梯形存在性问题
八年级(下)数学 同步讲义 四边形的存在性

四边形的存在性内容分析本节包含两部分,平行四边形的存在性及梯形的存在性,常见题型是存在菱形和正方形,根据题目中的条件及特殊的平行四边形的性质构造等量关系,求出相应的点的坐标;常见的梯形的问题中,经常需要添加辅助线,考察学生的分类讨论思想及逻辑思维能力.知识结构模块一平行四边形的存在性知识精讲平行四边形的问题是近几年来考试的热点,考察学生的分类讨论的思想.常见的题型是在平面直角坐标系中已知三点和第四点构成平行四边形,求第四点;或者已知两点,另外两点在某函数图像上,四点构成平行四边形;利用两点间的距离公式和平移的思想,结合题目中的条件构造等量关系进行求解即可.在几何中,平行四边形的判定方法有如下几条:①两组对边互相平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分;⑤两组对角相等。
在压轴题中,往往与函数(坐标轴)结合在一起,运用到④⑤的情况较少,更多的是从边的平行、相等角度来得到平行四边形.- 2 -ABCM 1M 2M 31、 知识内容:已知三点后,其实已经固定了一个三角形(平行四边形的一半),如图ABC .第四个点M 则有3种取法,过3个顶点作对边的平行线且取相等长度即可(如图中3个M 点).2、 解题思路:(1) 根据题目条件,求出已知3个点的坐标; (2) 用一点及其对边两点的关系,求出一个可能点; (3) 更换顶点,求出所有可能的点;(4) 根据题目实际情况,验证所有可能点是否满足要求并作答.【例1】 如图所示,在梯形ABCD 中,AD ∥BC ,∠B =90°,AD =24 cm ,BC =26 cm ,动点P 从点A 出发沿AD 方向向点D 以1cm /s 的速度运动,动点Q 从点C 开始沿着CB 方向向点B 以3cm /s 的速度运动.点P 、Q 分别从点A 和点C 同时出发,当其中一点到达端点时,另一点随之停止运动.(1)经过多长时间,四边形PQCD 是平行四边形; (2)经过多长时间,四边形PQBA 是矩形.例题解析思路剖析【例2】 如图,在平面直角坐标系中,点A 的坐标为A (3, 0),点B 的坐标为B (0, 4).(1)求直线AB 的解析式;(2)点C 是线段AB 上一点,点O 为坐标原点,点D 在第二象限,且四边形BCOD 为菱形,求点D 坐标;(3)在(2)的条件下,点E 在x 轴上,点P 在直线AB 上,且以B 、D 、E 、P 为顶点 的四边形是平行四边形,请写出所有满足条件的点P 的坐标.【例3】 如图,在平面直角坐标系中,过点(2,3)的直线y =kx +2与x 轴交于点A ,与y 轴交于点B ,将此直线向下平移3个单位,所得到的直线l 与x 轴交于点C . (1)求直线l 的表达式;(2)点D 为该平面直角坐标系内的点,如果以点A 、B 、C 、D 为顶点的四边形是平行 四边形,求点D 的坐标.ABOxyAB Oxy【例4】如图,已知直线l1经过点A(-5,-6)且与直线l2:362y x=-+平行,直线l 2与x轴、y轴分别交于点B、C.(1)求直线l1的表达式及其与x轴的交点D的坐标;(2)判断四边形ABCD是什么四边形.并证明你的结论;(3)若点E是直线AB上一点,平面内存在一点F,使得四边形CBEF是正方形,求点E的坐标,请直接写出答案.【例5】直线364y x=-+与坐标轴分别交与点A、B两点,点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿O B A→→运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,△OPQ的面积为S,求出S与t之间的函数关系式.(3)当485S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.xOy- 4 -【例6】 已知:如图,四边形ABCD 是菱形,∠B 是锐角,AF ⊥BC 于点F , CH ⊥AD 于点H , 在AB 边上取点E ,使得AE =AH ,在CD 边上取点G ,使得CG =CF .联结EF 、FG 、GH 、HE .(1)求证:四边形EFGH 是矩形;(2)当∠B 为多少度时,四边形EFGH 是正方形.并证明.【例7】 如图所示,平面直角坐标系中,O 是坐标原点,正比例函数y =kx (x 为自变量)的图像与双曲线2y x=-交于点A ,且点A 的横坐标为2-.(1)求k 的值;(2)将直线y =kx (x 为自变量)向上平移4个单位得到直线BC ,直线BC 分别交x 轴、y 轴于B 、C ,如点D 在直线BC 上,在平面直角坐标系中求一点,使以O 、B 、D 、P 为顶点的四边形是菱形.ABC OxyABCDEFGH- 6 -【例8】 在直角△ABC 中,∠C =90°,∠A =30°,AB =4,将一个30°角的顶点P 放在AB边上滑动,保持30°角的一边平行于BC ,且交边AC 于点E ,30°的另一边交射线BC 于点D ,连ED .