.解答:解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.点评:本题考查平面与平面垂直的判定,平面与平面平行的判定,是基础题.3.(5分)为得到函数f(x)=cosx﹣sinx,只需将函数y=sinx()A.向左平移B.向右平移C.向左平移D.向右平移考点:两角和与差的正切函数.专题:三角函数的图像与性质.分析:由条件利用两角和差的余弦公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由于f(x)=cosx﹣sinx=2cos(x+),函数y=sinx=2cos(x ﹣),+=,故把函数y=sinx=2cos(x﹣)的图象向左平移个单位,即可得到f(x)=2cos(x+)的图象,故选:C.点评:本题主要考查两角和差的余弦公式,函数y=Asin(ωx+φ)的图象变换规律,4.(5分)已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2=,有下列结论中正确的个数有()①≥0;②<0;③x的值有且只有一个;④x的值有两个;⑤点B是线段AC的中点.A.1个B.2个C.3个D.4个考点:平面向量数量积的含义与物理意义.专题:综合题;平面向量及应用.分析:由存在实数x满足x2=,△≥0,得出①正确、②错误;由x2+2x+=,得出=﹣x2﹣2x,根据平面向量的基本定理,得出﹣x2﹣2x=1,判断③正确、④错误;由=(+),得出B是线段AC的中点,判断⑤正确.解答:解:对于①,存在实数x满足x2=,∴﹣•≥0,∴①正确;对于②,由①知,②错误;对于③,∵x2+2x+=,变形为=﹣x2﹣2x,∵A、B、C为直线l上不同的三点,点O∉直线l,∴﹣x2﹣2x=1,解得x=﹣1,∴③正确;对于④,由③知,④错误;对于⑤,由③知,=(+),∴点B是线段AC的中点,⑤正确;综上,正确的命题是①③⑤.故选:C.点评:本题考查了平面向量的应用问题,也考查了一元二次方程有实数根的应用问题,是综合性题目.5.(5分)已知映射.设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M′.当点M在线段AB上从点A开始运动到点B 结束时,点M的对应点M′所经过的路线长度为()A.B.C.D.考点:映射.专题:函数的性质及应用.分析:根据所给的两个点的坐标写出直线的方程,设出两个点的坐标,根据所给的映射的对应法则得到两个点坐标之间的关系,代入直线的方程求出一个圆的方程,得到轨迹是一个圆弧,求出弧长.解答:解:设点M′从A′开始运动,直到点B′结束,由题意知AB的方程为:x+y=4.设M′(x,y),则M(x2,y2),由点M在线段AB上可得 x2+y2=4.按照映射f:P(m,n)→P′(,),可得 A(1,3)→A′(1,),B(3,1)→B′(,),故tan∠A′OX==,∴∠A′OX=.tan∠B′OX==1,∴∠B′OX=,故∠A′OB′=∠A′OX﹣∠B′OX=,点M的对应点M′所经过的路线长度为弧长为=∠A′OB′•r=×2=;故选:B.点评:本题考查弧长公式和轨迹方程,本题解题的关键是利用相关点法求出点的轨迹,题目不大,但是涉及到的知识点不少,属于基础题.6.(5分)如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A、B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.B.5 C.D.考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出一条渐近线方程,联立直线方程和圆的方程、椭圆方程,求得交点,再由两点的距离公式,将|AB|=3|CD|,化简整理,即可得到b=2a,再由a,b,c的关系和离心率公式,即可得到结论.解答:解:双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为y=x,以C1的长轴为直径的圆的方程为x2+y2=11,联立渐近线方程和圆的方程,可得交点A(,),B(﹣,﹣),联立渐近线方程和椭圆C1:+y2=1,可得交点C(,),D(﹣,﹣),由于C1与该渐近线的两交点将线段AB三等分,则|AB|=3|CD|,即有=,化简可得,b=2a,则c==a,则离心率为e==.故选A.点评:本题考查双曲线的方程和性质,考查直线与圆、椭圆的位置关系,考查离心率的求法,属于基础题.7.( 5分)半径为R的球内部装有4个半径相同的小球,则小球半径r的可能最大值为()A.B.C.D.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,求出正四面体的外接球半径,即可求得结论.解答:解:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大.以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,该正四面体的高为=,设正四面体的外接球半径为x,则x2=(﹣x)2+()2,∴x=r,∴R=r+r,∴r=R.故选:C.点评:本题考查点、线、面距离的计算,考查学生分析解决问题的能力,确定四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大是关键.8.(5分)某学生对一些对数进行运算,如图表格所示:x 0.021 0.27 1.5 2.8lgx 2a+b+c﹣3(1)6a﹣3b﹣2(2)3a﹣b+c(3)1﹣2a+2b﹣c(4)x 3 5 6 7lgx 2a﹣b(5)a+c(6)1+a﹣b﹣c(7)2(a+c)(8)x 8 9 14lgx 3﹣3a﹣3c(9)4a﹣2b(10)1﹣a+2b(11)现在发觉学生计算中恰好有两次地方出错,那么出错的数据是()A.(3),(8)B.(4),(11)C.(1),(3)D.(1),(4)考点:对数的运算性质.专题:函数的性质及应用.分析:写出对数值的关系式,然后判断正误即可.解答:解:由题意可知:lg0.21=lg3+lg7﹣1=2a+b+c﹣3;lg0.27=2lg3﹣2=6a﹣3b﹣2;lg1.5=lg3+lg5﹣1=3a﹣b+clg2.8=2lg2+lg7﹣1,lg3=2a﹣b,lg5=a+clg6=lg2+lg3=1+a﹣b﹣c,lg7=2a+2c,lg8=3﹣3a﹣3c,lg9=2lg3=4a﹣2b,lg14=lg2+lg7=1﹣a+2b.有上述各式,可以看出,lg3,lg9,lg0.27是正确的关系式,则lg7=2a+2c,lg0.21=lg3+lg7﹣1=2a+b+c﹣3,可知lg7错误;由lg5=a+c,lg1.5=lg3+lg5﹣1=3a﹣b+c,可知lg5错误;即(3),(8)错误.故选:A.点评:本题考查对数的运算性质,推理与证明的应用,考查分析问题解决问题的能力.二、填空题本大题共7小题,每小题5分,共35分.9.(5分)设全集U=R,集合A={x|x2﹣3x﹣4<0},B={x|log2(x﹣1)<2},则A∩B=(1,4),A∪B=(﹣1,5),C R A=(﹣∞,﹣1]∪[4,+∞).考点:交、并、补集的混合运算.专题:集合.分析:求出A与B中不等式的解集确定出A与B,找出A与B的交集,并集,求出A的补集即可.解答:解:由A中不等式变形得:(x﹣4)(x+1)<0,解得:﹣1<x<4,即A=(﹣1,4),由B中不等式变形得:log2(x﹣1)<2=log24,得到0<x﹣1<4,解得:1<x<5,即B=(1,5),∴A∩B=(1,4),A∪B=(﹣1,5),∁R A=(﹣∞,﹣1]∪[4,+∞).故答案为:(1,4);(﹣1,5);(﹣∞,﹣1]∪[4,+∞)点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.10.(5分)若某多面体的三视图如图所示,则此多面体的体积为,外接球的表面积为3π.考点:球内接多面体;球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由三视图可知:该几何体是正方体的内接正四面体.可得此多面体外接球的直径是次正方体的对角线.即可得出.解答:解:由三视图可知:该几何体是正方体的内接正四面体(红颜色).∴多面体的体积为1﹣×1=.此多面体外接球的直径是此正方体的对角线.因此其球的表面积是4π•=3π.故答案为:,3π.点评:本题考查了正方体的三视图、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.11.(5分)若max{a,b}表示a,b两数中的最大值,若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为e,若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则t=4030.考点:指数函数单调性的应用.专题:函数的性质及应用.分析:化简函数的解析式,再利用函数y={e|x|的图象和函数y=e|x﹣t 的图象关于直线x=对称,从而得出结论.解答:解:由于f(x)=max{e|x|,e|x﹣2|}=,故f(x)的最小值为f(1)=e.若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则=2015,求得t=4030,故答案为:e;4030.点评:本题主要考查指数函数的单调性,分段函数的应用,属于基础题.12.(5分)A n={x|2n<x<2n+1,x=3m,m∈N},若|A n|表示集合A n中元素的个数,则|A5|=11,则|A1|+|A2|+|A3|+…+|A10|=219﹣29.考点:元素与集合关系的判断.专题:集合.分析:分n为奇数和偶数两种情况,根据等差数列的前n项和公式即可求出答案.解答:解:当n为奇数时,A n中的各个元素组成以2n+1为首项,3为公差的等差数列,设项数为m,则2n+1﹣1=2n+1+3(m﹣1),所以m=,∴|A5|==11,当n为偶数时,n﹣1时奇数,可知2n﹣1+1是3的倍数,因此2n+2=2(2n﹣1+1)是3的倍数;同理,2n+1﹣2=2(2n﹣1)是3的倍数,所以当n为偶数时,A n中的各个元素组成以2n+2为首项,3为公差的等差数列,设项数为m,则2n+1﹣2=2n+2+3(m﹣1),所以m=,所以当n是偶数时,A n中的所有元素个数之和为[2n+2)+(2n+1﹣2)]=22n﹣1﹣2n﹣1,所以|A1|+|A2|+|A3|+…+|A10|=22×10﹣1﹣210﹣1=219﹣29.故答案为:11,219﹣29.点评:本题主要考查与集合有关的新定义题,根据条件分别求出对应范围的个数是解决本题的关键,综合性较强.(5分)直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC 13.斜边上的高的长度为2.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:结合抛物线的方程与性质设出A,B,C的坐标,即可表达出斜边上的高|CD|,再由直角三角形的性质得到斜边上中线的长度,然后利用两点之间的距离公式表达出中线的长度,即可得到一个等式,进而求出斜边上的高得到答案.解答:解:由题意,斜边平行y轴,即垂直对称轴x轴,可设C的坐标为(,c),B的坐标为(,b),则A的坐标为(,﹣b);=(﹣,c﹣b),=(﹣,﹣b﹣c),又由Rt△ABC的斜边为AB,则有AC⊥CB,即=0,变形可得|b2﹣c2|=4,而斜边上的高即C到AB的距离为|﹣|=2.故答案为:2.点评:本题考查直线与圆锥曲线的综合问题,考查抛物线的标准方程等基础知识,考查运算求解能力、化归与转化思想.属于中档题.14.(5分)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.考点:弧长公式.专题:三角函数的求值.分析:由图可知:圆O的半径r=1,正方形ABCD的边长a=1,以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,当点A首次回到点P的位置时,正方形滚动了3圈共12次,分别算出转4次的长度,即可得出.解答:解:由图可知:∵圆O的半径r=1,正方形ABCD的边长a=1,∴以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A首次回到点P的位置时,正方形滚动了3圈共12次,设第i次滚动,点A的路程为A i,则A1=×|AB|=,A2=×|AC|=,A3=×|DA|=,A4=0,∴点A所走过的路径的长度为3(A1+A2+A3+A4)=.故答案为:.点评:本题考查了正方形与圆的性质、旋转的性质、弧长的计算公式,考查了数形结合、分类讨论的思想方法,考查了分析问题与解决问题的能力,属于难题.15.(5分)已知动点P(x,y)满足,则x2+y2+2y的最小值为0.考点:二元一次不等式(组)与平面区域;基本不等式.专题:不等式.分析:可将P满足的不等式组变为,作出该不等式组表示的平面区域,可设x2+y2+2y=z,进一步得到x2+(y+1)2=z+1,从而根据平面区域求以(0,﹣1)为圆心的圆的半径的最小值即得到z的最小值.解答:解:x≥0时,;∴要使;只要;∴y≥0;∴动点P满足;该不等式组表示的平面区域如下图:设x2+y2+2y=z;∴x2+(y+1)2=z+1;∴便表示以(0,﹣1)为圆心的圆的半径;由图形看出当该圆经过原点O时半径最小为1;;∴z的最小值为0.故答案为:0.点评:考查不等式组表示的平面区域的概念,能够画出不等式组所表示的平面区域,能判断函数的单调性,圆的标准方程,利用线性规划的知识求最值的方法,数形结合解题的方法.三、解答题:(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)16.(15分)已知△ABC的面积为S,且S.(1)求cosA;(2)求a=,求△ABC周长的最大值.考点:余弦定理的应用.专题:综合题;解三角形.分析:(1)利用S,结合三角形的面积公式,即可求cosA;(2)利用正弦定理,结合a=,即可求△ABC周长的最大值.解答:解:(1)∵△ABC的面积为S,且,∴,∴,∴A为锐角,且,∴,所以.(2),∴周长为==,∵,∴,∴周长最大值为.点评:本题考查正弦定理,考查三角函数知识的运用,考查学生分析解决问题的能力,属于中档题.17.(15分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.考点:直线与平面所成的角;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(1)取PC中点F,并连接DF,FE,根据已知条件容易说明四边形ADFE为平行四边形,从而有AE∥DF,根据线面平行的判定定理即得到AE∥平面PCD;(2)设B到平面PCD的距离为h,从而直线BD与平面PCD所成角的正弦值便可表示为,BD根据已知条件容易求出,而求h可通过V P﹣BCD=V B﹣PCD求出:取AB中点O,连接PO,可以说明PO⊥平面ABCD,而根据已知条件能够求出S△BCD,S△PCD,从而求出h,从而求得答案.解答:解:(1)证明:如图,取PC的中点F,连结DF,EF;∵EF∥AD,且AD=EF,所以ADFE为平行四边形;∴AE∥DF,且AE⊄平面PCD,DF⊂平面PCD;∴AE∥平面PCD;(2)∵∠PAB=60°,PA=AB;∴△PAB为等边三角形,取AB中点O,连接PO;则PO⊥AB;又侧面PAB⊥底面ABCD,平面PAB∩平面ABCD=AB;∴PO⊥平面ABCD;根据已知条件可求得PO=,S △BCD=4,PD=CD=,PC=2,;设点B到平面PCD的距离为h;∴,;∵V P﹣BCD=V B﹣PCD;∴;∴直线BD与平面PCD所成角θ的正弦值.点评:考查中位线的性质,平行四边形的定义,线面平行的判定定理,以及直角三角形边的关系,面面垂直的性质定理,棱锥的体积公式,线面角的定义.18.(15分)函数f(x)=mx|x﹣a|﹣|x|+1(1)若m=1,a=0,试讨论函数f(x)的单调性;(2)若a=1,试讨论f(x)的零点的个数.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:导数的综合应用.分析:(1)将m=1,a=0代入函数表达式,通过讨论x的范围,结合二次函数的性质,从而求出函数的单调性;(2)将a=1代入函数的表达式,通过讨论x的范围,根据二次函数的性质,从而求出函数的零点的个数.解答:解:(1)若m=1,a=0,则f(x)=x|x|﹣|x|+1,①x≥0时,f(x)=x2﹣x+1,对称轴x=,开口向上,∴f(x)在[0,)递减,在(,+∞)递增;②x<0时,f(x)=﹣x2+x+1,对称轴x=﹣,开口向下,∴f(x)在(﹣∞,0)递增;综上:f(x)在(﹣∞,0)递增,在[0,)递减,在(,+∞)递增.(2)a=1时,f(x)=mx|x﹣1|﹣|x|+1,①x<0时,f(x)=mx(1﹣x)+x+1=﹣mx2+(m+1)x+1,△=(m+1)2+4m=m2+6m+1,令m2+6m+1=0,解得:m=﹣3±2,当m<﹣3﹣2或x>﹣3+2时,△>0,有2个零点,当﹣3﹣2<m<﹣3+2时,△<0,没有零点,当m=﹣3±2时,△=0,有1个零点;②0≤x≤1时,f(x)=mx(1﹣x)﹣x+1=﹣mx2+(m﹣1)x+1,△=(m+1)2≥0,m=﹣1时,函数有1个零点,m≠﹣1时,有2个零点;③x>1时,f(x)=mx(x﹣1)﹣x+1=mx2﹣(m+1)x+1,△=(m﹣1)2≥0,m=1时,函数有1个零点,m≠1时,函数有2个零点.点评:本题考查了函数的单调性问题,考查二次函数的性质,考查分类讨论思想,是一道中档题.19.(15分)如图,在平面直角坐标系xOy中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.若直线PQ斜率为时,PQ=2.(1)求椭圆C的标准方程;(2)试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:,(1)设,由于直线PQ斜率为时,,可得,解得,代入椭圆方程可得:,又,联立解得即可.(2)设P(x0,y0),则Q(﹣x0,﹣y0),代入椭圆方程可得.由直线PA方程为:,可得,同理由直线QA方程可得,可得以MN为直径的圆为,由于,代入整理即可得出.解答:解:(1)设,∵直线PQ斜率为时,,∴,∴,=1,∴,∵,化为a2=2b2.联立,∴a2=4,b2=2.∴椭圆C的标准方程为.(2)以MN为直径的圆过定点.下面给出证明:设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣2,0),∴直线PA方程为:,∴,直线QA方程为:,∴,以MN为直径的圆为,即,∵,∴,令y=0,x2+y2﹣2=0,解得,∴以MN为直径的圆过定点.点评:本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、点与椭圆的位置关系、点斜式,考查了推理能力与计算能力,属于难题.20.(15分)已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.考点:数列的应用;数列递推式.专题:点列、递归数列与数学归纳法.分析:(1)直接计算即可;(2)①求出a n的公式即可;②假设存在实数a,d满足条件,得出矛盾,从而否定假设.解答:解:(1)当a=1时,a16=1+15d,a31=16+15d,.因为d≠0,,或,所以a46∈(﹣∞,﹣14]∪[46,+∞).(2)①由题意,1≤n≤16,.令,得i+j+k=7.因为i,j,k∈N*,1≤i<j<k≤16,所以令i=1,j=2,k=4,则2∈M.②不存在实数a,d,使,1,同时属于M.假设存在实数a,d,使,1,同时属于M.∵a n=a+(n﹣1)d,∴b=3a+(i+j+k﹣3)d,从而M={b|b=3a+md,3≤m≤42,m∈Z}.因为,1,同时属于M,所以存在三个不同的整数x,y,z(x,y,z∈[3,42]),使得从而则.因为35与48互质,且y﹣x与z﹣x为整数,所以|y﹣x|≥35,|z﹣x|≥48,但|z﹣x|≤39,矛盾.所以不存在实数a,d,使,1,都属于M.点评:本题主要考查数列知识以及反证法,需要清晰的思路,属于难题.。

