昆工2015高数A1参考答案

合集下载

2015年云南昆明理工大学高等数学考研真题A卷

2015年云南昆明理工大学高等数学考研真题A卷

2015年云南昆明理工大学高等数学考研真题A 卷一、单项选择题(每小题5分,共45分)1.设⎪⎩⎪⎨⎧>≤=,1,0,1,1)(x x x f , 则[]}{)(x f f f 等于( )(A )0 (B) 1 (C) ⎪⎩⎪⎨⎧>≤,1,0,1,1x x (D) ⎪⎩⎪⎨⎧>≤,1,1,1,0x x2.设函数11)(1-=-x xex f , 则( )(A )x=0, x=1都是)(x f 的第一类间断点。

(B )x=0, x=1都是)(x f 的第二类间断点。

(C )x=0是)(x f 的第一类间断点, x=1是)(x f 的第二类间断点。

(D) x=0是)(x f 的第二类间断点, x=1是)(x f 的第一类间断点。

3. 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(A )2222y u x u ∂∂-=∂∂ (B )2222yux u ∂∂=∂∂ (C )222y uy x u ∂∂=∂∂∂ (D )222x u y x u ∂∂=∂∂∂ 4. 下列函数为偶函数的是( )(A) y=x sin x (B) y=x cos x (C)) y=sin x+cos x (D) y=x(sinx+cos x)5. 已知函数f(x)=ax 2-4x+1在x=2处取得极值,则常数a=( )(A) 0 (B) 1 (C)) 2 (D) 36.极限22x 3x 9limx 2x 3→---=( )(A) 0 (B) 23 (C) 32(D)927.若)(x f 为奇函数, 且对于任意实数x 恒有0)1()3(=--+x f x f ,则=)2(f ( )(A ) -1 (B ) 0 (C ) 1 (D ) 28. 设f(x)=x 3-3x,则在区间(0,1)内( )(A) 函数f(x)单调增加且其图形是凹的 (B) 函数f(x)单调增加且其图形是凸的 (C) 函数f(x)单调减少且其图形是凹的 (D) 函数f(x)单调减少且其图形是凸的9. 计算定积分⎰--=-112dx e e xx ( )(A) 0 (B)e1 (C) 1(D ) e二、填空题(每小题5分,共45分)1.设函数⎪⎪⎩⎪⎪⎨⎧≤>-=0,,2arcsin1)(2tan x ae x x e x f x x在x=0处连续,则a= .2. 设1)1()(2lim +-=∞→nx xn x f n , 则)(x f 的间断点为x= . 3.=--++→2211limxx x x . 4. 已知2)3('=f ,则=--→hf h f h 2)3()3(lim 0.5. 设函数)(x y y =由参数方程⎩⎨⎧+=+-=23)1ln(tt y t t x 所确定,则=dxdy. 6. xe y y 24''=-的通解为 .7. 求定积分=-=⎰π22sin 1dx x x I . 8. 与两直线⎪⎩⎪⎨⎧+=+-==tz t y x 211, 及112211-=+=+z y x 都平行, 且过原点的平面方程 为 . 9. 函数34)(4+-=x x x f 在区间[0, 2]的最小值 .三、解答题(需写出解题过程,共60分)1. 设)(),(xy g y x xy f z +=,其中f 具有二阶连续偏导数,g 具有二阶连续导数,求yx z ∂∂∂2. (15分)2.求微分方程02)(2=-+xdy dx x y 满足561==x y的特解。

高等数学A1练习题(答案在主页中)

高等数学A1练习题(答案在主页中)

1、设函数在点处连续,则.2、设为可微函数,且,则.3、函数在上的最小值为.4、设是的一个原函数,则.5、积分. 二、单项选择题(每题3分,共15分): 1、当时,与是等价无穷小.A :;B :; C :; D :. 2、已知,则. A :3; B :; C :; D :. 3、若点为曲线的拐点,则.A :必有存在且等于零;B :必有存在但不一定等于零;C :如果存在,必等于零;D :如果存在,必不等于零.4、已知的一个原函数是,则. A :; B :; C :; D :5、反常积分. A :; B :; C :0; D :发散.三、计算题(每小题6分,共12分):1、.2、. 1sin , 0()3 , 0x x f x x a x ⎧≠⎪=⎨⎪=⎩=0x a =()u ϕ2ln[()]y x ϕ=dy =216()f x x x=+(0,)+∞__________()F x ()f x ()32f x dx -=⎰12-11sin 1x dx x +=+⎰0→x sin 0ln(1)x t dt +⎰()x 12x 22x 212x 0()3f x '=-()000()()lim h f x h f x h h→+--=3-66-00(,())x f x )(x f y =()0''()f x 0''()f x 0''()f x 0''()f x ()f x 2x e-()'()xf x dx =⎰22(21)x x eC --++()()xf x f x dx -⎰222x x e C --+222x x e--()21ln e dx x x +∞=⎰1-10sin lim (1cos )x x x x x →--1012lim 1x x x x →+⎛⎫ ⎪-⎝⎭1、已知函数,求.2、求曲线在点处的切线方程.3、求由参数方程所确定的函数的导数及二阶导数. 五、计算题(每小题6分,共18分):1、.2、.3、. 六、(8分)采用列表的格式求函数的单调区间和极值.七、(8分)设平面图形由曲线及直线所围成.(1)求该平面图形的 面积;(2)求该平面图形绕轴旋转所成旋转体的体积.八、(6分)证明:当.20x y =⎰dy 2222x y x e y -+=+(1,1)221t t x e y te⎧=+⎨=⎩()y y x =dy dx 22d y dx 3ln x xdx ⎰24ππ-⎰40⎰2()(57)x f x x x e =-+y =12y x =A x V 0x >13x <+。

