半导体物理第六、七篇习题答案
半导体物理第六、七章习题答案

第六章课后习题解析1.一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =5⨯1015cm -3,该pn 结室温下的自建电势。
解:pn 结的自建电势 2(ln )D A D iN N kTV q n =已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=⨯代入后算得:1517132510100.026ln 0.36(2.410)D V V ⨯⨯=⨯=⨯ 4.证明反向饱和电流公式(6-35)可改写为20211()(1)i s n n p pb k T J b q L L σσσ=++ 式中npb μμ=,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。
证明:将爱因斯坦关系式p p kT D q μ=和n n kT D qμ=代入式(6-35)得 0000()p n pnS p n n p npn pp nn p J kTn kTp kT L L L L μμμμμμ=+=+因为002i p p n n p =,002i n n n p n =,上式可进一步改写为221111()()S n p i n p i n p p p n n n pp nJ kT n qkT n L p L n L L μμμμμμσσ=+=+又因为()i i n p n q σμμ=+22222222()(1)i i n p i p n q n q b σμμμ=+=+即22222222()(1)i i i n p p n q q b σσμμμ==++ 将此结果代入原式即得证2222221111()()(1)(1)n p i i S p n p p n n p p nqkT b kT J q b L L q b L L μμσσμσσσσ=+=⋅⋅+++注:严格说,迁移率与杂质浓度有关,因而同种载流子的迁移率在掺杂浓度不同的p区和n 区中并不完全相同,因而所证关系只能说是一种近似。
半导体物理学(第七版)课后习题答案.doc

半导体物理学(第七版)课后习题答案.doc半导体物理习题解答1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求:①禁带宽度;②导带底电子有效质量;③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k ,由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ;由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m Vn-== ④准动量的改变量h △k =h (k min -k max )= ahk h 83431=[毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
半导体物理学第七版完整答案修订版

半导体物理学第七版完整答案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E C (K )=0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2)导带底电子有效质量;(3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化解:(1)2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkhqE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-=(, 式中a 为 晶格常数,试求(1)布里渊区边界;(2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,?1,?2…)进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()mak E k E MINMAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理习题答案完整版

半导体物理习题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。
即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。
解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。
例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。
试求:(2)能带底部和顶部电子的有效质量。
解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。
当时,代入(2)得:对应E(k)的极大值。
根据上述结果,求得和即可求得能带宽度。
故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。
2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。
3 试指出空穴的主要特征。
4 简述Ge、Si和GaAs的能带结构的主要特征。
5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。
求:(2)能带底和能带顶的有效质量。
6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。
半导体物理习题答案

第1章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近能量()c E k 和价带极大值附近能量()v E k 分别为2222100()()3c h k k h k E k m m -=+,22221003()6v h k h k E k m m =-0m 为电子惯性质量,112k a =, 0.314a =nm 。
试求:1) 禁带宽度;2) 导带底电子有效质量; 3) 价带顶电子有效质量;4) 价带顶电子跃迁到导带底时准动量的变化。
解:1) 禁带宽度g E ,根据22100()2()202c dE k h k k h k dk m m -=+=,可求出对应导带能量极小值min E 的k 值:min 134k k =, 由题目中()c E k 式可得:min 12min 3104()4c k k k h E E k k m ====; 根据20()60v dE k h k dk m =-=,可以看出,对应价带能量极大值max E 的k 值为:k max = 0;可得max 221max 00()6v k k h k E E k m ====,所以2221min max 2001248g h k h E E E m m a=-== 2) 导带底电子有效质量m n由于2222200022833c d E h h h dk m m m =+=,所以202238nc m h md E dk== 3) 价带顶电子有效质量vn m由于22206v d E h dk m =-,所以20226v nv m h m d E dk ==- 4) 准动量的改变量min max 133()48hh k h k k hk a∆=-==2. 晶格常数为 nm 的一维晶格,当外加102V/m 、107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:设电场强度为E ,电子受到的力f 为dkf hqE dt==(E 取绝对值),可得h dt dk qE =, 所以12012ta h h t dt dk qE qE a===⎰⎰,代入数据得: 34619106.62108.310()1.6102(2.510)t s E E----⨯⨯==⨯⨯⨯⨯⨯ 当E = 102V/m 时,88.310t s -=⨯;当E = 107V/m 时,138.310t s -=⨯。
半导体物理学刘恩科习题答案权威修订版

半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V0m 。
试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=ak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nCs N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkqE f得qE k ts a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数 r =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。
半导体物理学习题答案