浙江省杭州高级中学2015届高考仿真模拟数学理试题 Word版无答案

浙江省杭州高级中学2015届高考仿真模拟数学理试题 Word版无答案

侧视图杭州高级中学2015届高考模拟数学(理科)试题卷第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若函数x x f 2cos )(=,x x g 2sin )(=,则“48ππ<<x ”是“()()f x g x <”的( )A. 充分不必要条件B. 必要不充分条件C .充要条件 D. 既不充分也不必要条件2.若椭圆C 1:13222=+b y x 与双曲线C 2:12222=-by x )0(>b 的四个交点,恰好是一个正方形的四个顶点,则双曲线C 2的离心率是 ( )A. 23B. 6C. 7D. 233.已知某锥体的正视图和侧视图如图1,体的俯视图可以是 ( )A.4.设函数x x x f 2cos sin )(=图象的一条对称轴方程是( ) A . 4π-=xB .0=xC .4π=x D .2π=x5.已知数列{}n a 的通项(1)(21)(1)n nxa x x nx =+++ ,*n N ∈,若1231a a a ++<,则实数x 可能等于 ( ) A .32-B .512-C .47-D .1124- 6.已知异面直线,a b 成60角,A 为空间中一点,则过A 与,a b 都成45角的平面( )A .有且只有一个B .有且只有两个C .有且只有三个D .有且只有四个7.若过点(1,0),(2,0),(4,0),(8,0)P Q R S 作四条直线构成一个正方形,则该正方形的面积不.可能..等于( ) A .1617 B . 365 C . 265 D . 196538.设二次函数2()(21)2(,,0)f x ax b x a a b R a =++--∈≠在[]3,4上至少有一个零点,则22a b +的最小值为( ) A .1100 B . 110 C . 4289 D第Ⅱ卷(非选择题 共110分)二、填空题(本大题共7小题,第9-12题每题6分,第13-15题每题4分,共36分)9.已知[,]2x ππ∈,且1sin(2)23x π-=,则cos 2x = ,sin x = , tan x = .10.设P 是椭圆221259x y +=上的一点,12,F F 是该椭圆的两个焦点,且123F PF π∠=,则12F PF ∆的面积为 ,内切圆半径为 .11.已知函数()ln()x x f x m e ne m -=⋅++为偶函数,且其最小值为2l n 4+,则m n -= ,{}|()()x f x f m n ≤+= .12.已知向量,a b 的夹角为3π, 5a b a -==,向量c a -,c b -的夹角为23π,23c a -=,则a b -与c b -的夹角正弦值为 ,c = .13.数列22n n ⎧⎫⎨⎬⎩⎭(1,2,n =⋅⋅⋅),则数列中的最大项为______________.14.已知{}(,)|1A x y ax by =+=,{}(,)|0,1,2B x y x y x y =≥≥+≤,若A B ≠∅恒成立,则23a b +的取值范围是 .15.已知线段AB 是半径为2的球O 的直径,,C D 两点在球O 的球面上,2CD =,AB CD ⊥,45135AOC ≤∠≤,则四面体ABCD 的体积的取值范围是 .三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.(本题满分15分)在△ABC 中,c b a ,,分别是角A ,B ,C 的对边,且满足4cos b aC a b+=.(Ⅰ)求222sin sin sin CA B+的值;(Ⅱ)若B A tan 2tan =,求sin A 的值.17.(本题满分15分)如图,已知矩形ABCD 是圆柱12O O 的轴截面,N 在上底面的圆周2O 上,,AC BD 相交于点M .(Ⅰ)求证:平面ADN ⊥平面CAN ;(Ⅱ)已知圆锥1MO 和圆锥2MO 的侧面展开图恰好拼成一个半径为2的圆,直线BC 与平面CANCDN ∠的度数.18.(本题满分15分)设函数1()1x f x x -=+,x R ∈且1x ≠-, (Ⅰ)就m 的取值情况,讨论关于x 的方程()f x x m -=在[]0,1x ∈上的解;(Ⅱ)若可变动的实数12,x x 满足12(3)(3)1xxf f +=,求12()f x x +的最小值.19.(本小题满分15分)已知A 是抛物线x y 42=上的一点,以点A 和点)0,2(B 为直径的圆C交直线1=x 于N M ,两点.直线l 与AB 平行,且直线l 交抛物线于Q P ,两点. (Ⅰ)求线段MN 的长;(Ⅱ)若3-=⋅,且直线PQ 与圆C 相交所得弦长与MN 相等,求直线l 的方程.A20.(本题满分14分)设数列{}n a 定义为1a a =,112111n n a a a a +=+++⋅⋅⋅+-,1n ≥.(Ⅰ)证明:存在正实数a ,使得123,,a a a 成等差数列; (Ⅱ)求实数a 的取值范围,使得当2n ≥时,01n a <<.。

2015浙江省杭州二中高考考前仿真卷(理科)

2015浙江省杭州二中高考考前仿真卷(理科)

2014学年杭州二中高三年级仿真考数学试卷(理科) 第I 卷(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()f x 不是奇函数,则下列命题一定为真命题的是( ) A .()()x R f x f x ∀∈-≠-, B .()()x R f x f x ∀∈-=, C .000()()x R f x f x ∃∈-≠-, D .000,()()x f x f x ∃-=2.设等差数列{}n a 的前n 项和为n S ,3813a a +=且735S =,则7a =( ) A .11 B .10 C .9 D .8 3.函数)sin()(ϕω+=x A x f (其中)2,0πϕ<>A )的图象如图所示,为了得到()sin g x x ω=的图象,则只要将)(x f 的图象( )A .向右平移6π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度 D .向左平移12π个单位长度4.设R b a ∈,,则“a b >”是“a a b b >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.若变量,x y 满足210201x y x y x -+≤⎧⎪-≥⎨⎪≤⎩,则点(2,)P x y x y -+所在区域的面积为( )A .34 B. 43 C. 12D. 1 6.已知函数2|log |,02()sin(),2104x x f x x x π<<⎧⎪=⎨≤≤⎪⎩,若存在实数1x ,2x ,3x ,4x ,满足1234x x x x <<<,且1234()()()()f x f x f x f x ===,则3412(2)(2)x x x x -⋅-⋅的取值范围是( )A .(4,16)B .(0,12)C .(9,21)D .(15,25)7.已知点P2 1,F F分别为双曲线的左右焦点,且I为三角形21FPF的内心,若1212IPF IPF IF FS S Sλ∆∆∆=+成立,则λ的值为()ABCD8.过正方体ABCD-A1B1C1D1棱DD1的中点与直线BD1所成角为40°,且与平面AC C1A1所成角为50°的直线条数为()A.1B.2C.3D.无数第II卷(共110分)二、填空题:本大题共7小题,第9至12题每小题6分,第13至15题每题4分,共36分.9.设全集为R,集合2{|430},M x R x x=∈-+>集合{|24},xN x R=∈>则M N⋃=;M N⋂=;()RC M N⋂=.10.已知02πα<<,02πβ-<<,3cos()5αβ-=,且3tan4α=,则cosα=________,sinβ=_______ . 11.在如图所示的空间直角坐标系O—xyz中,一个四面体的顶点坐标分别是(2,0,0),(0,2,0),(0,0,2),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图、侧视图和俯视图分别为(填写编号),此四面体的体积为.12.已知圆22:(cos)(sin)9(R)C x yααα-++=∈与直线:cos sin10(R)l x yβββ--=∈,则圆C的圆心轨迹方程为,直线l与圆C的位置关系是______.④③②①1A13.已知点)21,21(-A 在抛物线)0(2:2>=p px y C 的准线上,点M ,N 在抛物线C 上,且位于x 轴的两侧,O 是坐标原点,若3=⋅,则点A 到动直线MN 的最大距离为 .14.在直径AB 为2的圆上有长度为1的动弦CD ,则AC BD ⋅的取值范围是 .15.已知,,a b c 为非零实数,()ax b f x cx d +=+,且(2)2,(3)3f f ==.若当dx c≠-时,对于任意实数x ,均有(())f f x x =,则()f x 值域中取不到的唯一实数是 .三、解答题:本大题共5小题,第16至19题每题15分,第20题14分,共74分.解答应写出文字说明,证明过程或演算步骤.16.ABC ∆中,内角,A B C ,的对边分别是,,a b c ,已知,,a b c 成等比数列,且3cos 4B =. (Ⅰ)求11tan tan A B+的值; (Ⅱ)设32BA BC ⋅=,求a c +的值.17.已知四棱锥P ABCD -中,底面ABCD 为23ABC π∠=的菱形,PA ⊥平面ABCD ,点Q 在直线PA 上.(Ⅰ)证明:直线QC ⊥直线BD ;(Ⅱ)若二面角B QC D --的大小为23π,点M 为BC 的中点,求直线QM 与AB 所成角的余弦值.CA18.已知数列{}n a 中,111,1,33,n n na n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数,(Ⅰ)求证:数列23{}2n a -是等比数列;(Ⅱ)设n S 是数列{}n a 的前n 项和,求满足0n S >的所有正整数n .19.如图,中心在坐标原点,焦点分别在x 轴和y 轴上的椭圆1T ,2T 都过点(0,M ,且椭圆1T 与2T (Ⅰ)求椭圆1T 与椭圆2T 的标准方程;(Ⅱ)过点M 引两条斜率分别为,k k '的直线分别交1T ,2T 于点P ,Q ,当4k k '=时,问直线PQ 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.20.设1)(2+--=ax x x f ,22()ax x ag x x++=, (Ⅰ)若0)(=+b x f 在]2,1[上有两个不等实根,求(1)g b +的取值范围;(Ⅱ)若存在]2,1[1∈x ,使得对任意的21[,1]2x ∈,都有)()(21x g x f ≥成立,求实数a 的取值范围.参考答案二、填空题:9. (,1)(2,)-∞⋃+∞;(3,)+∞;(,3]-∞ 10.45;725- 11. ③ ② ② ;83;12. 221x y +=;相交; 13. 214. 31[,]22-; 15. 52三、解答题:16. 解:(Ⅰ)因为,,a b c 成等比数列,所以ac b =2,由余弦定理可知:)1(2122cos 22222-+=-+=-+=caa c ac ac c a acbc a B 又3cos 4B =,所以47sin =B ,且43)1(21=-+c a a c ,解得212或=a c . 于是772778sin sin sin sin sin cos sin cos tan 1tan 1或=⋅=⋅=+=+B a c B A C B B A A B A . (Ⅱ)因为32BA BC ⋅=,所以23cos =B ca ,所以2=ca ,又212或=a c ,于是3=+a c . 【另解】由32BA BC ⋅=得3cos 2ca B ⋅=,由3cos 4B =可得2ca =,即22b =由余弦定理 2222cos b a c ac B =+-⋅得2222cos 5a c b ac B +=+⋅=()2222549a c a c ac +=++=+= ∴ 3a c +=.17. (Ⅰ)证明:显然BD AC ⊥,PA ⊥平面ABCD ,则PA BD ⊥,故BD PAC ⊥平面,QC PAC ⊆平面,则直线QC ⊥直线BD ;(Ⅱ)由已知和对称性可知,二面角A B QC --的大小为3π,设底面ABCD 的棱长为单位长度2,AQ x = ,设AC ,BD 交于点E,则有点B 到平面AQC 的距离BE 为1,过点E 做QC 的垂线,垂足设为F ,则有tan tan3BE BFE EF π∠==,BE=1,则,点A 到QCx =⋅x =.过点M 作AB 的平行线交AD 的中点为G ,则GM=2,2QG ==,AM ==QM =,22234104cos 2QM GM QG QMG QM GM +-+-∠===⋅, 即所求的QM 与AB所成角的余弦值为34.18.(Ⅰ)证明:21222(1)22221313113(21)(6)(21)13232322333332222n n n n n n n n a n a n n a a a a a a ++++--++---====----, 所以数列23{}2n a -是以23126a -=-为首项,13为公比的等比数列。