云南省部分2015届高三1月份统一考试数学(理) Word版含答案

云南省部分2015届高三1月份统一考试数学(理) Word版含答案

云南省部分名校高2015届1月份统一考试理科数学试卷命题 昆明三中高三年级数学备课组一.选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.已知i 为虚数单位,复数z 满足iz=1+i ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i2.集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( ) A ..(,2]A -∞- .[2,)B -+∞ .(,2]C -∞ .[2,)D +∞ 3.下列函数中,在其定义域内既是偶函数又在(,0)-∞上单调递增的函数是( ) A.2()f x x = B. ()2xf x = C. 21()log f x x= D. ()sin f x x = 4.已知向量,a b ,其中2,2a b ==,且()a b a -⊥,则向量a 与b 的夹角是( ) A .6π B. 4π C. 2π D.3π5.执行如图所示的程序框图,输出的S 值为4-时,则输入的0S 的值为( )A.7B.8C.9D.106. 实数x ,y ,k 满足3010x y x y x k +-≥⎧⎪-+≥⎨⎪≤⎩,22z x y =+,若z 的最大值为13,则k 的值为( )A .1B .2C .3D .47. 已知函数①sin cos y x x =+,②cos y x x =,则下列结论正确的是( ) A .两个函数的图象均关于点(,0)4π-成中心对称图形.B .两个函数的图象均关于直线4x π=-成轴对称图形.C .两个函数在区间(,)44ππ-上都是单调递增函数. D .两个函数的最小正周期相同.(第5题图)8.在△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,若△ABC 的面积为S ,且222()S a b c =+-, 则tan C 等于 ( )A.34 B.43C. 43-D.34- 9.已知P 是△ABC 所在平面内一点,20PB PC PA ++=,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是 ( ) A.14 B.13 C.23 D.1210.已知某几何体的三视图如图所示,则该几何体的体积等于( )A.3160B. 160C.23264+D.6011.抛物线22y px =(p >0)的焦点为F ,已知点A 、B 为抛物线上的两个动点,且满足120AFB ∠=︒.过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则||||MN AB 的最大值为 ( )D. 212.已知函数()f x 满足1()()f x f x=, 当[]1,3x ∈时,()ln f x x =,若在区间1,33⎡⎤⎢⎥⎣⎦内,曲线()()g x f x ax =-与x 轴有三个不同的交点,则实数a 的取值范围是 ( )A.10,e ⎛⎫ ⎪⎝⎭B.10,2e ⎛⎫ ⎪⎝⎭C.ln31,3e ⎡⎫⎪⎢⎣⎭D.ln 31,32e ⎡⎫⎪⎢⎣⎭二.填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡上)13.已知611e n dx x =⎰,那么3()n x x-展开式中含2x 项的系数为________________. 14.已知圆22:1O x y +=,直线250x y -+=上动点P ,过点P 作圆O 的一条切线,切点为A ,则PA 的最小值为_________.15.观察下列等式:3233233323333211,123,1236,123410,,=+=++=+++=根据上述规律,第n 个等式为 .16.表面积为60π的球面上有四点S 、A 、B 、C ,且ABC ∆是等边三角形,球心O 到平面ABC ⊥SAB 平面ABC ,则棱锥ABC S -体积的最大值为 .三.解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (本小题满分12分)已知数列{}n a 的前n 项和n S 和通项n a 满足21n n S a +=,数列{}n b 中,1211,2b b ==,()12211*n n n n N b b b ++=+∈. (Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)数列{}n c 满足nn na cb =,求证: 12334n c c c c +++⋅⋅⋅+<.18. (本小题满分12分)云南省2014年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布(170.5,16)N .现从我校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm 和187.5 cm 之间,将测量结果按如下方式分成6组:第一组 [157.5,162.5],第二组[162.5,167.5],…,第6组[182.5,187.5],下图是按上述分组方法得到的频率分布直方图.(Ⅰ)试评估我校高三年级男生在全省高中男生中的平均身高状况; (Ⅱ)求这50名男生身高在177.5cm 以上(含177.5 cm )的人数;(Ⅲ)在这50名男生身高在177.5cm 以上(含177.5 cm )的人中任意抽取2人,该2人 中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望. 参考数据:若),(~2σμξN .则()P μσξμσ-<≤+=0.6826, (22)P μσξμσ-<≤+=0.9544, (33)P μσξμσ-<≤+=0.9974.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,已知11AB BB C C ⊥侧面, 1AB BC ==,12BB =,13BCC π∠=.(Ⅰ)求证:1C B ABC ⊥平面;(Ⅱ)设1CE CC λ= (01λ≤≤),且平面1AB E 与1BB E 所成的锐二面角的大小为30︒,试求λ的值. 20.(本小题满分12分)如图,已知椭E:()222210x y a b a b +=>>的离心率为2,且过点(,四边形ABCD 的顶点在椭圆E 上,且对角线AC ,BD 过原点O , 22AC BD b k k a⋅=-.(Ⅰ)求OA OB ⋅的取值范围;(Ⅱ)求证:四边形ABCD 的面积为定值. 21.(本小题满分12分) 已知函数()(0)ln xf x ax a x=->.1(Ⅰ)若函数()f x 在(1,)+∞上是减函数,求实数a 的最小值;(Ⅱ)若212[,]x x e e ∃∈、,使12()()f x f x a '≤+成立,求实数a 的取值范围.请考生在第23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号.23. (本小题满分10分)在平面直角坐标系xOy 中,直线l的参数方程为()2x t y ⎧=⎪⎪⎨⎪⎪⎩为参数,以O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρ=4cos θ.(Ⅰ)求曲线C 的直角坐标方程及直线l 的普通方程; (Ⅱ)将曲线C 上的所有点的横坐标缩短为原来的12,再将所得曲线向左平移1个单位,得到曲线C 1,求曲线C 1上的点到直线l 的距离的最小值.24. (本小题满分10分)已知函数)a x x x f -++-=|2||1(|log )(2. (Ⅰ)当7=a 时,求函数)(x f 的定义域;(Ⅱ)若关于x 的不等式3)(≥x f 的解集是R ,求a 的取值范围.云南省部分名校高2015届1月份统一考试理科数学参考答案1-4 ADCB 5-8 DBCC 9-12 DAAC13.135 14.2 15.233333(1)112342n n n +⎡⎤+++++=⎢⎥⎣⎦16. 27 17.解.(Ⅰ)由21n n S a +=,得()112n n S a =-当2n ≥时,()()1111111112222n n n n n n n a S S a a a a ---=-=---=-+ 即11123n n n n n a a a a a --=-+∴=(由题意可知10n a -≠) {}n a 是公比为13的等比数列,而()111112S a a ==-113a ∴=,1111333n nn a -⎛⎫⎛⎫∴=⨯= ⎪⎪⎝⎭⎝⎭由12211n n n b b b ++=+,得12211111111,2,1,,n n d n b b b b b b n===-=∴=∴=(2)13nn n n a c n b ⎛⎫== ⎪⎝⎭,设12n n T c c c =+++,则()123231111112333331111112133333nn n n n T n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由错位相减,化简得:3311132313.443234434nnn n n T n +⎛⎫⎛⎫=-⨯-=-⨯< ⎪ ⎪⎝⎭⎝⎭18.解:(Ⅰ)由直方图,经过计算我校高三年级男生平均身高为1711.01851.01802.01753.01702.01651.0160=⨯+⨯+⨯+⨯+⨯+⨯高于全市的平均值170.5(4分)(Ⅱ)由频率分布直方图知,后两组频率为0.2,人数为0.2×50=10,即这50名男生身高在177.5cm 以上(含177.5 cm)的人数为10人. ……………(6分)(Ⅲ) 4 997.0)435.170435.170(=⨯+≤<⨯-ξP , 0013.029974.01)5.182(=-=≥∴ξP ,0.0013×100 000=130. 所以,全省前130名的身高在182.5 cm 以上,这50人中182.5 cm 以上的有5人. 随机变量ξ可取0,1,2,于是924510)0(21025====C C P ξ,954525)1(2101515====C C C P ξ,924510)2(21025====C C P ξ1922951920=⨯+⨯+⨯=∴ξE . ………………………………(12分)19.解:(Ⅰ)因为侧面11AB BB C C ⊥,1BC ⊂侧面11BBC C ,故1AB BC ⊥,在1BCC ∆中, 1111,2,60BC CC BB BCC ︒===∠= 由余弦定理得:2222211112cos 12212cos33BC BC CC BC CC BCC π=+-⋅⋅∠=+-⨯⨯⨯=,所以1BC = 故22211BC BC CC +=,所以1BC BC ⊥,而BCAB B =,1C B ∴⊥平面ABC(2)由(Ⅰ)可知,1,,AB BC BC 两两垂直.以B 为原点,1,,BC BA BC 所在直线为,,x y z 轴建立空间直角坐标系.则11(0,0,0),A(0,1,0),(1,0,3),C(1,0,0),C B B-. 所以1(1CC =-,所以()CE λ=-,(1)E λ∴-则(1,1)AE λ=--,1(1,1AB =--. 设平面1AB E 的法向量为(),,n x y z =,则1n AE n AB ⎧⊥⎪⎨⊥⎪⎩,1-)00x y z x y λ⎧-+=⎪⎨--=⎪⎩(,令3z =,则333,22x y λλλ-==--,333(,22n λλλ-∴=--是平面1AB E 的一个法 向量.AB ⊥平面11BB C C,(0,1,1)BA =是平面1BEB 的一个法向量,cos ,n BA n BA n BA⋅〈〉===∴.两边平方并化简得22530λλ-+=,所以1λ=或32λ=(舍去)20.解:(Ⅰ)2222222222842112844c aa x y ab b a bc ⎧=⎪⎪⎧=⎪+=⇒∴+=⎨⎨=⎩⎪=+⎪⎪⎩分当直线AB 的斜率存在时,设()()1122:,,,,.AB l y kx m A x y B x y =+由()2222212428028y kx mk x kmx m x y =+⎧⇒+++-=⎨+=⎩2121222428,1212km m x x x x k k--∴+==++.………………..4分 ()()2222212122222848121212m km m k y y kx m kx m k km m k k k ---⎛⎫=++=++= ⎪+++⎝⎭. 21221222222221281284212212OA OBy y b k k a x x m k m m b k k⋅=-⇒⋅=---∴=-⋅⇒=+++………………..6分222212122222288424212122121m m k k OA OB x x y y k k k k ---⋅=+=+==-++++, max 22OA OB=-2k AB x OA OB =2,OA OB ∴-≤⋅<⋅⊥⋅,当k=0时,当不存在即轴时所以OA OB ⋅的范围是[]2,2-.………………..8分()2S 412ABCD AOBAOBSS==..10分ABCD S ==∴=..12分21.(Ⅰ)因()f x 在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立.所以当(1,)x ∈+∞时,max ()0f x '≤.又22ln 1111()()(ln )ln 24x f x a a x x -'=-=--+-,故当11ln 2x =,即2x e =时,max 1()4f x a =-, 所以104a -≤,故14a ≥所以a 的最小值为14.(Ⅱ)“若212[,]x x e e ∃∈、,使12()()f x f x a '≤+成立”等价于当2[,]x e e ∈时,有min max ()()f x f x a '≤+,当2[,]x e e ∈时,有max max 11(),()44f x a f x a ''=-+=,问题等价于:“当2[,]x e e ∈时,有min 1()4f x ≤”①当14a ≥时, ()f x 在2[,]e e 上为减函数.则222max 1()()24e f x f e ae ==-≤,故21124a e ≥-.②当104a <<时,由于2111()()ln 24f x a x '=--+-在2[,]e e 上为增函数, 故()f x '的值域为2[(),()]f x f e '',即1[,]4a a --.由()f x '的单调性和值域知,存在唯一20(,)x e e ∈,使0()0f x '=,且满足: 当0(,)x e x ∈时,()0,()f x f x '<为减函数; 当20(,)x x e ∈时,()0,()f x f x '>为增函数;所以0min 0001()()ln 4x f x f x ax x ==-≤,20(,)x e e ∈.所以2001111111ln 4ln 4244a x x e e ≥->->-=,与104a <<矛盾,不合题意. 综上,21124a e≥-23.解:(Ⅰ)曲线C 的直角坐标方程为:224x y x += 即:()2224x y -+=直线l的普通方程为0x y -+= 4分 (2)将曲线C 上的所有点的横坐标缩为原来的12,得 ()22224x y -+= 即()22114y x -+=再将所得曲线向左平移1个单位,得1C :2214y x += 又曲线1C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数),设曲线1C 上任一点()cos ,2sin P θθ则p l d →==≥(其中1tan 2ϕ=-)∴点P 到直线l24.对值不等式的性质得解。