半导体物理习题解答1-1.(P 43)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0223m k h ;m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。
试求:①禁带宽度;②导带底电子有效质量; ③价带顶电子有效质量;④价带顶电子跃迁到导带底时准动量的变化。
[解] ①禁带宽度Eg根据dk k dEc )(=0232m k h +012)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:k min =143k , 由题中E C 式可得:E min =E C (K)|k=k min =2104k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =20248a m h =112828227106.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯=0.64eV ②导带底电子有效质量m n0202022382322m h m h m h dkE d C =+=;∴ m n =022283/m dk E d h C= ③价带顶电子有效质量m ’02226m h dk E d V -=,∴0222'61/m dk E d h m Vn-== ④准动量的改变量h △k =h (k min -k max )= ahk h 83431= [毕]1-2.(P 43)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
[解] 设电场强度为E ,∵F =hdt dk =q E (取绝对值) ∴dt =qEh dk∴t=⎰tdt 0=⎰a qEh 210dk =a qE h 21 代入数据得:t =E⨯⨯⨯⨯⨯⨯--1019-34105.2106.121062.6=E 6103.8-⨯(s )当E =102 V/m 时,t =8.3×10-8(s );E =107V/m 时,t =8.3×10-13(s )。
半导体物理学习题答案(有目录)