浙江省杭州市2015年高考数学命题比赛模拟试卷(6)及答案

浙江省杭州市2015年高考数学命题比赛模拟试卷(6)及答案

2015年高考模拟试卷数学卷(理科)第(Ⅰ)卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(原创)已知集合}21{,=A ,}12{A a a B ∈-=,则=B A ( ) A .{}1 B .{}1,2 C .{}1,2,3 D .∅ 2.(改编)若某几何体的三视图(单位:cm)如图所示,则此几何体的侧面积等于( ) A .212cm π B .215cm π C .224cm π D .230cm π 3.(改编)已知0log log ,10<<<<n m a a a ,则( ) A . 1n m <<B . 1m n <<C . 1m n <<D . 1n m <<4.(原创)若实数x ,y 满足不等式组⎪⎩⎪⎨⎧≥-+≤-+≤083024733y x y x y , 则y x z 2+=的最大值是( )A .6B .7C .8D .9 5.(原创)在三角形ABC 中,“0tan tan tan >++C B A ”是“三角形ABC 为锐角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(原创)已知sin cos (0,)3αααπ+=∈,则s i n ()12πα+的值为( ) ABCD .7.(改编)已知圆M :25)2()322=-+-y x (,过点)0,1(P 作两条相互垂直的弦AC 和BD ,那么四边形ABCD 的面积最大值为( ) A .21 B .321 C .221D . 42 8.(改编)设函数2)(-+-=x a x x f ,若函数)()()(x f a x x g ⋅+=的图象中心对称,则a 的值为( )A .2B .2-C .0D . 32-第(Ⅱ)卷(非选择题 共110分)二、填空题:本大题7小题,9-12题每题6分,13-15每题4分,共36分,把答案填在题中的横线上.9.(原创)已知首项为1,公差不为0的等差数列{}n a 的第2,4,9项成等比数列,则这个等(第2题图)比数列的公比=q ;等差数列{}n a 的通项公式n a = ;设数列{}n a 的前n 项和为n S ,则n S = 。

浙江省杭州二中2015届高三数学第二次月考试题 理(含解析)

浙江省杭州二中2015届高三数学第二次月考试题 理(含解析)