2015年云南省高考文科数学试题与答案(word版)

2015年云南省高考文科数学试题与答案(word版)

2015年云南省高考文科数学试题与答案(word版)2015年云南省高考文科数学试题与答案一、选择题:1.已知集合A={x|-1<x<2},B={x|0<x<3},则AUB=(C)(0,2)2.若a为实数且2+ai=3+i,则a=(D)43.根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图。

以下结论不正确的是(D)2006年以来我国二氧化硫年排放量与年份正相关4.a=(1,-1),b=(-1,2),则(2a+b)·a=(C)15.Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=(B)76.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为(A)11117.过三点A(0,0),B(0,3),C(2,3)则ABC外接圆的圆心到原点的距离为(B)58.右边程序抗土的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”。

执行该程序框图,若输入a,b分别为14,18,则输出的a=(C)49.已知等比数列{an}满足a1=1,a3a5=4(a4-1),则a2=(B)110.已知A,B是球O的球面上两点,∠AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为(C)144π11.如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,∠BOP=x。

将动点P 到AB两点距离之和表示为x的函数f(x),则f(x)的图像大致为1(无法改写,删除)则使得f(x)>f(2x-1)成立的x的取值范围是:A) (1,+∞)B) (-∞,1)∪(1,+∞)C) (-∞,1)D) (-∞,+∞)设函数f(x)=ln(1+x)-x/2二、填空题:13) 已知函数f(x)=ax-2x的图象过点(-1,4),则a=______。