半导体物理学习题答案(有目录)半导体物理习题解答目录1-1.(P32)设晶格常数为a的一维晶格,导带极小值附近能量E c(k)和价带极大值附近能量E v(k)分别为: (2)1-2.(P33)晶格常数为0.25nm的一维晶格,当外加102V/m,107V/m的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
(3)3-7.(P81)①在室温下,锗的有效状态密度Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试求锗的载流子有效质量mn*和mp*。
(3)3-8.(P82)利用题7所给的Nc和Nv数值及Eg=0.67eV,求温度为300k和500k时,含施主浓度ND=5×1015cm-3,受主浓度NA=2×109cm-3的锗中电子及空穴浓度为多少? (4)3-11.(P82)若锗中杂质电离能△ED=0.01eV,施主杂质浓度分别为ND=1014cm-3及1017cm-3,计算(1)99%电离,(2)90%电离,(3)50%电离时温度各为多少? (5)3-14.(P82)计算含有施主杂质浓度ND=9×1015cm-3及受主杂质浓度为1.1×1016cm-3的硅在300k 时的电子和空穴浓度以及费米能级的位置。
(6)3-18.(P82)掺磷的n型硅,已知磷的电离能为0.04eV,求室温下杂质一般电离时费米能级的位置和磷的浓度。
(7)3-19.(P82)求室温下掺锑的n型硅,使EF=(EC+ED)/2时的锑的浓度。
已知锑的电离能为0.039eV。
(7)3-20.(P82)制造晶体管一般是在高杂质浓度的n型衬底上外延一层n型的外延层,再在外延层中扩散硼、磷而成。
①设n型硅单晶衬底是掺锑的,锑的电离能为0.039eV,300k时的EF位于导带底下面0.026eV处,计算锑的浓度和导带中电子浓度。
(8)4-1.(P113)300K时,Ge的本征电阻率为47Ω.cm,如电子和空穴迁移率分别为3900cm2/V.S和1900cm2/V.S,试求本征Ge的载流子浓度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章课后习题解析1.一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =5⨯1015cm -3,该pn 结室温下的自建电势。
解:pn 结的自建电势 2(ln )D A D iN N kTV q n =已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=⨯代入后算得:1517132510100.026ln 0.36(2.410)D V V ⨯⨯=⨯=⨯ 4.证明反向饱和电流公式(6-35)可改写为 式中npb μμ=,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。
证明:将爱因斯坦关系式p p kT D q μ=和n n kT D qμ=代入式(6-35)得 因为002i p p n n p =,002i n n n p n =,上式可进一步改写为又因为即将此结果代入原式即得证注:严格说,迁移率与杂质浓度有关,因而同种载流子的迁移率在掺杂浓度不同的p 区和n区中并不完全相同,因而所证关系只能说是一种近似。
2.试分析小注入时,电子(空穴)在5个区域中的运动情况(分析漂移和扩散的方向及相对大小)答:正向小注入下,P 区接电源正极,N 区接电源负极,势垒高度降低,P 区空穴注入N 区,N 区电子注入P 区。
注入电子在P 区与势垒区交界处堆积,浓度高于P 区平衡空穴浓度,形成流向中性P 区的扩散流,扩散过程中不断与中性P 区漂移过来的空穴复合,经过若干扩散长度后,全部复合。
注入空穴在N 区与势垒区交界处堆积,浓度比N 区平衡电子浓度高,形成浓度梯度,产生流向中性N 区的空穴扩散流,扩散过程中不断与中性N 区漂移过来的电子复合,经过若干扩散长度后,全部复合。
3.在反向情况下坐上题。
答:反向小注入下,P 区接电源负极,N 区接电源正极,势垒区电场强度增加,空间电荷增加,势垒区边界向中性区推进。
势垒区与N 区交界处空穴被势垒区强电场驱向P 区,漂移通过势垒区后,与P 区中漂移过来的空穴复合。
中性N 区平衡空穴浓度与势垒区与N 区交界处空穴浓度形成浓度梯度,不断补充被抽取的空穴,对PN 结反向电流有贡献。
同理,势垒区与P 区交界处电子被势垒区强电场驱向N 区,漂移通过势垒区后,与N区中漂移过来的电子复合。
中性P 区平衡电子浓度与势垒区与P 区交界处电子浓度形成浓度梯度,不断补充被抽取的电子,对PN 结反向电流有贡献。
反向偏压较大时,势垒区与P 区、N 区交界处的少子浓度近似为零,少子浓度梯度不随外加偏压变化,反向电流饱和。
5.一硅突变pn 结的n 区ρn =5Ω⋅cm ,τp =1μs ;p 区ρp =0.1Ω⋅cm ,τn =5μs ,计算室温下空穴电流与电子电流之比、饱和电流密度,以及在正向电压0.3V 时流过p-n 结的电流密度。
解:由5n cm ρ=Ω⋅,查得143910D N cm -=⨯,3420/p cm V s μ=⋅由0.1p cm ρ=Ω⋅,查得173510A N cm -=⨯,3500/n cm V s μ=⋅∴由爱因斯坦关系可算得相应的扩散系数分别为2142010.5 cm /40p p kT D s q μ==⨯=,2150012.5 cm /40n n kT D s q μ==⨯= 相应的扩散长度即为对掺杂浓度较低的n 区,因为杂质在室温下已全部电离,0143910n n cm -=⨯,所以 对p 区,虽然N A =5⨯1017cm -3时杂质在室温下已不能全部电离,但仍近似认为p p0=N A ,于是,可分别算得空穴电流和电子电流为∴0195UU 31.61010.52.510(1)(1)3.2410q q n kTkTp PPp J qD ee L --⨯⨯⨯⨯=-=-⨯ 空穴电流与电子电流之比 103131.3010 1.14101.1410pn J J --⨯==⨯⨯ 饱和电流密度: 当U =0.3V 时:0.30.310100.0260.026(1) 1.3010(1) 1.3010qVkTS J J eee--=-=⨯⨯-=⨯⨯=521.2910A /cm -⨯6.条件与上题相同,计算下列电压下的势垒区宽度和单位面积上的势垒电容: ①-10V ;②0V ;③0.3V 。