数学试卷(理科)【试卷综析】本试卷是高三理科试卷,以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:集合、不等式、向量、三视图、导数、简单的线性规划、直线与圆、数列、充要条件等;考查学生解决实际问题的综合能力,是份较好的试卷. 第I 卷(共50分)【题文】一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1、若集合{|2}x M y y,{|1}Py yx ,则MPA .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y【知识点】集合的运算A1 【答案】【解析】C 解析:因为集合{}{}0,0M y y P y y =>=≥,所以{}0M P y y ⋂=>,故选择C.【思路点拨】先求得集合M ,P ,然后利用交集的定义可求得M P ⋂的值. 【题文】2、实数等比数列{}n a 中,01>a ,则“41a a <”是“53a a <” 的A.充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【知识点】等比数列性质 充分必要条件A2 D3【答案】【解析】A 解析:设等比数列的公比为q ,由14a a <得311a a q <,因为10a >,所以31q >,即1q >,由53a a <得2411a q a q <,因为10a >,所以21q >即11q q <->或,所以“41a a <”是“53a a <” 的充分而不必要条件,故选择A.【思路点拨】结合等比数列的性质,利用充分条件和必要条件的定义进行判断即可.【题文】3、已知圆22:21C x y x +-=,直线:(1)1l y k x =-+,则与C 的位置关系是 A .一定相离 B ..一定相切 C .相交且一定不过圆心 D .相交且可能过圆心[【知识点】直线与与圆的位置关系H4 【答案】【解析】C 解析:因为直线恒过点()1,1,且该点在圆的内部,所以直线与圆相交,又因为圆的圆心坐标为()1,0,直线的斜率存在所以直线不能过圆心,故选择C.【思路点拨】根据直线恒过点在圆的内部,可得直线与圆相交,又因为直线恒过的点与圆心在一条斜率不存在的直线上,而直线斜率存在,所以不过圆心. 【题文】4、已知实数等比数列{}n a 公比为q ,其前n 项和为n S ,若3S 、9S 、6S 成等差数列,则3q 等于A .12-B .1C .12-或1D .112-或【知识点】等差数列的性质 等比数列前n 项和D2 D3 【答案】【解析】A 解析:因为3S 、9S 、6S 成等差数列,所以9362S S S =+,若公比1q =,9362S S S ≠+,所以1q ≠,当1q ≠时,可得()()()9361111112111a q a q a q qqq---=+---,整理可得:12q =-,故选择A.【思路点拨】根据等差数列的性质列的9362S S S =+,当公比1q =,等式不成立,当1q ≠时,再根据等比数列的求和公式进行化简即可得到,【题文】5、已知x 、y 满足2y xx y x a ≥⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最大值是最小值的4倍,则a 的值是A .34B .14C .211 D .4【知识点】线性规划E5【答案】【解析】B 解析:画出x y ,满足2y xx y x a ≥⎧⎪+≤⎨⎪≥⎩的可行域如下图:由 2y x x y +⎧⎨⎩==,得()1,1A ,由x a y x =⎧⎨=⎩,得()a,a B , 当直线2z x y =+过点()1,1A 时,目标函数2z x y =+取得最大值,最大值为3; 当直线2z x y =+过点()a,a B 时,目标函数2z x y =+取得最小值,最小值为3a ;由条件得343a =⨯,所以14a =,故选择B.【思路点拨】由题意可得先作出不等式表示的 平面区域,由2z x y =+可得2y x z =-+,则z 表示直线2y x z =-+在y 轴上的截距,截距越大,z 越大,可求z 的最大值与最小值,即可求解a .【题文】6、等差数列{}n a 前n 项和为n S ,已知254523335,25S S a a ==,则6543S a =A .125B .85C .45D .35【知识点】等差数列前n 项和 D2【答案】【解析】C 解析:根据等差数列前n 项和的性质可得()2121n nS n a -=-,所以254523335,25S Sa a ==,可得1323233315,,59a a a a ==根据合比定理可得:33435499413a a +==+,所以 65334343965654513S a a a ===,故选择C.【思路点拨】根据等差数列前n 项和的性质可得()2121n n S n a -=-,可得1323233315,,59a a a a ==根据合比定理可得:33435499413a a +==+,即可求得.【题文】7、若正数a ,b 满足111a b +=,则1911a b +--的最小值A .1B .6C .9D .16 【知识点】基本不等式E6【答案】【解析】B 解析:∵正数a b ,,满足111a b +=,10a a b ∴-=>,解得1,a >同理1b >, 所以()19191916111111a a a b a a a +=+=+-≥=------,当且仅当()1911a a =--,即43a =等号成立,所以最小值为6.故选择B. 【思路点拨】根据已知可得10b a a -=>,代入1911a b +--,整理可得()()11912.91611a a a a +-≥-=--,可得结果.【题文】8、已知12,F F 分别是椭圆的左,右焦点,现以2F 为圆心作一个圆恰好经过椭圆中心并且交椭圆于点,M N ,若过1F 的直线1MF 是圆2F 的切线,则椭圆的离心率为A .13-B .32-C .22D .23【知识点】椭圆的几何性质H5【答案】【解析】A 解析:因为过1F 的直线1MF 是圆2F 的切线,所以可得12290,FMF MF c∠==,因为122F F c=,所以可得13MF c=,由椭圆定义可得2132MF MF c c a+=+=,可得题意离心率为23113e ==-+,故选择A.【思路点拨】由已知条件推导出21212290MF c F F c FMF ==∠=︒,,,从而得到13MF c=,由此能求出椭圆的离心率.【题文】9、若等差数列{}n a 满足2211010a a +=,则101119...S a a a =+++的最大值为A .60B .50C . 45D .40【知识点】等差数列的性质 D2【答案】【解析】B 解析:设等差数列的公差为d ,因为2211010a a +=,所以()221010910a d a -+=,而10111910...1045S a a a a d=+++=+,可得104510S da -=,代入()221010910a d a -+=,整理得()222213545360210000d dS S +-+-=,由关于d 的二次方程有实根可得()()22222360413545210000S S ∆=-+-≥,化简可22500S ≤得,解得50S ≤,故选择B.【思路点拨】设等差数列的公差为d ,易得()221010910a d a -+=,由求和公式可得104510S d a -=,代入()221010910a d a -+=,整理可得关于d 的方程,由0∆≥可得S 的不等式,解不等式可得.【题文】10、已知函数()f x 是定义在R 上的奇函数,在(0,2]上是增函数,且(4)()f x f x -=-,给出下列结论:①若1204x x <<<且124x x +=,则12()()0f x f x +>;②若1204x x <<<且125x x +=,则12()()f x f x >;③若方程()f x m =在[8,8]-内恰有四个不同的实根1234,,,x x x x,则12348x x x x +++=-或8;④函数()f x 在[8,8]-内至少有5个零点,至多有13个零点其中结论正确的有A .1个B .2个C .3个D .4个 【知识点】函数的性质B3 B4【答案】【解析】C 解析:因为(4)()f x f x -=-,所以()()8f x f x +=,即函数的周期为8,因此函数是周期函数,又是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,①若1204x x <<<且124x x +=,由图像可得正确;②若1204x x <<<且125x x +=,f x ()在(0,2]上是增函数,则11054x x -<<<,即1512x <<,由图可知:12()()f x f x >;故②正确;③当0m >时,四个交点中两个交点的横坐标之和为()2612⨯-=-,另两个交点的横坐标之和为224⨯=,所以12348x x x x +++=-.当m <0时,四个交点中两个交点的横坐标之和为2×(-2),另两个交点的横坐标之和为2×6,所以12348x x x x +++=.故③正确;④如图可得函数()f x 在[8,8]-内有5个零点,所以不正确.故选择C.【思路点拨】由条件(4)()f x f x -=-得()()8f x f x +=,说明此函数是周期函数,又是奇函数,且在(0,2]上为增函数,由这些画出示意图,由图可解决问题.第II 卷(共100分)【题文】二、填空题:本大题共7小题,每小题4分,共28分.【题文】11、如图为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD各边的长度(单位:km ):AB=5,BC=8,CD=3,DA=5,如图所示,且A 、B 、C 、D 四点共圆,则AC 的长为_________km .【知识点】解三角形 C8【答案】【解析】7.解析:因为A B C D 、、、四点共圆,所以D B π∠+∠=,在ABC 和ADC 中,由余弦定理可得:()222285285cos 35235cos D Dπ+-⨯⨯⨯-=+-⨯⨯⨯,1cos 2D =-,代入可得222135235492AC ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,故答案为7.【思路点拨】根据A B C D 、、、四点共圆,可得D B π∠+∠=,再由余弦定理可得解得1cos 2D =-,代入余弦定理可得.【题文】12、在△ABC 中,6A π=,D 是BC 边上任意一点(D 与B 、C 不重合),且22||||AB AD BD DC =+⋅,则角B 等于 .【知识点】向量的线性运算 解三角形 F1 C8【答案】【解析】512π.解析:由已知可得:()()()22...AB AD AB AD AB AD AB AD BD BD DC-=-+=+=,整理得()()..0BD AB AD DC BD AB AC ++=+=,即()BD AB AC ⊥+,又因为D 在BC 上,所以()BC AB AC⊥+,即AB AC =三角形为等腰三角形,所以6212B πππ-∠==,故答案为512π.【思路点拨】由已知变形可得()()()22...AB AD AB AD AB AD AB AD BD BD DC-=-+=+=,可得()BC AB AC⊥+,即AB AC =,三角形为等腰三角形,可求得.【题文】13、函数210()log 0x x f x x x +≤⎧=⎨>⎩,则函数[()]1y f f x =+的所有零点所构成的集合为________.【知识点】函数的零点问题 B9【答案】【解析】113,,24⎧--⎨⎩.解析:当1x ≤-时,()10f x x =+≤,∴1111[0]f f x x +=+++=(),∴3x =-;当10x -<≤时,()10f x x =+>,∴()2111]102[f f x log x x +=++=∴=-(),;当01x <≤时,()20f x log x =≤,()21110]14[f f x log x x ∴+=++=∴=,;当1x >时,()()2220110[]f x log x f f x log log xx =∴+=+=∴=>,(),所以函数[()]1y f f x =+的所有零点所构成的集合为:113,,24⎧--⎨⎩,故答案为113,,24⎧--⎨⎩.【思路点拨】欲求函数[()]1y f f x =+函数的零点,即求方程()10f f x +=⎡⎤⎣⎦的解,下面分:当0x ≤时,当0x >时分别求出函数[()]1y f f x =+的所有零点所构成的集合即可.【题文】14、已知正三棱柱111ABCA B C 体积为94,若P 为底面111A B C的中心,则1PA 与平面ABC 所成角的大小为【知识点】求线面角 G7【答案】【解析】3π.解析:因为1AA ⊥底面111A B C ,所以1APA ∠为PA 与平面111A B C所成角,因为平面ABC ∥平面111A B C ,所以1APA ∠为PA 与平面ABC 所成角,因为正三棱柱111ABCA B C 体积为94,底面是边长为3,所以11934ABC V S AA ==,可得13AA =,11A P =,所以111tan 3AA APA A P ∠==,即13APA π∠=,故答案为3π.【思路点拨】利用三棱柱111ABCA B C 的侧棱与底面垂直和线面角的定义可知,1APA ∠为PA 与平面111A B C 所成角,,即为1APA ∠为PA 与平面ABC 所成角.利用三棱锥的体积计算公式可得13AA =,再利用正三角形的性质可得1A P ,在1Rt AA P 中,利用111tan 3AA APA A P ∠==即可得出.【题文】15、已知sin ,cos αα是关于x 的方程20x ax a -+=的两个根,则1cos 2sin 21sin 2cos 21sin 2cos 21cos 2sin 2.【知识点】二倍角公式 同角三角函数基本关系式 韦达定理 C6 C2 【答案】【解析】21解析:根据二倍角公式221cos 22cos ,1cos 22sin ,sin 22sin cos ααααααα+=-==,可将已知式子化简为:22222cos 2sin cos 2sin 2sin cos cos sin 12sin 2sin cos 2cos 2sin cos sin cos sin cos αααααααααααααααααα--+=--=---,由韦达定理可得:sin cos sin .cos aa αααα+=⎧⎨=⎩,根据同角三角函数基本关系式可得:()22sin cos 12sin cos 12a aαααα+==+=+,即2210a a --=,解得1a =,又因为sin cos αα+≤,所以1a =-111sin cos a αα-=-=,故答案为1.【思路点拨】由韦达定理以及同角三角函数基本关系式可求得2210a a --=,再根据sin cos αα+≤,确定a 值,利用二倍角公式将已知式子降角升幂化简为1sin cos αα-,即可求得.【题文】16、已知O 是ABC ∆外心,若2155AO AB AC =+,则cos BAC ∠= .【知识点】向量的数量积 F3【答案】【解析】.解析:因为O 为三角形的外心,所以2211,,22AO AB AB AO AC AC ==,由22155AO AB AB AC AB =+整理得:22AB AC AB=,同理22155AO AC AB AC AC=+整理可得:243AC AB AC =,所以cos 42AC AB BAC AC AB∠===,故答案为.【思路点拨】根据O 为三角形外心,可得2211,,22AO AB AB AO AC AC ==再让已知式子分别与向量,AB AC 求数量积,可得到22AB AC AB =与243AC AB AC =,再结合向量夹角公式求得结果.【题文】17、已知函数()a f x x x =-,对(0,1)x ∀∈,有()(1)1f x f x ⋅-≥恒成立,则实数a的取值范围为 .【知识点】不等式恒成立问题 E8【答案】【解析】114a a ≤-≥或解析:因为(0,1)x ∀∈,有()(1)1f x f x ⋅-≥恒成立,,即()111a a x x x x ⎛⎫⎛⎫---≥ ⎪⎪-⎝⎭⎝⎭,整理可得()()()22222111a ax x x x x x ⎡⎤--++-≥-⎣⎦,令()11(0,]4x x t -=∈,上式为()()()2212010a a t t t a t a t --+-≥⇒++-≥,所以1a t a t ≤-≥-或因为1(0,]4t ∈,所以114a a ≤-≥或,故答案为114a a ≤-≥或【思路点拨】根据题意可得()()11f x f x -≥,即()111a a x x x x ⎛⎫⎛⎫---≥ ⎪⎪-⎝⎭⎝⎭,令()11(0,]4x x t -=∈,整理可得()()()2212010a a t t t a t a t --+-≥⇒++-≥,1a t a t ≤-≥-或因为1(0,]4t ∈,所以114a a ≤-≥或.【题文】三、解答题:本大题共5小题,共72分.解答请写在答卷纸上,应写出文字说明,证明过程或演算步骤.【题文】18、在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 0b C C a c +--=.(Ⅰ)求B ;(Ⅱ)若b =,求2ac 的取值范围.【知识点】解三角形 三角函数的性质 C3 C8【答案】(Ⅰ)3π;(Ⅱ).【解析】(1)由正弦定理知:sin cos sin sin sin 0B C B C A C --=sin sin()sin cos cos sin A B C A C A C =+=+代入上式sin cos sin sin 0B C B C C --=sin 0C >cos 10B B --=即1sin()62B π-=(0,)B π∈3B π∴=(Ⅱ)由(1)得:22sin bR B ==)sin(72cos 3sin 5)sin sin 2(22ϕ+=+=+=+A A A C A R c a其中,725cos ,723sin ==ϕϕ2(0,)3A π∈]72,3()sin(72∈+ϕA【思路点拨】sin cos sin sin 0B C B C C --=,cos 10B B --=,化一得1sin()62B π-=即可得角B 的值;由正弦定理可得25sin )a c A A A φ+==+再根据正弦函数的范围求得2ac 的范围.【题文】19、如图,在三棱锥P ABC -中,BC ⊥平面PAB .已知PA AB =,点D ,E 分别为PB ,BC 的中点. (Ⅰ)求证:AD ⊥平面PBC ;(Ⅱ)若F 在线段AC 上,满足//AD 平面PEF ,求AFFC 的值.APB CDEF【知识点】线面垂直线面平行 G4 G5【答案】(Ⅰ)略;(Ⅱ)1 2.【解析】(Ⅰ)证明:BC⊥平面PAB BC AD∴⊥PA AB=,D为PB中点AD PB∴⊥PB BC B⋂=AD∴⊥平面PBC(Ⅱ)连接DC交PE于G,连接FG,//AD平面PEF,平面ADC⋂平面PEF FG=//AD FG∴又G为PBC∆重心12AF DG FC GC ∴==【思路点拨】证明,AD PB AD BC ⊥⊥,即可证明AD ⊥平面PBC ,连接DC 交PE 于G ,连接FG ,//AD 平面PEF ,平面ADC ⋂平面PEF FG =,//AD FG ∴,即可得G 为三角形重心.【题文】20、已知数列{}n a 的首项为(0)a a ≠,前n 项和为n S ,且有1(0)n n S tS a t +=+≠,1n n b S =+.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)当1t =时,若对任意*n N ∈,都有5n b b ≥,求a 的取值范围;(Ⅲ)当1t ≠时,若122...n n c b b b =++++,求能够使数列{}n c 为等比数列的所有数对(,)a t .【知识点】等比数列的性质 数列求的和 D3 D4【答案】(Ⅰ)1n n a at-=;(Ⅱ)22[,]911--;(Ⅲ)(1,2).【解析】解析:(Ⅰ)当1n =时,由21S tS a =+解得2a at = 当2n ≥时,1n n S tS a -=+,11()()n n n n S S t S S +-∴-=-,即1n n a ta +=又10a a =≠,综上有1(*)n n a t n N a +=∈,即{}n a 是首项为a ,公比为t 的等比数列,1n n a at -∴=(Ⅱ)当1t =时,,1n n S an b an ==+,当0a >时,{}n b 单调递增,且0n b >,不合题意;当0a <时,{}n b 单调递减,由题意知:460,0b b >< ,且4565||||b b b b ≥⎧⎨-≥⎩解得22911a -≤≤-, 综上a 的取值范围为22[,]911-- (Ⅲ)1t ≠,11n n a at b t -∴=+-22(1)2(1)(...)2(1)111(1)n nn a a a at t c n t t t n t t t t -∴=++-+++=++-----1222(1)(1)1(1)n at a at n t t t +=-+++---由题设知{}n c 为等比数列,所以有,220(1)101at t t a t ⎧-=⎪-⎪⎨-+⎪=⎪-⎩,解得12a t =⎧⎨=⎩,即满足条件的数对是(1,2).(或通过{}n c 的前3项成等比数列先求出数对(,)a t ,再进行证明)【思路点拨】(Ⅰ)由数列递推式求得首项,得到1n n a a t +=,由此说明数列是等比数列,由等比数列的通项公式得答案;(Ⅱ)根据题意可得1n b na =+,因为1n n b b a+-=,所以得到{}n b 为等差数列,当0a >时,{}nb 为单调递增数列,且对任意*0n n N a ∈,>恒成立,不合题意.当0a <时,{}n b 为单调递减数列,由题意知得4600b b >,<,结合去5n b b ≥绝对值后求解a 的取值范围;(Ⅲ)由题意得11nn a at b t -=+-,代入可得()()12221111n n ata at C n t t t +⎛⎫=-+++ ⎪-⎝⎭--,由等比数列通项的特点列式,可得需满足220(1)101at t t a t ⎧-=⎪-⎪⎨-+⎪=⎪-⎩.【题文】21、如图,已知圆2220G x y x +-=:,经过椭圆)0(12222>>=+b a b y a x 的右焦点F 及上顶点B ,过圆外一点))(0,(a m m >倾斜角为65π的直线l 交椭圆于C ,D 两点,(Ⅰ)求椭圆的方程;(Ⅱ)若右焦点F 在以线段CD 为直径的圆E 的外部,求m 的取值范围.【知识点】椭圆方程 直线与椭圆 H5 H8【答案】(Ⅰ)12622=+y x ;(Ⅱ)323m <<【解析】解析:(Ⅰ)∵圆G :02222=--+y x y x 经过点F 、B . ∴F (2,0),B (0,2),∴2=c ,2=b . ∴62=a .故椭圆的方程为12622=+y x .(Ⅱ)设直线l 的方程为)6)((33>--=m m x y .由⎪⎪⎩⎪⎪⎨⎧--==+)(3312622m x y y x 消去y 得0)6(2222=-+-m mx x .设),(11y x C ,),(22y x D ,则m x x =+21,26221-=m x x , ∴3)(331)](33[)](33[221212121m x x m x x m x m x y y ++-=--⋅--=.∵),2(11y x FC -=,),2(22y x FD -=,∴FD FC ⋅=2121)2)(2(y y x x +-- 43)(3)6(3422121+++-=m x x m x x=3)3(2-m m .∵点F 在圆G 的外部,∴0FC FD ⋅>,即2(3)03m m ->,解得0m <或3m >.由△=0)6(8422>--m m ,解得3232<<-m .又6>m ,326<<m .∴3m <<【思路点拨】根据圆与x 轴的交点求得F (2,0),B (0,2),可得椭圆方程;设直线l 的方程为)6)((33>--=m m x y 与椭圆方程联立,得到m x x =+21,26221-=m x x , 因为点F 在圆G 的外部, 所以0FC FD ⋅>,即FD FC ⋅=2121)2)(2(y y x x +-->0,求得3m <<.【题文】22、已知函数2()1,()|1|f x x g x a x =-=-.(Ⅰ)若当x ∈R 时,不等式()()f x g x ≥恒成立,求实数a 的取值范围; (Ⅱ)求函数()|()|()h x f x g x =+在区间[2,2]-上的最大值. 【知识点】含绝对值不等式 二次函数求最值 E2【答案】(Ⅰ)2a -≤;(Ⅱ)()()()()33033003a a h x a a a +≥⎧⎪=+-≤<⎨⎪<-⎩.【解析】解析:(1)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立,①当1x =时,(*)显然成立,此时a ∈R ;②当1x ≠时,(*)可变形为21|1|x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩ 因为当1x >时,()2x ϕ>,当1x <时,()2x ϕ>-,所以()2x ϕ>-,故此时2a -≤. 综合①②,得所求实数a 的取值范围是2a -≤.(2)因为2()|()|()|1||1|h x f x g x x a x=+=-+-=2221,(1),1,(11),1,(1).x ax a xx ax a xx ax a x⎧+--⎪--++-<⎨⎪-+-<-⎩≤≥…10分①当1,22aa>>即时,结合图形可知()h x在[2,1]-上递减,在[1,2]上递增,且(2)33,(2)3h a h a-=+=+,经比较,此时()h x在[2,2]-上的最大值为33a+.②当01,22aa即0≤≤≤≤时,结合图形可知()h x在[2,1]--,[,1]2a-上递减,在[1,]2a--,[1,2]上递增,且(2)33,(2)3h a h a-=+=+,2()124a ah a-=++,经比较,知此时()h x在[2,2]-上的最大值为33a+.③当10,02aa-<<即-2≤≤时,结合图形可知()h x在[2,1]--,[,1]2a-上递减,在[1,]2a--,[1,2]上递增,且(2)33,(2)3h a h a-=+=+,2()124a ah a-=++,经比较,知此时()h x在[2,2]-上的最大值为3a+.④当31,222aa-<-<-即-3≤≤时,结合图形可知()h x在[2,]2a-,[1,]2a-上递减,在[,1]2a,[,2]2a-上递增,且(2)330h a-=+<, (2)30h a=+≥,经比较,知此时()h x在[2,2]-上的最大值为3a+.当3,322aa<-<-即时,结合图形可知()h x在[2,1]-上递减,在[1,2]上递增,故此时()h x在[2,2]-上的最大值为(1)0h=.综上所述,()()()()33033003a ah x a aa+≥⎧⎪=+-≤<⎨⎪<-⎩.【思路点拨】根据题意可得2(1)|1|x a x--≥(*)对x∈R恒成立,讨论当1x=时,(*)显然成立,此时a ∈R ,当1x ≠时,(*)可变形为21|1|x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩只需求其最小值即可;()2221,(1),1,(11),1,(1).x ax a x h x x ax a x x ax a x ⎧+--⎪=--++-<⎨⎪-+-<-⎩≤≥,讨论对称轴①当1,22aa >>即时,②当01,22a a 即0≤≤≤≤时,③当10,02aa -<<即-2≤≤时,④当31,222aa -<-<-即-3≤≤时,四种情况,分别求得最大值.。