14) 若x,y满足约束条件2x-y-1≥0,x-2y+1≤0,则z=2x+y的最大值为______。

2015年云南昆明理工大学数学分析考研真题A卷

2015年云南昆明理工大学数学分析考研真题A卷

2015年云南昆明理工大学数学分析考研真题A 卷一、(10分)设{|}.S x x =为区间(0,1)内的有理数(1)求S 的上、下确界;(2)用上、下确界的定义验证所得两个结果中的一个.二、(10分)叙述函数极限lim ()x f x →+∞的归结原则,并运用它证明lim cos x x →+∞不存在. 三、(15分)设2,3,(),3,x x f x ax b x ⎧≥=⎨+<⎩试确定,a b 的值,使f 在3x =处可导.四、(15分)求下列极限 (1)n →∞ (2)2lim ;n n →∞⎛⎫++++ (3)2001lim cos .tan x x t dt x →⎰ 五、(10分)(1)设2(sin ),(1cos ).|;t x a t t dy y a t dx π==-=-⎧⎨⎩求 (2)设(,),x y u f y z = 求.du 六、(15分)设函数)(x f 在],[b a 上连续,在),(b a 内()f x ''存在,又连结(,()),A a f a ))(,(b f b B 两点的直线交曲线)(x f y =于点(,()),C c f c 且,a c b << 试证:在),(b a 内至少存在一点,ξ 使得)0.(f ξ=''七、(10分)设20()cos().3nn n x f x n x π∞==∑ (1)证明)(x f 在)2,0(内一致收敛;(2)求1lim ().x f x → 八、(20分)设222222(0,(,)0,0.x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩证明:(1)),(y x f 在点(0,0)连续;(2)),(y x f 在点(0,0)偏导数存在;(3)),(y x f 关于x 的偏导函数),(y x f x 在点(0,0)不连续.九、(10分)计算曲线积分(),L x y ds +⎰其中L 是以(0,0),(1,0),(0,1)O A B 为顶点的三角形.十、(10分)计算曲面积分,SxyzdS ⎰⎰其中S 为平面1=++z y x 在第一卦限中的部分.十一、(10分)用高斯公式计算曲面积分222,Sx dydz y dzdx z dxdy ++⎰⎰ 其中S 是锥面222z y x =+与平面h z =所围空间区域)0(h z ≤≤的表面,方向取外侧.十二、(15分)试用致密性定理证明:若函数f 在闭区间[,]a b 上连续,则f 在[,]a b 上有界.。

2015年全国高中数学联赛参考答案(A卷word版本)

2015年全国高中数学联赛参考答案(A卷word版本)