解:对上题所设的p +n 结,其势垒宽度式中,1417021021910510()ln 0.026ln 0.74(1.510)n p A D D F F i k T N N V E E V q q n ⋅⨯⨯⨯=-===⨯ 外加偏压U 后,势垒高度D V 变为()D V U -,因而 ① U =-10V 时,势垒区宽度和单位面积势垒电容分别为② U =0V 时,势垒区宽度和单位面积势垒电容分别为③ U =0.3V正向偏压下的pn 结势垒电容不能按平行板电容器模型计算,但近似为另偏压势垒电容的4倍,即7.计算当温度从300K 增加到400K 时,硅pn 结反向电流增加的倍数。
解:根据反向饱和电流J S 对温度的依赖关系(讲义式(6-26)或参考书p.193):式中,E g (0)表示绝对零度时的禁带宽度。
由于3/2T γ+比其后之指数因子随温度的变化缓慢得多,S J 主要是由其指数因子决定,因而9.已知突变结两边的杂质浓度为N A =1016cm -3,N D =1020cm -3。
①求势垒高度和势垒宽度 ②画出E (x )和V (x )图。
解:平衡势垒高度为11.分别计算硅n +p 结在正向电压为0.6V 、反向电压为40V 时的势垒区宽度。
已知N A =5*1017cm -3,V D =0.8V 。
解:对n+-p 结 势垒区宽度当V V cm N V V V D A F 8.0,105,6.0317=⨯===-时, 当V V cm N V V V D A R 8.0,105,40317=⨯=-==-时, 12.分别计算硅p +n 结在平衡和反向电压45V 时的最大电场强度。
已知V D =0.7V ,153510D Ncm -=⨯。
解:势垒宽度:D X ==⑴平衡时,即U=0V 时 最大场强:191554141.610510 4.2710 3.3310/8.851011.6B mm r qN X V cm εεε---⨯⨯⨯⨯⨯===⨯⨯⨯ ⑵45D V V =-时: 最大场强13.求题5所给硅p +n 的反向击穿电压、击穿前的空间电荷区宽度及其中的平均电场强度。
解:按突变结击穿电压与低掺杂区电阻率的关系,可知其雪崩击穿电压U B = 95.1443ρ=95.14⨯751/4=318 V或按其n 区掺杂浓度9⨯1014/cm 3按下式算得U B =603164(10/)B N =60⨯ (100/9)3/4=365(V )二者之间有计算误差。
以下计算取300V 为击穿前的临界电压。
击穿前的空间电荷区宽度 空间电荷区中的平均电场强度注:硅的临界雪崩击穿电场强度为3⨯105 V/cm ,计算结果与之基本相符。
14.设隧道长度40x nm =,求硅、锗、砷化镓在室温下电子的隧穿几率。
解:隧穿几率])2(38ex p[2/12*x hE m P g n ∆-=π ⑴对硅:*01.08nm m =, 1.12g E ev =,121 1.610ev -=⨯尔格 128212830.714227282 1.089.110P exp[()(1.12 1.610)410] 4.65103(6.6210)e π------⨯⨯⨯=-⋅⋅⨯⨯⋅⨯==⨯⨯ ⑵对锗:*00.56nm m =,0.67g E ev = ⑶对砷化镓:*00.068nm m =, 1.35g E ev = 第七章课后习题解析1.求Al-Cu 、Au-Cu 、W-Al 、Cu-Ag 、Al-Au 、Mo-W 、Au-Pt 的接触电势差,并标出电势的正负。
对功函数不同的两种材料的理想化接触,其接触电势差为: 故: 4.59 4.180.41Cu Al Al Cu W W V ev q q---=== 2、两种金属A 和B 通过金属C 相接触,若温度相等,证明其两端a 、b 的电势差同A 、B 直接接触的电势差一样。
如果A 是Au ,B 是Ag ,C 是Cu 或Al ,则Vab 为多少伏?解:∵温度均相等,∴不考虑温差电动势∵C A AC W W V q -=,B CCB W W V q-= 两式相加得:B AAC CB AB W W V V V q-==+ 显然,V AB 与金属C 无关。
若A 为Au ,B 为Ag ,C 为Al 或Cu ,则V AB 与Cu 、Al 无关,其值只决定于W Au =5.2eV ,W Ag =4.42eV ,即3、求ND=1017cm-3的n 型硅在室温下的功函数。
若不考虑表面态的影响,它分别同Al 、Au 、Mo 接触时,形成阻挡层还是反阻挡层?硅的电子亲和能取4.05ev 。
解:设室温下杂质全部电离,则其费米能级由n 0=N D =5⨯1015cm -3求得: 其功函数即为:C () 4.050.15 4.20V S F W E E e χ=+-=+=若将其与功函数较小的Al (W Al =4.18eV )接触,则形成反阻挡层,若将其与功函数较大的Au (W Au =5.2eV )和Mo (W Mo =4.21eV )则形成阻挡层。
5、某功函数为2.5eV 的金属表面受到光的照射。
①这个面吸收红色光或紫色光时,能发射电子吗?②用波长为185nm 的紫外线照射时,从表面发射出来的电子的能量是多少?解:⑴设红光波长λ=700nm ;紫光波长λ=400nm ,则红光光子能量其值小于该金属的功函数,所以红光照射该金属表面不能令其发射电子;而紫光光子能量:2710126.6210310 3.11.610E ev --⨯⨯⨯==⨯紫 其值大于该金属的功函数,所以紫光照射该金属表面能令其发射电子。
⑵ λ=185nm 的紫外光光子能量为: 发射出来的电子的能量: 6.7 2.5 4.2 eV o E E W =-=-=6、电阻率为10cm Ω⋅的n 型锗和金属接触形成的肖特基势垒高度为0.3ev 。
求加上5V 反向电压时的空间电荷层厚度。
解:12002[()]r S D V V d qN εε⎧⎫+=-⎨⎬⎩⎭已知:0()0.3S q V ev =-,5V V =-。
由图4-15查得10cm ρ=Ω⋅时,1431.510D N cm -=⨯ ∴1144219142168.8510(0.35)[]7.9107.91.610 1.510d cm m μ---⨯⨯⨯++==⨯=⨯⨯⨯ 7、在n 型硅的(111)面上与金属接触形成肖特基势垒二极管。