浙江省杭州市高三第二次教学质量检测数学(理)试题 Wor

浙江省杭州市高三第二次教学质量检测数学(理)试题 Wor

2015学年杭州市第二次高考科目教学质量检测高三数学检测试卷(理科)选择题部分(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.1.设集合{}{}2220,2,A x x x B y y x x x A =-≤==-∈,则A B =( )A .[]1,2-B .[]0,2C .(,2]-∞D .[0,)+∞2.设等比数列{}n a 的前n 项和为n S ,则“20a >且10a >”是“数列{}n S 单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .即不充分也不必要条件4.设(0,)x π∈,若11sin cos x x +=,则sin(2)3x π+=( )A .12 B .2 C .12- D .2-5.在梯形ABCD 中,//AB DC ,AB AD ⊥,1AD DC ==,2AB =,若1566AP AD AB =+,则()BC tPB t R +∈的取值范围是( )A .)+∞B .)+∞C .D .[1,)+∞ 6.设双曲线2222:1(0,0)x y C a b a b-=>>的顶点为12,A A ,P 为双曲线上一点,直线1PA 交双曲线C 的一条渐近线于M 点,直线2A M 和2A P 的斜率分别为12,k k ,若21A M PA ⊥且1240k k +=,则双曲线C 离心率为( )A .2BCD .47.设函数()f x 与()g x 的定义域为R ,且()f x 单调递增,()()()F x f x g x =+,()()()G x f x g x =-,若对任意12,x x R ∈12()x x ≠,不等式221212[()()][()()]f x f x g x g x ->-恒成立,则( )A .(),()F x G x 都是增函数B .(),()F x G x 都是减函数C .()F x 是增函数,()G x 是减函数D .()F x 是减函数,()G x 是增函数8.在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,若PA AD AB kBC ===(01)k <<,则( ) A .当12k =时,平面BPC ⊥平面PCD B .当12k =时,平面APD ⊥平面PCD C .当(0,1)k ∀∈,直线PA 与底面ABCD 都不垂直 D .(0,1)k ∃∈,使直线PD 与直线AC垂直非选择题部分(共110分)二、填空题:本大题共7小题,多空题分题6分,单空题每题4分,满分36分.9.设函数()2sin()6f x x πω=+(0,)x R ω>∈,最小正周期T π=,则实数ω=__________,函数()f x 的图象的对称中心为__________,单调递增区间是__________.10.已知某几何体的三视图如图所示,则这个几何体的体积为__________,表面积为__________.11. 设直线212:260,(1)10l ax y l x a y a ++==+-+-=,若12l l ⊥,则a =__________.12.若实数,x y 满足0120x y x x y +≥⎧⎪≤⎨⎪-≥⎩,则x y +的取值范围是__________.13.设抛物线22(0)y px p =>的焦点为F ,点,A B 在抛物线上,且0120AFB ∠=,弦AB中点M 在准线l 上的射影为1M ,则1MM AB的最大值为__________.14.定义{},(),,()x x y M x y y x y ≥⎧=⎨<⎩,设22,42a x xy x b y xy y =++=++(,)x y R ∈,则{},M a b 的最小值为__________,当M 取到最小值是,x =__________,y =__________.15.在边长为1的正方体,''''ABCD A B C D -中,,,E F G 分别在',,BB BC BA 上,并且满足'34BE BB =,12BF BC =,12BG BA =,若平面'AB F ,平面ACE ,平面'B CG 交于一点O ,BO xBG yBF zBE =++,则x y z ++=__________,OD =__________.三、解答题 :本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin sin sin m A B C =+ ()m R ∈(1)当3m =时,求cos A 的最小值; (2)当3A π=时,求m 的取值范围.17. (本题满分15分)在底面为正三角形的三棱柱111ABC A B C -,2AB =,1AA ⊥平面ABC ,,,E F G 分别为1,,BB AB AC 的中点.(1)求证://BG 平面1A EC ;(2)若1AA -,求二面角1A EC F --的大小.18.(本题满分15分)设数列{}n a 满足11a =,11n n na a a +=+*()n N ∈. (1)求证:22123n n a a +≤-≤;(2)求证:13123221n n a n nn a n +-≤≤--.19.(本题满分15分)设直线l 与抛物线22x y =交于,A B 两点,与椭圆22143x y +=交于C ,D 两点,直线,,,OA OB OC OD (O 为坐标原点)的斜率分别为1234,,,k k k k ,若OA OB ⊥. (1)是否存在实数t ,满足1234()k k t k k +=+,并说明理由; (2)求OCD ∆面积的最大值.20.(本题满分15分)设函数1()(1,)f x x c b c R x b=++<-∈-,函数()()g x f x =在区间[]1,1-上的最大值为M . (1)若2b =-,求M 的值;(2)若M k ≥对任意的,b c 恒成立,求k 的最大值.2015学年杭州市第二次高考科目教学质量检测理科数学试题参考答案一、选择题:本大题共8个小题,每小题5分,共40分.1.A2.C3. C4.A5.A6.B7.A8.A二、填空题:本大题共7小题,多空题分题6分,单空题每题4分,满分36分.9. 2 ,0212k ππ⎛⎫-⎪⎝⎭ ,,,36k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ 10. 83 63+11.23 12. [0,2] 13. 14. 16-,13-,16- 15. 43三、解答题 :本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)所以cos A 的最小值为79,当且仅当b c =时等号成立.(2)当3A π=时,sin sin )26m B C B π=+=+, 所以2sin()6m B π=+.又因为2(0,)3B π∈,所以5(,)666B πππ+∈, 所以1sin (,1]62B π⎛⎫+∈ ⎪⎝⎭, 所以(1,2]m ∈. 17.(本题满分15分)解:(1)取1A C 中点H ,连接,HG EH , 所以1//HG A A ,112HG A A =, 又E 为1BB 的中点, 所以//,BE HG BE HG =, 所以四边形EHGB 为平行四边形, 故//BG EH ,又EH ⊂平面1A EC ,BG ⊄平面1A EC , 所以//BG 平面1A EC .(2)以F 为坐标原点建立空间直角坐标系,设1AA a =,则1(0,0,0),(1,0,),(1,0,),2a F A a E C -,所以11(1,0,),(0,3,0),(2,0,),(1,3,)22a a FE FC A E AC a ===-=-, 设平面ECF 法向量为(,,)m m x y z ==,则由0FE m ∙=及0FC m ∙=,得020a x z ⎧+=⎪=, 不妨取(,0,2)m a =-;类似的,可取平面1A EC 法向量为(,4)n a =, 设二面角1AEC F --的平面角为θ, 则2cos cos,m n θ==当a =cos 0θ=,即090θ=.18.(本题满分15分)解:(1)因为11a =及11(1)n n na a n a +=+≥, 所以1n a ≥,所以2101na <≤. 因为2221211()2n n n n na a a a a +=+=++, 所以221212(2,3]n n na a a +-=+∈,即22123n n a a +≤-≤. (2)由(1)得221123n n a a n +<-≤ 所以212131n n a n ++<≤+,即22132(2)n n a n n -<≤-≥,当1n =时,也满足, 所以22132n n a n -<≤-.所以1213121[,]3221n n n a n na a n n ++=+∈-- 19.(本题满分14分)解:设直线l 方程为y kx b =+,11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y . 联立y kx b =+和22x y =, 得2220x kx b --=,则122x x k +=,122x x b =,2480k b ∆=+>.由OA OB ⊥,所以12120x x y y +=,得2b =. 联立2y kx =+和223412x y +=,得22(34)1640k x kx +++=,所以3421634k x x k +=-+,342434x x k=-+. 由22192480k ∆=->,得214k >.(1)因为121212y y k k k x x +=+=,3434346y yk k k x x +=+=-所以123416k k k k +=-+.(2)根据弦长公式34CD x =-,得:CD =,根据点O 到直线CD的距离公式,得d =所以12OCDS CD d ∆=∙=,0t =>,则24OCD S t ∆=≤+ 所以当2t =,即k =OCD S ∆. 20.(本题满分15分)解:(1)当2b =-时,1()2f x x c x =+++在区间[]1,1-上是增函数, 所以4(1),(1)3g c g c =+-=, 所以{}2,()3max (1),(1)42,()33c c M g g c c ⎧≤-⎪⎪=-=⎨⎪+≥-⎪⎩.(2)①当2b ≤-时,因为1(1)11M g c b ≥=+++,1(1)11M g c b≥-=+--, 所以112(1)(1)1111M g g c c b b≥+-=+-++++- 21124221113b b b ≥++=+≥+--,所以23M ≥.②当2b -<≤(1)(1)(1)f b f f +<-<,则1max{(1),(1)}max{1,2}1M g g b c b c b=+=++++- 12(1)(1)121M g b g c b c b≥++=+++++-, 1121b b≥++≥-,所以1M ≥.③当1b <≤-时,有(1)(1)(1)f b f f +<<-, 则1max{(1),(1)}max{1,2}1M g g b c b c b=-+=-++++--, 所以12(1)(1)121M g b g c b c b≥++-=-+++++-- 1321b b ≥++≥+,所以1M ≥.综上可知,对任意的,b c 都有1M ≥.。

浙江省杭州市高考数学二模试卷理(含解析)

浙江省杭州市高考数学二模试卷理(含解析)