2015 年全国高中数学联合竞赛(A 卷)参考答案及评分标准一试说明:1.评阅试卷时,请依据本评分标冶填空题只设。

分和香分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题该分为一个档次,不要增加其他中间档次.一、填空题:本大题共8小题,每小题份分,满分64分.1.设b a ,为不相等的实数,若二次函数b ax x x f ++=2)(满足)()(b f a f =,则=)2(f 答案:4.解:由己知条件及二次函数图像的轴对称性,可得22a b a+=-,即20a b +=,所以(2)424f a b =++=.2.若实数α满足ααtan cos =,则αα4cos sin 1+的值为 . 答案:2. 解:由条件知,ααsin cos 2=,反复利用此结论,并注意到1sin cos 22=+αα,得)cos 1)(sin 1(sin sin sin cos cos sin 122224αααααααα-+=++=+ 2cos sin 22=-+=αα.3.已知复数数列{}n z 满足),2,1(1,111⋅⋅⋅=++==+n ni z z z n n ,则=2015z .答案:2015 + 1007i .解:由己知得,对一切正整数n ,有211(1)11(1)2n n n n z z n i z ni n i z i ++=+++=+++++=++, 于是201511007(2)20151007z z i i =+⨯+=+.4.在矩形ABCD 中,1,2==AD AB ,线段DC 上的动点P 与CB 延长线上的动点Q 满=,则PQ PA ⋅的最小值为 .答案34.解:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) .设 P 的坐标为(t , l) (其中02t ≤≤),则由||||DP BQ =得Q 的坐标为(2,-t ),故(,1),(2,1)PA t PQ t t =--=---,因此,22133()(2)(1)(1)1()244PA PQ t t t t t t ⋅=-⋅-+-⋅--=-+=-+≥.当12t =时,min 3()4PA PQ ⋅=.5.在正方体中随机取三条棱,它们两两异面的概率为 . 答案:255.解:设正方体为ABCD-EFGH ,它共有12条棱,从中任意取出3条棱的方法共有312C =220种.下面考虑使3条棱两两异面的取法数.由于正方体的棱共确定3个互不平行的方向(即 AB 、AD 、AE 的方向),具有相同方向的4条棱两两共面,因此取出的3条棱必属于3个不同的方向.可先取定AB 方向的棱,这有4种取法.不妨设取的棱就是AB ,则AD 方向只能取棱EH 或棱FG ,共2种可能.当AD 方向取棱是EH 或FG 时,AE 方向取棱分别只能是CG 或DH .由上可知,3条棱两两异面的取法数为4×2=8,故所求概率为8222055=.6.在平面直角坐标系中,点集{}0)63)(63(),(≤-+-+y x y x y x 所对应的平面区域的面积为 . 答案:24.解:设1{(,)||||3|60}K x y x y =+-≤. 先考虑1K 在第一象限中的部分,此时有36x y +≤,故这些点对应于图中的△OCD 及其内部.由对称性知,1K 对应的区域是图中以原点O为中心的菱形ABCD 及其内部.同理,设2{(,)||3|||60}K x y x y =+-≤,则2K 对应的区域是图中以O 为中心的菱形EFGH 及其内部.由点集K 的定义知,K 所对应的平面区域是被1K 、2K 中恰好一个所覆盖的部分,因此本题所要求的即为图中阴影区域的面积S .由于直线CD 的方程为36x y +=,直线GH 的方程为36x y +=,故它们的交点P 的坐标为33(,)22.由对称性知,138842422CPG S S ∆==⨯⨯⨯=.7.设ω为正实数,若存在实数)2(,ππ≤<≤b a b a ,使得2sin sin =+b a ωω,则ω的取值范围为 . 答案:9513[,)[,)424w ∈+∞.解:2sin sin =+b a ωω知,1sin sin ==b a ωω,而]2,[,ππωωw w b a si ∈,故题目条件等价于:存在整数,()k l k l <,使得 ππππππw l k w 22222≤+≤+≤. ①当4w ≥时,区间]2,[ππw w 的长度不小于π4,故必存在,k l 满足①式. 当04w <<时,注意到)8,0(]2,[πππ⊆w w ,故仅需考虑如下几种情况:(i) ππππw w 2252≤<≤,此时21≤w 且45>w 无解;(ii) ππππw w 22925≤<≤,此时2549≤≤w ;(iii) ππππw w 221329≤<≤,此时29413≤≤w ,得4413<≤w .综合(i)、(ii)、(iii),并注意到4≥w 亦满足条件,可知9513[,)[,)424w ∈+∞.8.对四位数abcd ,若,,,d c c b b a ><>则称abcd 为P 类数,若d c c b b a <><,,,则称abcd 为Q 类数,则P 类数总量与Q 类数总量之差等于 .答案:285.解:分别记P 类数、Q 类数的全体为A 、B ,再将个位数为零的P 类数全体记为0A ,个位数不等于零的尸类数全体记为1A .对任一四位数1A abcd ∈,将其对应到四位数dcba ,注意到1,,≥><>d c c b b a ,故B dcba ∈.反之,每个B dcba ∈唯一对应于从中的元素abcd .这建立了1A 与B 之间的一一对应,因此有011()()||||||||||||N P N Q A B A A B A -=-=+-=.下面计算0||A 对任一四位数00A abc ∈, b 可取0, 1,…,9,对其中每个b ,由9≤<a b 及9≤<c b 知,a 和c 分别有b -9种取法,从而992200191019||(9)2856b k A b k ==⨯⨯=-===∑∑. 因此,()()285N P N Q -=. 三、解答题9.(本题满分16分)若实数c b a ,,满足cb ac b a 424,242=+=+,求c 的最小值. 解:将2,2,2abc分别记为,,x y z ,则,,0x y z >.由条件知,222,x y z x y z +=+=,故2222224()2z y x z y z y z y -==-=-+.8分因此,结合平均值不等式可得,4221111(2)244y y z y y y y +==++≥⋅=12分 当212y y =,即y =时,zx求).由于2log c z =,故c的最小值225log log 33=-.16分 10.(本题满分20分)设4321,,,a a a a 为四个有理数,使得:{}⎭⎬⎫⎩⎨⎧----=≤<≤3,1,81,23,2,2441j i aa ji,求4321a a a a +++的值. 解:由条件可知,(14)i j a a i j ≤<≤是6个互不相同的数,且其中没有两个为相反数,由此知,4321,,,a a a a 的绝对值互不相等,不妨设||||||||4321a a a a <<<,则||||(14)i j a a i j ≤<≤中最小的与次小的两个数分别是12||||a a 及13||||a a ,最大与次大的两个数分别是34||||a a 及24||||a a ,从而必须有121324341,81,3,24,a a a a a a a a ⎧=-⎪⎪⎪=⎨⎪=⎪=-⎪⎩ 10 分 于是2341112113,,248a a a a a a a =-===-. 故2231412113{,}{,24}{2,}82a a a a a a =--=--,15分结合1a Q ∈,只可能114a =±.由此易知,123411,,4,642a a a a ==-==-或者123411,,4,642a a a a =-==-=.检验知这两组解均满足问题的条件. 故123494a a a a +++=±. 20 分 11.(本题满分20分)设21,F F 分别为椭圆1222=+y x 的左右焦点,设不经过焦点1F 的直线l 与椭圆交于两个不同的点B A ,,焦点2F 到直线l 的距离为d ,如果11,,BF l AF 的斜率依次成等差数列,求d 的取值范围.解:由条件知,点1F 、2F 的坐标分别为(-1, 0)和(l, 0) .设直线l 的方程为y kx m =+,点A 、B 的坐标分别为11(,)x y 和22(,)x y ,则12,x x 满足方程22()12x kx m ++=,即 222(21)4(22)0k x kmx m +++-=.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程①的两个不同实根,因此有①的判别式22222(4)4(21)(22)8(21)0km k m k m ∆=-⋅+⋅-=+->,即2221k m +>.②由直线11,,BF l AF 的斜率1212,,11y y k x x ++依次成等差数列知,1212211y yk x x +=++,又1122,y kx m y kx m =+=+,所以122112()(1)()(1)2(1)(1)kx m x kx m x k x x +++++=++,化简并整理得,12()(2)0m k x x -++=.假如m k =,则直线l 的方程为y kx k =+,即 z 经过点1F (-1, 0),不符合条件. 因此必有1220x x ++=,故由方程①及韦达定理知,1224()221kmx x k =-+=+,即12m k k=+.③ 由②、③知,222121()2k m k k +>=+,化简得2214k k>,这等价于||2k >. 反之,当,m k满足③及||2k >l 必不经过点1F (否则将导致m k =,与③矛盾), 而此时,m k 满足②,故l 与椭圆有两个不同的交点A 、B ,同时也保证了1AF 、1BF 的斜率存在(否则12,x x 中的某一个为- l ,结合1220x x ++=知121x x ==-,与方程①有两个不同的实根矛盾).10分点2F (l , 0)到直线l: y kx m =+的距离为211|2|(2)22d k kk ==+=+.注意到||2k >t =t ∈,上式可改写为 21313()()222t d t t t=⋅+=⋅+.考虑到函数13()()2f t t t=⋅+在上上单调递减,故由④得,(1)f d f <<,即2)d ∈.20 分加试1.(本题满分40分)设)2(,,,21≥⋅⋅⋅n a a a n 是实数,证明:可以选取{}1,1,,,21-∈⋅⋅⋅n εεε,使得))(1()()(122121∑∑∑===+≤+ni i i n i i ni i a n a a ε.证法一:我们证明:2[]222111[]2()(1)()n n n n i i j i n i i i j a a a n a ====⎛⎫ ⎪+-≤+ ⎪ ⎪⎝⎭∑∑∑∑,① 即对1,2,,[]2n i =,取1i ε=,对[]1,,2ni n =+,取1i ε=-符合要求.(这里,[]x 表示实数x 的整数部分.) 10分事实上,①的左边为2222[][][]222111[]1[]1[]122222n n n n n n i j i j i j n n n i i i j j j a a a a a a ====+=+=+⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪++-=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑ []2221[]122222n n i j n i j n n a n a ==+⎛⎫⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪≤+- ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪ ⎪⎝⎭⎝⎭∑∑(柯西不等式)30分 []2221[]1212222n n i j n i j n n a a ==+⎛⎫⎛⎫⎛+⎫⎡⎤⎡⎤ ⎪ ⎪=+ ⎪⎢⎥⎢⎥ ⎪ ⎪⎣⎦⎣⎦⎝⎭ ⎪⎪⎝⎭⎝⎭∑∑(利用122n n n +⎡⎤⎡⎤-=⎢⎥⎢⎥⎣⎦⎣⎦) []2221[]12(1)n n i j n i j n a n a ==+⎛⎫⎛⎫ ⎪ ⎪≤++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭∑∑(利用[]x x ≤) 21(1)()ni i n a =≤+∑.所以 ① 得证,从而本题得证.证法二:首先,由于问题中12,,,n a a a 的对称性,可设12n a a a ≥≥≥.此外,若将12,,,n a a a 中的负数均改变符号,则问题中的不等式左边的21)(∑=n i i a 不减,而右边的21ni i a=∑不变,并且这一手续不影响1i ε=±的选取,因此我们可进一步设120n a a a ≥≥≥≥. 10分引理:设120n a a a ≥≥≥≥,则1110(1)ni i i a a -=≤-≤∑.事实上,由于1(1,2,,1)i i a a i n +≥=-,故当n 是偶数时,1123411(1)()()()0ni i n n i a a a a a a a --=-=-+-++-≥∑,11232111(1)()()ni i n n n i a a a a a a a a ---=-=------≤∑.当n 是奇数时,11234211(1)()()()0ni i n n n i a a a a a a a a ---=-=-+-++-+≥∑,1123111(1)()()ni i n n i a a a a a a a --=-=-----≤∑.引理得证. 30 分回到原题,由柯西不等式及上面引理可知22122211111(1)(1)n n n ni i i i i i i i i a a n a a n a -====⎛⎫⎛⎫⎛⎫+-≤+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑,这就证明了结论. 40分证法三:加强命题:设12,,,n a a a ⋅⋅⋅(2n ≥)是实数,证明:可以选取12,,,{1,1}n εεε⋅⋅⋅∈-,使得 2221111()()()()n nn i i i i i i i a a n a n ε===+≤+∑∑∑.证明 不妨设22212n a a a ≥≥⋅⋅⋅≥,以下分n 为奇数和n 为偶数两种情况证明.