2015年浙江省杭州市高考数学二模试卷(理科)一、选择题(本大题共8小题,每小题5分,共40分)1.下列函数中,既是偶函数又在(0,+∞)单调递增的是()A. B. y=cosx C. y=e x D. y=ln|x|2.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x<0 D.对任意的x∈R,2x>03.设等比数列{a n}的各项均为正数,若+=+,+=+,则a1a5=() A. 24 B. 8 C. 8 D. 164.设函数y=sinax+b(a>0)的图象如图所示,则函数y=log a(x+b)的图象可能是()A. B. C.D.5.设平行于y轴的直线分别与函数y1=log2x及y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2的图象上,若△ABC为正三角形,则m•2n=()A. 8 B. 12 C. 12 D. 156.已知ABC﹣A1B1C1是所有棱长均相等的直三棱柱,M是B1C1的中点,则下列命题正确的是()A.在棱AB上存在点N,使MN与平面ABC所成的角为45°B.在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°C.在棱AC上存在点N,使MN与AB1平行D.在棱BC上存在点N,使MN与AB1垂直7.设P是双曲线C:﹣=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,﹣b),若=λ+μ(O为坐标原点),则λ2+μ2的最小值为()A.ab B. C.ab D.8.设f0(x)=|x|﹣10,f n(x)=|f n﹣1(x)|﹣1(n∈N*),则函数y=f20(x)的零点个数为()A. 19 B. 20 C. 21 D. 22二、填空题(本大题共7小题,第9-12题每小题6分,第13-15题每题4分,共36分)9.设集合{(x,y)|(x﹣1)2+(y﹣2)2≤10}所表示的区域为A,过原点O的直线l将A 分成两部分,当这两部分面积相等时,直线l的方程为;当这两部分面积之差最大时,直线l的方程为,此时直线l落在区域A内的线段长为.10.若某几何体的三视图如图所示,则这个几何体中最长的棱长等于,体积等于.11.设直线l:y=kx+1经过抛物线x2=2py(p>0)的焦点F,则p= ;已知Q,M分别是抛物线及其准线上的点,若=2,则|MF|= .12.设非负实数x,y满足(m<0),则不等式所表示的区域的面积等于(用m表示);若z=2x﹣y的最大值与最小值之和为19,则实数m= .13.在正四面体ABCD中,M是AB的中点,N是棱CD上的一个动点,若直线MN与BD所成的角为α,则cosα的取值范围是.14.在△ABC中,||=3,||=5,M是BC的中点,=λ(λ∈R),若=+,则△ABC的面积为.15.已知单位正方形的四个顶点A(0,0),B(1,0),C(1,1)和D(0,1),从A点向边CD上的点P(,1)发出一束光线,这束光线被正方形各边反射(入射角等于反射角),直到经过正方形某个顶点后射出,则这束光线在正方形内经过的路程长度为.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).(Ⅰ)若b=2,求△ABC的面积;(Ⅱ)若1≤a≤6,求sinC的取值范围.17.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=AB,PA⊥平面ABCD.(1)求证:平面PBD⊥平面PAD;(2)若PA=AB,求二面角A﹣PD﹣C的余弦值.18.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣c,0),点D(0,b),直线DF的斜率为.(Ⅰ)求椭圆C的离心率;(Ⅱ)设过点F的直线交椭圆于A,B两点,过点P(﹣4c,0)作与直线AB的倾斜角互补的直线l,交椭圆C于M,N两点,问:是否为定值,若是,求出此定值,若不是,说明理由.19.数列{a n}与{b n}满足:①a1=a<0,b1=b>0,②当k≥2时,若a k﹣1+b k﹣1≥0,则a k=a k﹣1,b k=;若a k﹣1+b k﹣1<0,则a k=,b k=b k﹣1.(Ⅰ)若a=﹣1,b=1,求a2,b2,a3,b3的值;(Ⅱ)设S n=(b1﹣a1)+(b2﹣a2)+…+(b n﹣a n),求S n(用a,b表示);(Ⅲ)若存在n∈N*,对任意正整数k,当2≤k≤n时,恒有b k﹣1>b k,求n的最大值(用a,b表示).20.设a>0,b>0,函数f(x)=ax2﹣bx﹣a+b.(Ⅰ)(i)求不等式f(x)<f(1)的解集;(ii)若f(x)在[0,1]上的最大值为b﹣a,求的取值范围;(Ⅱ)当x∈[0,m]时,对任意的正实数a,b,不等式f(x)≤(x+1)|2b﹣a|恒成立,求实数m的最大值.2015年浙江省杭州市高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分)1.下列函数中,既是偶函数又在(0,+∞)单调递增的是()A. B. y=cosx C. y=e x D. y=ln|x|考点:函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据函数的单调性、奇偶性的定义逐项判断即可.解答:解:y=在(0,+∞)上递增,但不具有奇偶性,排除A;y=cosx为偶函数,但在(0,+∞)上不单调,排除B;y=e x在(0,+∞)上递增,但不具有奇偶性,排除C;y=ln|x|的定义域为(﹣∞,0)∪(0,+∞),关于原点对称,且ln|﹣x|=ln|x|,故y=ln|x|为偶函数,当x>0时,y=ln|x|=lnx,在(0,+∞)上递增,故选D.点评:本题考查函数的奇偶性、单调性的判断,属基础题,定义是解决问题的基本方法.2.命题“存在x0∈R,2x0≤0”的否定是()A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0C.对任意的x∈R,2x<0 D.对任意的x∈R,2x>0考点:命题的否定.专题:简易逻辑.分析:直接利用特称命题的否定是全称命题,写出结果即可.解答:解:因为特称命题的否定是全称命题,所以命题“存在x0∈R,2x0≤0”的否定是:对任意的x∈R,2x>0.故选:D.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.3.设等比数列{a n}的各项均为正数,若+=+,+=+,则a1a5=() A. 24 B. 8 C. 8 D. 16考点:等比数列的通项公式.专题:等差数列与等比数列.分析:化简整理利用等比数列的通项公式即可得出.解答:解:∵+=+,∴,∵等比数列{a n}的各项均为正数,∴a1a2=4,同理可得:a3a4=16.∴q4=4,解得,.则a1a5==4q3=8.故选:C.点评:本题考查了等比数列的通项公式,属于基础题.4.设函数y=sinax+b(a>0)的图象如图所示,则函数y=log a(x+b)的图象可能是()A. B. C.D.考点:正弦函数的图象.专题:三角函数的图像与性质.分析:根据条件求出a、b的范围,可得函数y=log a(x+b)的单调性以及图象经过的定点,结合所给的选项得出结论.解答:解:有函数的图象可得0<b<1,=>2π﹣π,∴0<a<1.故函数y=log a(x+b)为减函数,且图象经过点(1﹣b,0),(0,log a b),log a b>0.结合所给的选项,故选:C.点评:本题主要考查函数y=Asin(ωx+φ)的图象特征,对数函数的图象和性质,属于基础题.5.设平行于y轴的直线分别与函数y1=log2x及y2=log2x+2的图象交于B,C两点,点A(m,n)位于函数y2的图象上,若△ABC为正三角形,则m•2n=()A. 8 B. 12 C. 12 D. 15考点:函数的图象.专题:函数的性质及应用.分析:根据题意,设出A、B、C的坐标,由线段BC∥y轴,△ABC是等边三角形,得出AB、AC与BC的关系,求出p、q的值,计算出结果解答:解:根据题意,设A(m,n),B(x0,log2x0),C(x0,2+log2x0),∵线段BC∥y轴,△ABC是等边三角形,∴BC=2,2+log2m=n,∴m=2n﹣2,∴4m=2n;又x0﹣m=,∴m=x0﹣,∴x0=m+;又2+log2x0﹣n=1,∴log2x0=n﹣1,x0=2n﹣1=;∴m+=;2m+2=2n=4m,∴m=,2n=4;∴m•2n=×4=12;故选:B点评:本题考查了指数函数与对数函数的图象与性质的应用问题,也考查了指数,对数的运算问题,是较难的题目.6.已知ABC﹣A1B1C1是所有棱长均相等的直三棱柱,M是B1C1的中点,则下列命题正确的是()A.在棱AB上存在点N,使MN与平面ABC所成的角为45°B.在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°C.在棱AC上存在点N,使MN与AB1平行D.在棱BC上存在点N,使MN与AB1垂直考点:棱柱的结构特征.专题:空间位置关系与距离.分析:根据题意画出图形,如图所示,连接A1M,AM,根据直三棱柱得到侧棱与底面垂直,在直角三角形AA1M中,利用锐角三角函数定义求出tan∠AMA1的值,判断出∠AMA1与45°大小判断即可.解答:解:根据题意画出图形,如图所示,连接A1M,AM,由题意得到AA1⊥面A1B1C1,∴AA1⊥A1M,在Rt△AA1M中,设AA1=1,则有A1B1=A1C1=B1C1=1,A1M=,∴tan∠AMA1==>1,∴∠AMA1>45°,则在棱AA1上存在点N,使MN与平面BCC1B1所成的角为45°,故选:B.点评:此题考查了棱柱的结构特征,直线与面垂直的性质,锐角三角函数定义,以及正弦函数的性质,熟练掌握性质是解本题的关键.7.设P是双曲线C:﹣=1(a>0,b>0)右支上的任意一点,已知A(a,b),B(a,﹣b),若=λ+μ(O为坐标原点),则λ2+μ2的最小值为()A.ab B. C.ab D.考点:双曲线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:确定A,B的坐标,根据=λ+μ,确定坐标之间的关系,可得4λμ=1,利用基本不等式,即可得出结论.解答:解:由题意,设P(x,y),则∵=λ+μ,∴x=(λ+μ)a,y=(λ﹣μ)b∵P为双曲线C右支上的任意一点,∴(λ+μ)2﹣(λ﹣μ)2=1∴4λμ=1∴λ2+μ2≥2λμ=∴λ2+μ2的最小值为.故选:D.点评:本题考查向量知识的运用,考查基本不等式的运用,属于中档题.8.设f0(x)=|x|﹣10,f n(x)=|f n﹣1(x)|﹣1(n∈N*),则函数y=f20(x)的零点个数为()A. 19 B. 20 C. 21 D. 22考点:根的存在性及根的个数判断;函数零点的判定定理.专题:函数的性质及应用.分析:令f n(x)=|f n﹣1(x)|﹣1=0,则|f n﹣1(x)|=1,问题转化为方程|f n﹣1(x)|=1的根的个数,依次递推下去即得结果.解答:解:令f n(x)=|f n﹣1(x)|﹣1=0,则|f n﹣1(x)|=1,即方程f n(x)=0有两个解f n﹣1(x)=±1;又∵f n﹣1(x)=|f n﹣2(x)|﹣1=±1,∴|f n﹣2(x)|=0或者2,所以方程f n(x)=0有3个解:f n﹣2(x)=0或±2;又∵f n﹣2(x)=|f n﹣3(x)|﹣1=0或±2,∴|f n﹣3(x)|=1或3,所以方程f n(x)=0有4个解:f n﹣3(x)=±1或±3;又∵f n﹣3(x)=|f n﹣4(x)|﹣1=±1或±3,∴方程f n(x)=0有5个解:f n﹣4(x)=0,±2或±4;又∵f n﹣4(x)=|f n﹣5(x)|﹣1=0,±2或±4,∴方程f n(x)=0有6个解:f n﹣5(x)=±1,±3或±5;又∵f n﹣5(x)=|f n﹣6(x)|﹣1=±1,±3或±5,∴方程f n(x)=0有7个解:f n﹣6(x)=0,±2,±4或±6;…类似地,最终得出方程f n(x)=0有n+1个解,从而函数y=f20(x)=0有21个解,故选:C.点评:本题考查求函数零点的个数,注意条件中的递推关系,属于中档题.二、填空题(本大题共7小题,第9-12题每小题6分,第13-15题每题4分,共36分)9.设集合{(x,y)|(x﹣1)2+(y﹣2)2≤10}所表示的区域为A,过原点O的直线l将A 分成两部分,当这两部分面积相等时,直线l的方程为2x﹣y=0 ;当这两部分面积之差最大时,直线l的方程为x+2y=0 ,此时直线l落在区域A内的线段长为2.考点:简单线性规划.专题:计算题;作图题;不等式的解法及应用;直线与圆.分析:作出集合{(x,y)|(x﹣1)2+(y﹣2)2≤10}表示的区域A,再结合直线与圆的位置关系确定直线的方程,并求线段的长度即可.解答:解:集合{(x,y)|(x﹣1)2+(y﹣2)2≤10}表示的区域A如下,故过圆心E(1,2)时,两部分面积相等;此时直线l的方程为y=x,即2x﹣y=0;当直线l与OE垂直时,两部分面积之差最大;此时直线l的方程为y=﹣x;即x+2y=0;此时与圆相交于C、D两点,CO==;故CD=2;故答案为:2x﹣y=0,x+2y=0,2.点评:本题考查了学生的作图能力,同时考查了直线与圆的位置关系的应用,属于中档题.10.若某几何体的三视图如图所示,则这个几何体中最长的棱长等于,体积等于.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:可以得出空间几何体是如下图:面PAD⊥面ABCD,PA⊥面ABCD,DC⊥AD,是四棱锥,运用空间几何体的性质,求解边长,面积体积,计算准确,可以得出答案.解答:解:某几何体的三视图如图所示可以得出空间几何体是如下图:面PAD⊥面ABCD,PA⊥面ABCD,DC⊥AD,PA=4,AD=1,DC=4,运用三视图得出:AC==,AB=,根据这个几何体得出:PB==,PC==,PD==,∴这个几何体中最长的棱长等于,底面积为:4×2=5体积为:(4×2×1×2)×4=故答案为:,.点评:本题考查了运用几何体的三视图求解棱长,体积,属于计算题,关键是运用三视图恢复空间几何体的原图.11.设直线l:y=kx+1经过抛物线x2=2py(p>0)的焦点F,则p= 2 ;已知Q,M分别是抛物线及其准线上的点,若=2,则|MF|= 4 .考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由直线方程求出直线所过定点的坐标,从而得到抛物线的焦点坐标,则p可求;作出抛物线图形,数形结合得到|MF|=2p,则答案可求.解答:解:∵直线l:y=kx+1过定点(0,1),即抛物线x2=2py(p>0)的焦点F为(0,1),∴,则p=2;则抛物线方程为x2=4y,如图,∵=2,∴|MQ|=2|QE|,则∠EMQ=30°,∴|MF|=2p=4.故答案为:2;4.点评:本题考查了抛物线的简单性质,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.12.设非负实数x,y满足(m<0),则不等式所表示的区域的面积等于(用m表示);若z=2x﹣y的最大值与最小值之和为19,则实数m= ﹣10 .考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,求出交点坐标,利用数形结合即可得到结论.解答:解:作出不等式组对应的平面区域如图:当y=0时,x=﹣m,由,解得,即A(,﹣),则三角形OAB的面积S=(﹣m)(﹣)=,由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点A(,﹣)时,直线y=2x﹣z的截距最大,此时z最小.即最小值z=2×()﹣(﹣)=,当直线y=2x﹣z经过点B(﹣m,0)时,直线y=2x﹣z的截距最小,此时z最大,即最大值z=﹣2m,∵z=2x﹣y的最大值与最小值之和为19,∴﹣2m+=19,即m=﹣10.故答案为:,﹣10.点评:本题主要考查线性规划的应用,利用数形结合求出相应的交点坐标是解决本题的关键.13.在正四面体ABCD中,M是AB的中点,N是棱CD上的一个动点,若直线MN与BD所成的角为α,则cosα的取值范围是[] .考点:直线与平面所成的角.专题:空间角.分析:首先①当N点与C点重合时,线段MN与BD所成的角最大,进一步利用解三角形知识利用余弦定理求出角的余弦值.②当N点与C点重合时,线段MN与BD所成的角最大,直接在△MBD中,线段MD与BD所成角为30°,求出夹角的余弦值.最后求出角的余弦值的范围.解答:解:在正四面体ABCD中,M是AB的中点,N是棱CD上的一个动点,则:①当N点与C点重合时,线段MN与BD所成的角最大,设:正四面体的边长为2,取AD的中点,连接MN、NG,利用勾股定理得:CM=,M、G是AB和AD的中点,所以:MG=1,同理解得:CG=,在△CMG中,利用余弦定理得:,即:所成角的余弦值最小为.②当N点与C点重合时,线段MN与BD所成的角最大,连接DM,在△MBD中,线段MD与BD所成角为30°,所以:cos,即所成角的余弦值最大为.所以:cosα的范围为:[].故答案为:[]点评:本题考查的知识要点:异面直线的夹角的应用,余弦定理的应用,主要考查学生的应用能力和空间想象能力.14.在△ABC中,||=3,||=5,M是BC的中点,=λ(λ∈R),若=+,则△ABC的面积为.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:在△ABC的顶点A作边BC的垂线BO,垂足为O,这样可表示出cosB=,cosC=,从而得到,而根据已知条件及中线向量的表示即可得到,所以便得出O是BC的中点,即M,O重合.所以在Rt△ABM中可以求出sinB,所以根据三角形的面积公式可求出△AB C的面积.解答:解:如图所示,过A作边BC的垂线,垂足为O,则:cosB=,cosC=;∴;根据题意知λ≠0;∴;∴;∴;即O是边BC的中点,M与O重合;∴在Rt△ABM中,;∴;∴.故答案为:.点评:考查余弦函数的定义,向量加法的平行四边形法则,以及直角三角形三边的关系,三角形的面积公式:S=.15.已知单位正方形的四个顶点A(0,0),B(1,0),C(1,1)和D(0,1),从A点向边CD上的点P(,1)发出一束光线,这束光线被正方形各边反射(入射角等于反射角),直到经过正方形某个顶点后射出,则这束光线在正方形内经过的路程长度为 5 .考点:与直线关于点、直线对称的直线方程.专题:直线与圆.分析:由题意,画出图形,根据入射光线和反射光线的对称性以及正方形的性质得到I,J 的坐标,利用两点之间的距离公式可得.解答:解:从A点向边CD上的点P(,1)发出一束光线,经过各边发射后最后由B点射出,如图,因为已知是单位正方形,这束光线在正方形内经过的路程如图,由对称性可以得到OP=FI=HE=FJ=,所以这束光线在正方形内经过的路程的长度为=5;故答案为:5.点评:本题考查了点关于直线的对称以及两点之间的距离公式的运用;关键是画出图形.三、解答题(本大题共5小题,共74分,解答应写出文字说明、证明过程或演算步骤)16.在△ABC中,内角A,B,C的对边分别为a,b,c,已知c=6,sinA﹣sinC=sin(A﹣B).(Ⅰ)若b=2,求△ABC的面积;(Ⅱ)若1≤a≤6,求sinC的取值范围.考点:余弦定理;两角和与差的余弦函数.专题:解三角形.分析:(Ⅰ)由两角和与差的余弦函数公式化简已知可得cosB=,由余弦定理可解得a的值,由三角形面积公式即可求值.(Ⅱ)当a=3∈[1,6]时,可求sinC=1,当a=1时,由余弦定理和正弦定理可得sinC=,当a=6时,△ABC为等边三角形,则sinC=,即可求得sinC的取值范围.解答:解:(Ⅰ)∵sinA﹣sinC=sin(A﹣B),∴sinA=sinC+sin(A﹣B)=sin(A+B)+sin(A﹣B)=sinAcosB+cosAsinB+sinAcosB﹣cosAsinB=2sinAcosB,∴cosB=,由余弦定理可得(2)2=a2+62﹣12acos,即a2﹣6a+8=0,解得a=2或a=4.当a=2时,△ABC的面积S=acsinB=×2×6sin=3;当a=4时,△ABC的面积S=acsinB=×4×6sin=6;…8分(Ⅱ)当a=3∈[1,6]时,sinC=1,当a=1时,b2=a2+c2﹣2accosB=1+36﹣2×=31,∴b=,于是,从而:sinC=,当a=6时,△ABC为等边三角形,则sinC=,因为,从而得到sinC的取值范围是:[,1]…15分.点评:本题主要考查了两角和与差的余弦函数公式,考查了余弦定理和正弦定理的综合应用,属于基本知识的考查.17.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,且满足AB∥CD,AD=DC=AB,PA⊥平面ABCD.(1)求证:平面PBD⊥平面PAD;(2)若PA=AB,求二面角A﹣PD﹣C的余弦值.考点:二面角的平面角及求法;平面与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)根据面面垂直的判定定理即可证明平面PBD⊥平面PAD;(2)根据二面角的定义先作出二面角的平面角,进行求解即可.解答:证明:(1)取AB的中点E,连接CE,则由题意知,△BCE为正三角形,∴∠ABC=60°,由等腰梯形知∠BCD=120°,设AD=DC=BC=2,则AB=4,BD=2,故AD2+BD2=AB2,即得∠ADB=90°,则AD⊥BD,∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAD,BC⊂平面PBD,∴平面PBD⊥平面PAD;(2)在平面ABCD中,过C作CH∥BD,交AD的延长线于H,由(1)知,BD⊥平面PAD,∴CH⊥平面PAD,则CH⊥PD,在平面PAD中,过点H作HG⊥PD,交PD的延长线于G,连接CG,则PG⊥平面HGC,∴PG⊥GC,则∠HGC为二面角A﹣PD﹣C的平面角,在直角三角形CHD中,CD=2,∠CDH=60°,∴CH=,∵Rt△PAD∽Rt△HGD,∴GH=,在Rt△GHC,GC==,则cos∠GHC==,则二面角A﹣PD﹣C的余弦值为﹣.点评:本题主要考查空间面面垂直的判定以及空间二面角的求解,利用定义法是解决空间二面角的常用方法.本题也可以使用向量法进行求解.18.已知椭圆C:+=1(a>b>0)的左焦点为F(﹣c,0),点D(0,b),直线DF的斜率为.(Ⅰ)求椭圆C的离心率;(Ⅱ)设过点F的直线交椭圆于A,B两点,过点P(﹣4c,0)作与直线AB的倾斜角互补的直线l,交椭圆C于M,N两点,问:是否为定值,若是,求出此定值,若不是,说明理由.考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(Ⅰ)运用直线的斜率公式和离心率公式,结合a,b,c的关系,即可得到;(Ⅱ)设直线AB:x=ty﹣c,直线MN:x=﹣ty﹣4c,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),将直线方程分别代入椭圆方程,运用韦达定理,再由两点的距离公式,化简整理,即可得到定值.解答:解:(Ⅰ)由题意可得,k DF==,a==2c,则椭圆的离心率为e==;(Ⅱ)设直线AB:x=ty﹣c,直线MN:x=﹣ty﹣4c,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),将直线x=ty﹣c代入椭圆方程+=1,可得(3t2+4)y2﹣6tcy﹣9c2=0,则y1y2=﹣,再将直线x=﹣ty﹣4c代入椭圆方程+=1,可得(3t2+4)y2+24tcy+36c2=0,则y3y4=,即有====.故为定值.点评:本题考查椭圆的方程和性质,主要是离心率的运用,同时考查直线方程和椭圆方程联立,运用韦达定理,以及两点的距离公式的运用,正确设出直线方程是解题的关键.19.数列{a n}与{b n}满足:①a1=a<0,b1=b>0,②当k≥2时,若a k﹣1+b k﹣1≥0,则a k=a k﹣1,b k=;若a k﹣1+b k﹣1<0,则a k=,b k=b k﹣1.(Ⅰ)若a=﹣1,b=1,求a2,b2,a3,b3的值;(Ⅱ)设S n=(b1﹣a1)+(b2﹣a2)+…+(b n﹣a n),求S n(用a,b表示);(Ⅲ)若存在n∈N*,对任意正整数k,当2≤k≤n时,恒有b k﹣1>b k,求n的最大值(用a,b表示).考点:数列的应用.专题:点列、递归数列与数学归纳法.分析:(Ⅰ)由题意可直接写出答案;(Ⅱ)分情况计算b k﹣a k,得{b k﹣a k}是以b1﹣a1=b﹣a为首项,为公比的等比数列,从而可得S n;(Ⅲ)由b k﹣1>b k,数列{a n}与{b n}满足的关系倒推出对任意正整数k,当2≤k≤n时,恒有a k=a,结合(Ⅱ)知,解之即可.解答:解:(Ⅰ)a2=﹣1,b2=0,a3=,b3=0;(Ⅱ)∵=,=,∴无论是a k﹣1+b k﹣1≥0,还是a k﹣1+b k﹣1<0,都有b k﹣a k=,即{b k﹣a k}是以b1﹣a1=b﹣a为首项,为公比的等比数列,所以S n=(b1﹣a1)+(b2﹣a2)+…+(b n﹣a n)=;(Ⅲ)∵b k﹣1>b k,及数列{a n}与{b n}满足的关系,∴a k﹣1+b k﹣1≥0,∴a k=a k﹣1,即对任意正整数k,当2≤k≤n时,恒有a k=a,由(Ⅱ)知b k﹣a k=,∴b k=a+,所以a k﹣1+b k﹣1=,解得,所以n的最大值为不超过的最大整数.点评:本题考查数列中递推关系,以及解指数不等式,考查学生对数学知识的应用能力,属于中档题.20.设a>0,b>0,函数f(x)=ax2﹣bx﹣a+b.(Ⅰ)(i)求不等式f(x)<f(1)的解集;(ii)若f(x)在[0,1]上的最大值为b﹣a,求的取值范围;(Ⅱ)当x∈[0,m]时,对任意的正实数a,b,不等式f(x)≤(x+1)|2b﹣a|恒成立,求实数m的最大值.考点:二次函数的性质;函数恒成立问题.专题:函数的性质及应用.分析:(Ⅰ)(i)(x﹣1)(ax+a﹣b)<0,分类讨论得出:当b>2a时,解集为(1,),当b<2a时,解集为(,1),当b=2a时,解集为∅(ii)分类得出①当0时,②当时,≥1,判断结果是不是符合题意.(Ⅱ)把不等式f(x)≤(x+1)|2b﹣a|,得ax2﹣(b+|2b﹣a|)x﹣a+b﹣|2b﹣a|≤0,即x2﹣(+|2﹣1|)x﹣1﹣|2﹣1|≤0,令t=,则x2﹣(t+|2t﹣1|)xt﹣1﹣|2t﹣1|≤0,当△=(t+|2t﹣1|)2﹣4(t﹣1﹣|2t ﹣1|)>0,时,求解不等式,分类讨论即可.(1)当t时,只需m≤恒成立.即m≤12)当0时,只需要m≤=恒成立,转化为函数最值即可.解答:解:(Ⅰ)(i)求不等式f(x)<f(1),即f(x)<0,即(x﹣1)(ax+a﹣b)<0,当b>2a时,解集为(1,)当b<2a时,解集为(,1),当b=2a时,解集为∅(ii)∵a>0,b>0,∴>0,①当0时,即0<b<a时,f(0)=b﹣a<0=f(1),不符合题意,②当时,即b≥a时,f(0)=b﹣a≥0=f(1),符合题意,≥1,∴的取值范围:[1,∞)(Ⅱ)由不等式f(x)≤(x+1)|2b﹣a|,得ax2﹣(b+|2b﹣a|)x﹣a+b﹣|2b﹣a|≤0,则x2﹣(+|2﹣1|)x﹣1﹣|2﹣1|≤0,令t=,则x2﹣(t+|2t﹣1|)x+t﹣1﹣|2t﹣1|≤0,当△=(t+|2t﹣1|)2﹣4(t﹣1﹣|2t﹣1|)>0,时,解得≤x≤,(1)当t时,≤x≤,又因为<0,≥1,只需m≤恒成立.即m≤1(2)当0时,≤x≤,显然<0,且y==在(0,)上递减,所以>1,所以只需要m≤=恒成立,即m≤1,综上,m的最大值为1.点评:本题综合考查了函数的性质,不等式的求解,分类讨论,利用好方程的根,与不等式解集的关系,难度较大,属于难题,关键是确定根,写解集.。