当n 为奇数时,取12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,于是有12221112()[()()]n nni i jn i i j a a a -+===+-∑∑∑12221122[()+()]n ni jn i j a a -+===∑∑1222112112()+2()()22n n i j n i j n n a n a -+==--≤⋅⋅-∑∑(应用柯西不等式).1222112(1)()+(1)()n ni jn i j n a n a -+===-+∑∑ ①另外,由于22212n a a a≥≥⋅⋅⋅≥,易证有122211211(1)(1)n n i j n i j a a n n -+==+≥-∑∑,因此,由式①即得到1222112(1)()+(1)()n nijn i j n a n a -+==-+∑∑211()()n i i n a n =≤+∑,故n 为奇数时,原命题成立,而且由证明过程可知,当且仅当12121n εεε-==⋅⋅⋅==,13221n n n εεε++==⋅⋅⋅==-,且12n a a a ==⋅⋅⋅=时取等号.当n 为偶数时,取1221n εεε==⋅⋅⋅==,24221n n n εεε++==⋅⋅⋅==-,于是有2222112()[()()]n nni i j n i i j a a a +===+-∑∑∑22222122[()+()]n ni j n i j a a +===∑∑2222122()+2()()22nn i j n i j n n a n a +==≤⋅⋅-∑∑(应用柯西不等式).222212[()+()]n nijn i j n a a +===∑∑22111()()()nn ii i i n a n a n ===≤+∑∑,故n 为偶数时,原命题也成立,而且由证明过程可知,当且仅当120n a a a ==⋅⋅⋅==时取等号,若12,,,n a a a ⋅⋅⋅不全为零,则取不到等号.综上,联赛加试题一的加强命题获证. 2.(本题满分40分)设{},,,,21n A A A S ⋅⋅⋅=其中n A A A ,,,21⋅⋅⋅是n 个互不相同的有限集合)2(≥n ,满足对任意的S A A j i ∈,,均有S A A j i ∈ ,若2min 1≥=≤≤i ni A k ,证明:存在i ni A x 1=∈ ,使得x 属于n A A A ,,,21⋅⋅⋅中的至少kn个集合.证明:不妨设1||A k =.设在12,,,n A A A 中与1A 不相交的集合有s 个,重新记为12,,,s B B B ,设包含1A 的集合有t 个,重新记为12,,,t C C C .由已知条件,1()i B A S ∈,即112(){,,,}i t B A C C C ∈,这样我们得到一个映射12121:{,,,}{,,,},()s t i i f B B B C C C f B B A →=. 显然f 是单映射,于是,s t ≤. 10 分设112{,,,}k A a a a =.在n A A A ,,,21⋅⋅⋅中除去12,,,s B B B ,12,,,t C C C 后,在剩下的n s t --个集合中,设包含i a 的集合有i x 个(1i k ≤≤),由于剩下的n s t --个集合中每个集合与从的交非空,即包含某个i a ,从而12k x x x n s t +++≥--. 20 分不妨设11max i i k x x ≤≤=,则由上式知i n s tx k --≥,即在剩下的n s t --个集合中,包含1a的集合至少有n s tk--个.又由于),,2,1(1t i C A i ⋅⋅⋅=⊆,故12,,,t C C C 都包含1a ,因此包含1a 的集合个数至少为(1)n s t n s k t n s tt k k k---+---+=≥(利用2k ≥) nk ≥(利用s t ≤). 40 分 3.(本题满分50分)如图,ABC ∆内接于圆O ,P 为BC 弧上一点,点K 在AP 上,使得BK 平分ABC ∠,过C P K ,,三点的圆Ω与边AC 交于D ,连接BD 交圆Ω于E ,连接PE ,延长交AB 于F ,证明:FCB ABC ∠=∠2.证法一:设CF 与圆Q 交于点L (异于C),连接PB 、PC 、 BL 、KL .注意此时C 、D 、L 、K 、E 、P 六点均在圆Ω上,结合A 、 B 、P 、C 四点共圆,可知∠FEB=∠DEP=180°-∠DCP=∠ABP=∠FBP ,因此△FB E ∽△FPB ,故FB 2=FE ·FP .10分又由圆幂定理知,FE ·FP= FL ·FC ,所以FB 2=FL ·FC . 从而△FBL ∽△FCB .因此, ∠FLB=∠FBC=∠APC=∠KPC=∠FLK, 即B 、K 、L 三点共线. 30 分再根据△FBL ∽△FCB 得,∠FCB=∠FBL=12∠ABC, 即∠ABC=2∠FCB .证法二:设CF 与圆Ω交于点L (异于C).对圆内接广义六边形DCLKPE 应用帕斯卡定理可知, DC 与KP 的交点A 、CL 与PE 的交点F 、LK 与ED 的交点了共线,因此B ’是AF 与ED 的交点,即B ’=B .所以B 、K 、L 共线.10分根据A 、B 、P 、C 四点共圆及L 、K 、P 、C 四点共圆,得 ∠ABC=∠APC=∠FLK=∠FCB+∠LBC,又由BK 平分∠ABC 知,∠FBL=12∠ABC ,从而 ∠ABC=2∠FCB .4.(本题满分50分)求具有下述性质的所有正整数k :对任意正整数n 都有1)1(2+-n k 不整除!)!(n kn . 解:对正整数m ,设2()v m 表示正整数m 的标准分解中素因子2的方幂,则熟知2(!)()v m m S m =-,①这里()S m 表示正整数m 在二进制表示下的数码之和.由于1)1(2+-n k 不整除()!!kn n ,等价于2()!()(1)!kn v k n n ≤-,即22(()!)(!)kn v kn n v n -≥-,进而由①知,本题等价于求所有正整数k ,使得()()S kn S n ≥对任意正整数n 成立. 10分我们证明,所有符合条件的k 为2(0,1,2,)aa =.一方面,由于(2)()aS n S n =对任意正整数n 成立,故2ak =符合条件. 20 分另一方面,若k 不是2的方幂,设2,0,ak q a q =⋅≥是大于1的奇数.下面构造一个正整数n ,使得()()S kn S n <.因为()(2)()aS kn S q S qn <⋅=, 因此问题等价于我们选取q 的一个倍数m ,使得()()m S m S q <. 由(2,q )=l ,熟知存在正整数u ,使得21(mod )uq ≡.(事实上,由欧拉定理知,u 可以取()q ϕ的.)设奇数q 的二进制表示为1212222,0,2t a a at a a a t +++=<<<≥.取1122222t t a a tu aa-+++++,则()S m t =,且2(21)0(mod )t a tu m q q =+-≡.我们有1(1)02121211212(122)12t t ttu uu t a a lu a u t ul m q q q q q -+-=---=++⋅=+⋅+++=+⋅∑由于2102u uq -<<,故正整数21u q -的二进制表示中的最高次幂小于u ,由此易知,对任意整数,(01)i j i j t ≤<≤-,数212t u iu a q +-⋅与212tu ju a q+-⋅的二进制表示中没有相同的项.又因为0i a >,故212(0,1,,1)tu lu a l t q +-⋅=-的二进制表示中均不包含1,故由②可知21()1()()u m S S t t S m q q-=+⋅>=, 因此上述选取的m 满足要求.综合上述的两个方面可知,所求的k 为2(0,1,2,)aa =.50分。