浙江省五校联考高考数学二模试卷 理(含解析)

浙江省五校联考高考数学二模试卷 理(含解析)

浙江省五校联考2015届高考数学二模试卷(理科)一、选择题:(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>02.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④3.(5分)为得到函数f(x)=cosx﹣sinx,只需将函数y=sinx()A.向左平移B.向右平移C.向左平移D.向右平移4.(5分)已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2=,有下列结论中正确的个数有()①≥0;②<0;③x的值有且只有一个;④x的值有两个;⑤点B是线段AC的中点.A.1个B.2个C.3个D.4个5.(5分)已知映射.设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M′.当点M在线段AB上从点A开始运动到点B 结束时,点M的对应点M′所经过的路线长度为()A.B.C.D.6.(5分)如图,已知椭圆C 1:+y 2=1,双曲线C 2:﹣=1(a >0,b >0),若以C 1的长轴为直径的圆与C 2的一条渐近线交于A 、B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为()A .B . 5C .D .7.(5分)半径为R 的球内部装有4个半径相同的小球,则小球半径r 的可能最大值为()A .B .C .D .8.(5分)某学生对一些对数进行运算,如图表格所示:x 0.021 0.27 1.5 2.8lgx 2a+b+c ﹣3(1) 6a ﹣3b ﹣2(2) 3a ﹣b+c (3) 1﹣2a+2b ﹣c (4)x 3 5 6 7lgx 2a ﹣b (5) a+c (6) 1+a ﹣b ﹣c (7) 2(a+c )(8) x 8 9 14lgx 3﹣3a ﹣3c (9) 4a ﹣2b (10) 1﹣a+2b (11) 现在发觉学生计算中恰好有两次地方出错,那么出错的数据是()A . (3),(8)B . (4),(11)C . (1),(3)D . (1),(4)二、填空题本大题共7小题,每小题5分,共35分.9.(5分)设全集U=R ,集合A={x|x 2﹣3x ﹣4<0},B={x|log 2(x ﹣1)<2},则A∩B=,A∪B=,C R A=.10.(5分)若某多面体的三视图如图所示,则此多面体的体积为,外接球的表面积为.11.(5分)若max{a,b}表示a,b两数中的最大值,若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为,若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则t=.12.(5分)A n={x|2n<x<2n+1,x=3m,m∈N},若|A n|表示集合A n中元素的个数,则|A5|=,则|A1|+|A2|+|A3|+…+|A10|=.(5分)直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC 13.斜边上的高的长度为.14.(5分)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.15.(5分)已知动点P(x,y)满足,则x2+y2+2y的最小值为.三、解答题:(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)16.(15分)已知△ABC的面积为S,且S.(1)求cosA;(2)求a=,求△ABC周长的最大值.17.(15分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.18.(15分)函数f(x)=mx|x﹣a|﹣|x|+1(1)若m=1,a=0,试讨论函数f(x)的单调性;(2)若a=1,试讨论f(x)的零点的个数.19.(15分)如图,在平面直角坐标系xOy中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.若直线PQ斜率为时,PQ=2.(1)求椭圆C的标准方程;(2)试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.20.(15分)已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.浙江省五校联考2015届高考数学二模试卷(理科)参考答案与试题解析一、选择题:(每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)命题“存在x0∈R,2≤0”的否定是()A.不存在x0∈R,2>0 B.存在x0∈R,2≥0C.对任意的x∈R,2x≤0D.对任意的x∈R,2x>0考点:特称命题;命题的否定.专题:简易逻辑.分析:根据特称命题的否定是全称命题,直接写出该命题的否定命题即可.解答:解:根据特称命题的否定是全称命题,得;命题“存在x0∈R,2≤0”的否定是“对任意的x∈R,都有2x>0”.故选:D.点评:本题考查了全称命题与特称命题的应用问题,解题时应根据特称命题的否定是全称命题,写出答案即可,是基础题.2.(5分)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④考点:平面与平面垂直的判定;平面与平面平行的判定.专题:空间位置关系与距离;简易逻辑.分析:从直线与平面平行与垂直,平面与平面平行与垂直的判定与性质,考虑选项中的情况,找出其它可能情形加以判断,推出正确结果.解答:解:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;如果这两条直线平行,可能得到两个平面相交,所以不正确.②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;这是判定定理,正确.③垂直于同一直线的两条直线相互平行;可能是异面直线.不正确.④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.正确.故选:D.点评:本题考查平面与平面垂直的判定,平面与平面平行的判定,是基础题.3.(5分)为得到函数f(x)=cosx﹣sinx,只需将函数y=sinx()A.向左平移B.向右平移C.向左平移D.向右平移考点:两角和与差的正切函数.专题:三角函数的图像与性质.分析:由条件利用两角和差的余弦公式化简函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,可得结论.解答:解:由于f(x)=cosx﹣sinx=2cos(x+),函数y=sinx=2cos(x ﹣),+=,故把函数y=sinx=2cos(x﹣)的图象向左平移个单位,即可得到f(x)=2cos(x+)的图象,故选:C.点评:本题主要考查两角和差的余弦公式,函数y=Asin(ωx+φ)的图象变换规律,4.(5分)已知A、B、C为直线l上不同的三点,点O∉直线l,实数x满足关系式x2=,有下列结论中正确的个数有()①≥0;②<0;③x的值有且只有一个;④x的值有两个;⑤点B是线段AC的中点.A.1个B.2个C.3个D.4个考点:平面向量数量积的含义与物理意义.专题:综合题;平面向量及应用.分析:由存在实数x满足x2=,△≥0,得出①正确、②错误;由x2+2x+=,得出=﹣x2﹣2x,根据平面向量的基本定理,得出﹣x2﹣2x=1,判断③正确、④错误;由=(+),得出B是线段AC的中点,判断⑤正确.解答:解:对于①,存在实数x满足x2=,∴﹣•≥0,∴①正确;对于②,由①知,②错误;对于③,∵x2+2x+=,变形为=﹣x2﹣2x,∵A、B、C为直线l上不同的三点,点O∉直线l,∴﹣x2﹣2x=1,解得x=﹣1,∴③正确;对于④,由③知,④错误;对于⑤,由③知,=(+),∴点B是线段AC的中点,⑤正确;综上,正确的命题是①③⑤.故选:C.点评:本题考查了平面向量的应用问题,也考查了一元二次方程有实数根的应用问题,是综合性题目.5.(5分)已知映射.设点A(1,3),B(2,2),点M是线段AB上一动点,f:M→M′.当点M在线段AB上从点A开始运动到点B 结束时,点M的对应点M′所经过的路线长度为()A.B.C.D.考点:映射.专题:函数的性质及应用.分析:根据所给的两个点的坐标写出直线的方程,设出两个点的坐标,根据所给的映射的对应法则得到两个点坐标之间的关系,代入直线的方程求出一个圆的方程,得到轨迹是一个圆弧,求出弧长.解答:解:设点M′从A′开始运动,直到点B′结束,由题意知AB的方程为:x+y=4.设M′(x,y),则M(x2,y2),由点M在线段AB上可得 x2+y2=4.按照映射f:P(m,n)→P′(,),可得 A(1,3)→A′(1,),B(3,1)→B′(,),故tan∠A′OX==,∴∠A′OX=.tan∠B′OX==1,∴∠B′OX=,故∠A′OB′=∠A′OX﹣∠B′OX=,点M的对应点M′所经过的路线长度为弧长为=∠A′OB′•r=×2=;故选:B.点评:本题考查弧长公式和轨迹方程,本题解题的关键是利用相关点法求出点的轨迹,题目不大,但是涉及到的知识点不少,属于基础题.6.(5分)如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A、B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.B.5 C.D.考点:双曲线的简单性质.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程.分析:求出一条渐近线方程,联立直线方程和圆的方程、椭圆方程,求得交点,再由两点的距离公式,将|AB|=3|CD|,化简整理,即可得到b=2a,再由a,b,c的关系和离心率公式,即可得到结论.解答:解:双曲线C2:﹣=1(a>0,b>0)的一条渐近线方程为y=x,以C1的长轴为直径的圆的方程为x2+y2=11,联立渐近线方程和圆的方程,可得交点A(,),B(﹣,﹣),联立渐近线方程和椭圆C1:+y2=1,可得交点C(,),D(﹣,﹣),由于C1与该渐近线的两交点将线段AB三等分,则|AB|=3|CD|,即有=,化简可得,b=2a,则c==a,则离心率为e==.故选A.点评:本题考查双曲线的方程和性质,考查直线与圆、椭圆的位置关系,考查离心率的求法,属于基础题.7.( 5分)半径为R的球内部装有4个半径相同的小球,则小球半径r的可能最大值为()A.B.C.D.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大,以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,求出正四面体的外接球半径,即可求得结论.解答:解:由题意,四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大.以四个小球球心为顶点的正四面体棱长为2r,该正四面体的中心(外接球球心)就是大球的球心,该正四面体的高为=,设正四面体的外接球半径为x,则x2=(﹣x)2+()2,∴x=r,∴R=r+r,∴r=R.故选:C.点评:本题考查点、线、面距离的计算,考查学生分析解决问题的能力,确定四个小球两两相切并且四个小球都与大球相切时,这些小球的半径最大是关键.8.(5分)某学生对一些对数进行运算,如图表格所示:x 0.021 0.27 1.5 2.8lgx 2a+b+c﹣3(1)6a﹣3b﹣2(2)3a﹣b+c(3)1﹣2a+2b﹣c(4)x 3 5 6 7lgx 2a﹣b(5)a+c(6)1+a﹣b﹣c(7)2(a+c)(8)x 8 9 14lgx 3﹣3a﹣3c(9)4a﹣2b(10)1﹣a+2b(11)现在发觉学生计算中恰好有两次地方出错,那么出错的数据是()A.(3),(8)B.(4),(11)C.(1),(3)D.(1),(4)考点:对数的运算性质.专题:函数的性质及应用.分析:写出对数值的关系式,然后判断正误即可.解答:解:由题意可知:lg0.21=lg3+lg7﹣1=2a+b+c﹣3;lg0.27=2lg3﹣2=6a﹣3b﹣2;lg1.5=lg3+lg5﹣1=3a﹣b+clg2.8=2lg2+lg7﹣1,lg3=2a﹣b,lg5=a+clg6=lg2+lg3=1+a﹣b﹣c,lg7=2a+2c,lg8=3﹣3a﹣3c,lg9=2lg3=4a﹣2b,lg14=lg2+lg7=1﹣a+2b.有上述各式,可以看出,lg3,lg9,lg0.27是正确的关系式,则lg7=2a+2c,lg0.21=lg3+lg7﹣1=2a+b+c﹣3,可知lg7错误;由lg5=a+c,lg1.5=lg3+lg5﹣1=3a﹣b+c,可知lg5错误;即(3),(8)错误.故选:A.点评:本题考查对数的运算性质,推理与证明的应用,考查分析问题解决问题的能力.二、填空题本大题共7小题,每小题5分,共35分.9.(5分)设全集U=R,集合A={x|x2﹣3x﹣4<0},B={x|log2(x﹣1)<2},则A∩B=(1,4),A∪B=(﹣1,5),C R A=(﹣∞,﹣1]∪[4,+∞).考点:交、并、补集的混合运算.专题:集合.分析:求出A与B中不等式的解集确定出A与B,找出A与B的交集,并集,求出A的补集即可.解答:解:由A中不等式变形得:(x﹣4)(x+1)<0,解得:﹣1<x<4,即A=(﹣1,4),由B中不等式变形得:log2(x﹣1)<2=log24,得到0<x﹣1<4,解得:1<x<5,即B=(1,5),∴A∩B=(1,4),A∪B=(﹣1,5),∁R A=(﹣∞,﹣1]∪[4,+∞).故答案为:(1,4);(﹣1,5);(﹣∞,﹣1]∪[4,+∞)点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.10.(5分)若某多面体的三视图如图所示,则此多面体的体积为,外接球的表面积为3π.考点:球内接多面体;球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由三视图可知:该几何体是正方体的内接正四面体.可得此多面体外接球的直径是次正方体的对角线.即可得出.解答:解:由三视图可知:该几何体是正方体的内接正四面体(红颜色).∴多面体的体积为1﹣×1=.此多面体外接球的直径是此正方体的对角线.因此其球的表面积是4π•=3π.故答案为:,3π.点评:本题考查了正方体的三视图、球的表面积计算公式,考查了推理能力与计算能力,属于基础题.11.(5分)若max{a,b}表示a,b两数中的最大值,若f(x)=max{e|x|,e|x﹣2|},则f(x)的最小值为e,若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则t=4030.考点:指数函数单调性的应用.专题:函数的性质及应用.分析:化简函数的解析式,再利用函数y={e|x|的图象和函数y=e|x﹣t 的图象关于直线x=对称,从而得出结论.解答:解:由于f(x)=max{e|x|,e|x﹣2|}=,故f(x)的最小值为f(1)=e.若f(x)=max{e|x|,e|x﹣t|}关于x=2015对称,则=2015,求得t=4030,故答案为:e;4030.点评:本题主要考查指数函数的单调性,分段函数的应用,属于基础题.12.(5分)A n={x|2n<x<2n+1,x=3m,m∈N},若|A n|表示集合A n中元素的个数,则|A5|=11,则|A1|+|A2|+|A3|+…+|A10|=219﹣29.考点:元素与集合关系的判断.专题:集合.分析:分n为奇数和偶数两种情况,根据等差数列的前n项和公式即可求出答案.解答:解:当n为奇数时,A n中的各个元素组成以2n+1为首项,3为公差的等差数列,设项数为m,则2n+1﹣1=2n+1+3(m﹣1),所以m=,∴|A5|==11,当n为偶数时,n﹣1时奇数,可知2n﹣1+1是3的倍数,因此2n+2=2(2n﹣1+1)是3的倍数;同理,2n+1﹣2=2(2n﹣1)是3的倍数,所以当n为偶数时,A n中的各个元素组成以2n+2为首项,3为公差的等差数列,设项数为m,则2n+1﹣2=2n+2+3(m﹣1),所以m=,所以当n是偶数时,A n中的所有元素个数之和为[2n+2)+(2n+1﹣2)]=22n﹣1﹣2n﹣1,所以|A1|+|A2|+|A3|+…+|A10|=22×10﹣1﹣210﹣1=219﹣29.故答案为:11,219﹣29.点评:本题主要考查与集合有关的新定义题,根据条件分别求出对应范围的个数是解决本题的关键,综合性较强.(5分)直角△ABC的三个顶点都在给定的抛物线y2=2x上,且斜边AB和y轴平行,则RT△ABC 13.斜边上的高的长度为2.考点:抛物线的简单性质.专题:综合题;圆锥曲线的定义、性质与方程.分析:结合抛物线的方程与性质设出A,B,C的坐标,即可表达出斜边上的高|CD|,再由直角三角形的性质得到斜边上中线的长度,然后利用两点之间的距离公式表达出中线的长度,即可得到一个等式,进而求出斜边上的高得到答案.解答:解:由题意,斜边平行y轴,即垂直对称轴x轴,可设C的坐标为(,c),B的坐标为(,b),则A的坐标为(,﹣b);=(﹣,c﹣b),=(﹣,﹣b﹣c),又由Rt△ABC的斜边为AB,则有AC⊥CB,即=0,变形可得|b2﹣c2|=4,而斜边上的高即C到AB的距离为|﹣|=2.故答案为:2.点评:本题考查直线与圆锥曲线的综合问题,考查抛物线的标准方程等基础知识,考查运算求解能力、化归与转化思想.属于中档题.14.(5分)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为.考点:弧长公式.专题:三角函数的求值.分析:由图可知:圆O的半径r=1,正方形ABCD的边长a=1,以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,当点A首次回到点P的位置时,正方形滚动了3圈共12次,分别算出转4次的长度,即可得出.解答:解:由图可知:∵圆O的半径r=1,正方形ABCD的边长a=1,∴以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A首次回到点P的位置时,正方形滚动了3圈共12次,设第i次滚动,点A的路程为A i,则A1=×|AB|=,A2=×|AC|=,A3=×|DA|=,A4=0,∴点A所走过的路径的长度为3(A1+A2+A3+A4)=.故答案为:.点评:本题考查了正方形与圆的性质、旋转的性质、弧长的计算公式,考查了数形结合、分类讨论的思想方法,考查了分析问题与解决问题的能力,属于难题.15.(5分)已知动点P(x,y)满足,则x2+y2+2y的最小值为0.考点:二元一次不等式(组)与平面区域;基本不等式.专题:不等式.分析:可将P满足的不等式组变为,作出该不等式组表示的平面区域,可设x2+y2+2y=z,进一步得到x2+(y+1)2=z+1,从而根据平面区域求以(0,﹣1)为圆心的圆的半径的最小值即得到z的最小值.解答:解:x≥0时,;∴要使;只要;∴y≥0;∴动点P满足;该不等式组表示的平面区域如下图:设x2+y2+2y=z;∴x2+(y+1)2=z+1;∴便表示以(0,﹣1)为圆心的圆的半径;由图形看出当该圆经过原点O时半径最小为1;;∴z的最小值为0.故答案为:0.点评:考查不等式组表示的平面区域的概念,能够画出不等式组所表示的平面区域,能判断函数的单调性,圆的标准方程,利用线性规划的知识求最值的方法,数形结合解题的方法.三、解答题:(本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤)16.(15分)已知△ABC的面积为S,且S.(1)求cosA;(2)求a=,求△ABC周长的最大值.考点:余弦定理的应用.专题:综合题;解三角形.分析:(1)利用S,结合三角形的面积公式,即可求cosA;(2)利用正弦定理,结合a=,即可求△ABC周长的最大值.解答:解:(1)∵△ABC的面积为S,且,∴,∴,∴A为锐角,且,∴,所以.(2),∴周长为==,∵,∴,∴周长最大值为.点评:本题考查正弦定理,考查三角函数知识的运用,考查学生分析解决问题的能力,属于中档题.17.(15分)在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4.(1)若PB中点为E.求证:AE∥平面PCD;(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.考点:直线与平面所成的角;直线与平面平行的判定.专题:空间位置关系与距离;空间角.分析:(1)取PC中点F,并连接DF,FE,根据已知条件容易说明四边形ADFE为平行四边形,从而有AE∥DF,根据线面平行的判定定理即得到AE∥平面PCD;(2)设B到平面PCD的距离为h,从而直线BD与平面PCD所成角的正弦值便可表示为,BD根据已知条件容易求出,而求h可通过V P﹣BCD=V B﹣PCD求出:取AB中点O,连接PO,可以说明PO⊥平面ABCD,而根据已知条件能够求出S△BCD,S△PCD,从而求出h,从而求得答案.解答:解:(1)证明:如图,取PC的中点F,连结DF,EF;∵EF∥AD,且AD=EF,所以ADFE为平行四边形;∴AE∥DF,且AE⊄平面PCD,DF⊂平面PCD;∴AE∥平面PCD;(2)∵∠PAB=60°,PA=AB;∴△PAB为等边三角形,取AB中点O,连接PO;则PO⊥AB;又侧面PAB⊥底面ABCD,平面PAB∩平面ABCD=AB;∴PO⊥平面ABCD;根据已知条件可求得PO=,S △BCD=4,PD=CD=,PC=2,;设点B到平面PCD的距离为h;∴,;∵V P﹣BCD=V B﹣PCD;∴;∴直线BD与平面PCD所成角θ的正弦值.点评:考查中位线的性质,平行四边形的定义,线面平行的判定定理,以及直角三角形边的关系,面面垂直的性质定理,棱锥的体积公式,线面角的定义.18.(15分)函数f(x)=mx|x﹣a|﹣|x|+1(1)若m=1,a=0,试讨论函数f(x)的单调性;(2)若a=1,试讨论f(x)的零点的个数.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:导数的综合应用.分析:(1)将m=1,a=0代入函数表达式,通过讨论x的范围,结合二次函数的性质,从而求出函数的单调性;(2)将a=1代入函数的表达式,通过讨论x的范围,根据二次函数的性质,从而求出函数的零点的个数.解答:解:(1)若m=1,a=0,则f(x)=x|x|﹣|x|+1,①x≥0时,f(x)=x2﹣x+1,对称轴x=,开口向上,∴f(x)在[0,)递减,在(,+∞)递增;②x<0时,f(x)=﹣x2+x+1,对称轴x=﹣,开口向下,∴f(x)在(﹣∞,0)递增;综上:f(x)在(﹣∞,0)递增,在[0,)递减,在(,+∞)递增.(2)a=1时,f(x)=mx|x﹣1|﹣|x|+1,①x<0时,f(x)=mx(1﹣x)+x+1=﹣mx2+(m+1)x+1,△=(m+1)2+4m=m2+6m+1,令m2+6m+1=0,解得:m=﹣3±2,当m<﹣3﹣2或x>﹣3+2时,△>0,有2个零点,当﹣3﹣2<m<﹣3+2时,△<0,没有零点,当m=﹣3±2时,△=0,有1个零点;②0≤x≤1时,f(x)=mx(1﹣x)﹣x+1=﹣mx2+(m﹣1)x+1,△=(m+1)2≥0,m=﹣1时,函数有1个零点,m≠﹣1时,有2个零点;③x>1时,f(x)=mx(x﹣1)﹣x+1=mx2﹣(m+1)x+1,△=(m﹣1)2≥0,m=1时,函数有1个零点,m≠1时,函数有2个零点.点评:本题考查了函数的单调性问题,考查二次函数的性质,考查分类讨论思想,是一道中档题.19.(15分)如图,在平面直角坐标系xOy中,离心率为的椭圆C:+=1(a>b>0)的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.若直线PQ斜率为时,PQ=2.(1)求椭圆C的标准方程;(2)试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:,(1)设,由于直线PQ斜率为时,,可得,解得,代入椭圆方程可得:,又,联立解得即可.(2)设P(x0,y0),则Q(﹣x0,﹣y0),代入椭圆方程可得.由直线PA方程为:,可得,同理由直线QA方程可得,可得以MN为直径的圆为,由于,代入整理即可得出.解答:解:(1)设,∵直线PQ斜率为时,,∴,∴,=1,∴,∵,化为a2=2b2.联立,∴a2=4,b2=2.∴椭圆C的标准方程为.(2)以MN为直径的圆过定点.下面给出证明:设P(x0,y0),则Q(﹣x0,﹣y0),且,即,∵A(﹣2,0),∴直线PA方程为:,∴,直线QA方程为:,∴,以MN为直径的圆为,即,∵,∴,令y=0,x2+y2﹣2=0,解得,∴以MN为直径的圆过定点.点评:本题考查了椭圆与圆的标准方程及其性质、直线与椭圆相交问题、点与椭圆的位置关系、点斜式,考查了推理能力与计算能力,属于难题.20.(15分)已知数列{a n}(n∈N*,1≤n≤46)满足a1=a,a n+1﹣a n=其中d≠0,n∈N*.(1)当a=1时,求a46关于d的表达式,并求a46的取值范围;(2)设集合M={b|b=a i+a j+a k,i,j,k∈N*,1≤i<j<k≤16}.①若a=,d=,求证:2∈M;②是否存在实数a,d,使,1,都属于M?若存在,请求出实数a,d;若不存在,请说明理由.考点:数列的应用;数列递推式.专题:点列、递归数列与数学归纳法.分析:(1)直接计算即可;(2)①求出a n的公式即可;②假设存在实数a,d满足条件,得出矛盾,从而否定假设.解答:解:(1)当a=1时,a16=1+15d,a31=16+15d,.因为d≠0,,或,所以a46∈(﹣∞,﹣14]∪[46,+∞).(2)①由题意,1≤n≤16,.令,得i+j+k=7.因为i,j,k∈N*,1≤i<j<k≤16,所以令i=1,j=2,k=4,则2∈M.②不存在实数a,d,使,1,同时属于M.假设存在实数a,d,使,1,同时属于M.∵a n=a+(n﹣1)d,∴b=3a+(i+j+k﹣3)d,从而M={b|b=3a+md,3≤m≤42,m∈Z}.因为,1,同时属于M,所以存在三个不同的整数x,y,z(x,y,z∈[3,42]),使得从而则.因为35与48互质,且y﹣x与z﹣x为整数,所以|y﹣x|≥35,|z﹣x|≥48,但|z﹣x|≤39,矛盾.所以不存在实数a,d,使,1,都属于M.点评:本题主要考查数列知识以及反证法,需要清晰的思路,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档