二本2014-2015(1)高数试卷A及答案(1)

二本2014-2015(1)高数试卷A及答案(1)

郑州轻工业学院2014-2015学年第一学期 高等数学A1、B1 试卷A试卷号:A20150114-1一、单项选择题(每题3分,共15分)1.1x =为函数2sin(1)()1x f x x -=-的( ) (A ) 可去间断点; (B )无穷间断点; (C )跳跃间断点; (D )震荡间断点.2.设()(1)(2)(3)(4)f x x x x x x =----,则'()0f x =的实根的个数为( )(A )2; (B )3; (C )4; (D )5.3.极限x x x 121(lim )+→的值是( ) (A )e ; (B )e1; (C )2-e ; (D )2e . 4.设1,0(),0x f x x a x -≠⎪=⎨⎪=⎩,且3)(lim 0=→x f x ,则有( ) (A )3,3==a b ; (B ),6=b a 可取任意实数;(C ),3=b a 可取任意实数; (D )3=a ,b 取任意实数.5.设22()x f x dx x e C =+⎰,则)(x f =( ) (A) 22x xe ; (B) 222x x e ; (C) 22(1)x xe x +; (D) 2(2)x xe x +.二、填空题(每题3分,共15分)1.曲线243y x x =-+在其顶点处的曲率为__________. 2.若点(1,3)为曲线23bx ax y +=的拐点,则______,_______a b ==.3. 曲线22132x y x x -=-+水平渐近线为_________,铅直渐近线为_________. 4.设52x y x e =+,则(2015)(0)y =______________.5.3cos x dx =⎰________________. 三、计算题 (每题6分,共36分)1.求极限:20sin 1lim x x e x x →--. 2.求函数32()26187f x x x x =--+的单调区间及极值.3.若函数()y y x =由方程sin y e xy x e ++=所确定,求0|x dy =.4.求曲线sin cos 2x t y t=⎧⎨=⎩在4t π=处的切线方程. 5.求不定积分:cos x e x dx ⎰. 6.求不定积分:4(1)x x dx -⎰.四、解答题(本题7分)设arctan ,0()0x x f x x <⎧⎪=≥,求'()f x . 五、证明题(每题7分,共14分)1.证明:当1x >时,2(1)ln 1x x x ->+. 2.设函数()f x 在[1,]e 上连续,且0()1f x <<,在(1,)e 内可导,且'()1x f x <.证明在(1,)e 内有且仅有一点ξ,使得()ln f ξξ=.六、应用题(本题8分)将周长为2p 的矩形绕它的一边旋转一周构成一个圆柱体,当矩形的边长各为多少时,圆柱体的体积最大?七、综合分析题(本题满分5分)设函数)(x f 在),(∞+-∞内有定义,且恒有)()()(y f x f y x f =+,)(1)(x xg x f +=,其中1)(lim 0=→x g x ,试求)('x f .2014-2015学年第一学期 高等数学A1、B1 试卷A 参考答案试卷号:A20150114-1一、单项选择题(每题3分,共15分)1.1x =为函数2sin(1)()1x f x x -=-的( A ) (A ) 可去间断点; (B )无穷间断点; (C )跳跃间断点; (D )震荡间断点.2.设()(1)(2)(3)(4)f x x x x x x =----,则'()0f x =的实根的个数为( C)(A )2; (B )3; (C )4; (D )5.3.极限x x x 1021(lim )+→的值是( D )(A )e ; (B )e 1; (C )2-e ; (D )2e .4.设1,0(),0x f x x a x -≠⎪=⎨⎪=⎩,且3)(lim 0=→x f x ,则有(B )(A )3,3==a b ; (B ),6=b a 可取任意实数;(C ),3=b a 可取任意实数; (D ),3=a b 可取任意实数.5.设22()x f x dx x e C =+⎰,则)(x f =( C )(A) 22x xe ; (B) 222x x e ; (C) 22(1)x xe x + ; (D) 2(2)x xe x +.二、填空题(每题3分,共15分)1.曲线243y x x =-+在其顶点处的曲率为___2_____.2.若点(1,3)为曲线23bx ax y +=的拐点,则a =32-,b = 92.3. 曲线22132x y x x -=-+水平渐近线为1y =,铅直渐近线为2x =.4.设52x y x e =+,则(2015)(0)y = 20152.5.3cos x dx =⎰ 31sin sin 3x x C -+.三、计算题 (每题6分,共36分)1.求极限:20sin 1lim x x e x x →--. 解:原式0cos lim 2x x e xx →-= ……3分0sin 1lim 22x x e x→+== …..6分2.求函数32()26187f x x x x =--+的单调区间及极值.解:函数的定义域为(,)D =-∞+∞2'()612186(3)(1)f x x x x x =--=-+ ……2分令'()0f x =,得驻点1,3x x =-=. ……3分单增区间为(,1],[3,)-∞-+∞,单减区间为[1,3]-,极大值(1)17f -=,极小值(3)47f =-.3.若函数()y y x =由方程sin y e xy x e ++=所确定,求0|x dy =.解:方程两边关于自变量x 求导,()y y x =,则有''cos 0y e y y xy x +++=,所以cos 'y y xy e x +=-+. …….3分当0x =时,代入方程得1y =,所以2'(0)y e=-, ……..5分 故02|x dy dx e==-. ……6分 4.求曲线sin cos 2x t y t=⎧⎨=⎩在4t π=处的切线方程. 解:2sin 24sin cos dydy t dt t dx dx tdt-===-,……3分 在4t π=处,0,2dy x y dx===-,…….5分 所以切线方程为)2y x =--. ……6分 四、解答题(本题7分)5.求不定积分:e cos x x dx ⎰. 解:cos cos cos cos x x x x e x dx x d e e x e d x ==-⎰⎰⎰……2分 cos sin cos sin x x x x e x e x dx e x x d e =+=+⎰⎰cos sin sin (cos sin )cos x x x x x e x e x e d x e x x e xd x =+-=+-⎰⎰…….5分 移项得 1e cos (cos sin )2x x x dx e x x C =++⎰.……6分 6.求不定积分:4(1)x x dx -⎰.解法1:451(1)(1)5x x dx xd x ⎛⎫-=- ⎪⎝⎭⎰⎰ ……2分 5511(1)(1)55x x x dx =---⎰ ……4分 5611(1)(1)530x x x C =---+ ……6分解法2:4454(1)(11)(1)(1)(1)x x dx x x dx x dx x dx -=-+-=-+-⎰⎰⎰⎰…..4分6511(1)(1)65x x C =-+-+ ……6分 解法3:令1x t -=,则1,x t dx dt =+=,……2分原式454=(1)t t dt t dt t dt +=+⎰⎰⎰ …..4分65651111(1)(1)6565t t C x x C =++=-+-+ ……6分 解法4:4432(1)(4641)x x dx x x x x x dx -=-+-+⎰⎰ …..4分54326543214341(464)65232x x x x x dx x x x x x C =-+-+=-+-++⎰……6分设arctan ,0()0x x f x x <⎧⎪=≥,求'()f x .解:0x >时,()arctan f x x =,所以21'()1f x x =+;……2分0x <时()f x ='()f x = ……4分0x =时,(0)0f =,且00()(0)arctan '(0)lim lim 1x x f x f x f x x---→→-===,00()(0)'(0)lim lim x x f x f f x x +++→→-===+∞.所以()f x 在0x =处不可导. ……6分故21,01()0x x f x x ⎧<⎪+⎪=⎨>. ……7分五、证明题(每题7分,共14分)1.证明:当1x >时,2(1)ln 1x x x ->+.证法1:令()(1)ln 2(1)f x x x x =+--,1x ≥,则(1)0f =.……2分 11'()ln 2ln 1x f x x x x x +=+-=+-,且'(1)0f =.211''()0,1f x x x x =->>. ……5分所以1x >时,'()'(1)0f x f >=;1x >时,()(1)0f x f >=,整理即得2(1)ln 1x x x ->+. ……7分证法2:2(1)()ln ,11x f x x x x -=-≥+,且(1)0f =.……2分222211(1)14(1)'()2(1)(1)(1)x x x f x x x x x x x +---=-=-=+++. ……5分 当1x >时,'()0f x >,所以()(1)0f x f >=,即2(1)ln 1x x x ->+.……7分 2、设函数()f x 在[1,]e 上连续,且0()1f x <<,在(1,)e 内可导,且'()1x f x <.证明在(1,)e 内有且仅有一点ξ,使得()ln f ξξ=.证明:(1)存在性令()()ln ,1F x f x x x e =-≤≤,显然()F x 在[1,]e 上连续,且(1)(1)0,()()10F f F e f e =>=-<,即(1)()0F F e <,故()F x 在[1,]e 上满足零点定理,所以至少存在一点(1,)e ξ∈,使得()0F ξ=,即()ln f ξξ=. ……5分(2)唯一性 因为1'()1'()'()0xf x F x f x x x-=-=<,所以()F x 在[1,]e 上单减,故()F x 在(1,)e 内至多有一个零点. 综上所述,()F x 在(1,)e 内仅有一个零点,即在(1,)e 内有且仅有一点ξ,使得()ln f ξξ=. ……7分六、应用题(本题8分)将周长为2p 的矩形绕它的一边旋转一周构成一个圆柱体,当矩形的边长各为多少时,圆柱体的体积最大?解:设矩形一边长x ,则另一边长p x -.将其绕p x -边旋转,则旋转体的体积为223()(),0V x p x px x x p ππ=-=-<<, ……3分2'(23)V px x π=-,令'0V =,得驻点23x p =. 2''(26),''()203p V p x V p ππ=-=-<. ……7分 所以,当23x p =时,V 取极大值. 2133x p p x p =⇒-=. 由问题的实际意义知,当长和宽分别取2,33p p 时,体积最大. ……8分七、综合分析题(本题满分5分)设函数)(x f 在),(∞+-∞内有定义,且恒有)()()(y f x f y x f =+, )(1)(x xg x f +=,其中1)(lim 0=→x g x ,试证明()f x 在R 上处处可导,且)()('x f x f =.解:因为)(1)(x xg x f +=, 所以00()1()1(),lim lim ()1x x f x f x xg x g x x→→--===.……1分 0()()'()lim h f x h f x f x h→+-= ……3分 00()()()()1lim ()lim ()h h f x f h f x f h f x f x h h→→--===.……5分 所以,()f x 在R 上处处可导,且'()()f x f x =.。

高等数学考试试题及答案-昆明理工大学

高等数学考试试题及答案-昆明理工大学

e 3 x cos 2 x 3e 3 x 2 sin 2 x 3 (用洛必达法则) lim (4 分) ; (7 分) x 0 x 0 2 cos 2 x sin 2 x 2
(2). lim
x
x
2
1 x 2 1 lim
2 x

2 x2 1 x2 1
五.证明题: (本题 5 分) 设 f ( x) 为连续函数,证明: xf (sin x)dx
0


2 0
f (sin x)dx 。
昆明理工大学试卷标准答案
一.填空题: (本题总分 20 分,每小题 4 分) 1. (,4) (4,5) (5,6) (6,) ; 2. f ( x0 ) ; 3. F ( x a) F (2a) ; 4.0, 2 ; 5. x 2 y 2 C 。 二.计算题: (本题总分 49 分,每小题 7 分) 1. (1). lim
2.设 f ( x) 在 x x0 处可导,则 lim
h 0

3.设 F ( x) f ( x) ,则 f (t a)dt
a
x

4.函数 f ( x)
e2x 1 的可去间断点为 x0 x( x 1)
,补充定义 f ( x0 )
,则函数
在 x 0 点连续。 5.方程 y
昆明理工大学考试试卷
课程名称(含档次) 专 业 高等数学 B(一) 层次(本、专) 本 科 课程代号 考试方式(开、闭卷) 闭卷
一.填空题: (本题总分 20 分,每小题 4 分) 1.函数 f ( x)
1 的定义域是 lg x 5

f ( x 0 2h) f ( x 0 ) 2h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档