(1)如图,当四边形PBDE 为等腰梯形时,求AP 长;(2)四边形PBDE 有可能为平行四边形吗.若可能,求出PBDE 为平行四边形时,AP 的长,若不可能,说明理由;(3)若点D 在BC 边上(不与B 、C 重合),试写出线段AP 的取值范围.ABCDE P梯形的分类讨论题多见于各类压轴题中,由于这类题目都与图形的运动有关,需要学生有一定的想象力、分析力和运算力.梯形的主要特征是两底平行,特殊梯形又可分为等腰梯形和直角梯形两大类.常见题型为在直角坐标平面内已知三点求第四点,抓住梯形两底平行的特征,对应的一次函数的解析式的k 相等而b 不相等.若是等腰梯形,常需添设辅助线,过上底的两个顶点作下底的垂线,构造两个全等的直角三角形.若是直角梯形,则需连接对角线或过上底的一顶点作下底的高构造直角三角形.【例9】 在梯形ABCD 中,AD ∥BC ,AD =12cm ,DC =8cm ,且∠C =60°,动点P 以1cm/s的速度从点A 出发,沿AD 方向向点D 移动,同时,动点Q 以2cm /s 的速度从点C 出发,沿C 出发,沿CB 方向向点B 移动,连接PQ ,(1)得四边形ABQP 和四边形PQCD .若设移动的时间为t 秒(0<t <7),四边形PQCD 的面积为ycm ²,求y 与t 的函数关系式;(2)当t 为何值时,四边形QPCD 是等腰梯形.说明理由; (3)当t 为何值时,四边形PQCD 是直角梯形.模块二 梯形的存在性知识精讲例题解析QPBCDA- 8 -【例10】 如图,一次函数33y x b =+的图像与x 轴相交于点A (53,0)、与y 轴相交于点B . (1)求点B 的坐标及∠ABO 的度数;(2)如果点C 的坐标为(0,3),四边形ABCD 是直角梯形,求点D 的坐标【例11】 如图,在平行四边形ABCD 中,O 为对角线的交点,点G 为BC 的中点,点E 为线段BC 延长线上的一点,且CE =12BC ,过点E 作EF //CA ,交CD 于点F ,联结OF .(1)求证:OF //BC ;(2)如果四边形OBEF 是等腰梯形,判断四边形ABCD 的形状,并给出证明.【例12】 如图,在平面直角坐标系中,直线l 1经过O 、A (1,2)两点,将直线l 1向下平移6AB C OxyABCDEFGO个单位得到直线l 2,交x 轴于点C ,B 是直线l 2上一点,且四边形ABCO 是平行四边形.(1)求直线l 2的表达式及点B 的坐标;(2)若D 是平面直角坐标系内的一点,且以O 、A 、C 、D 四个点为顶点的四边形是等腰梯形,求点D 的坐标.【例13】 已知一次函数142y x =-+的图像与x 轴、y 轴分别相交于点A 、B ,梯形AOBC 的边AC =5.(1) 求点C 的坐标;(2) 如果点A 、C 在一次函数y =kx +b (k 、b 为常数,且k <0)的图像上,求这个一次 函数的解析式【例14】 如图1,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段APAOC xy为一边,在其一侧作等边三角形APQ.当点P运动到原点O处时,记Q的位置为B.(1)求点B的坐标;(2)当点P在x轴上运动(P不与O重合)时,求证:∠ABQ=90°;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形.若存在,请求出点P 的坐标;若不存在,请说明理由.ABOPQ xyABO xy图1备用图- 10 -【例15】 在直角平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,连接OD . (1)求b 的值和点D 的坐标;(2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标;(3)若动点P 在x 轴的正半轴上,以每秒2个单位长的速度向右运动;动点Q 在射线CM 上,且以每秒1个单位长的速度向右运动,若P 、Q 分别由O 点、C 点同时出发,问几秒后,以P 、Q 、O 、D 为顶点的四边形可以成为平行四边形;以P 、Q 、O 、D 为顶点的四边形是否可以成为等腰梯形.写出理由.1AO4CxMy- 12 -【习题1】 如图,在平面直角坐标系中,函数y =2x +12的图像分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点C ,且点C 为线段OB 的中点. (1)求直线AC 的表达式;(2)如果四边形ACPB 是平行四边形,求点P 的坐标.【拓展】如果以A 、C 、P 、B 为顶点的四边形是平行四边形,求点P 的坐标.【习题2】 如图,在平面直角坐标系中,直线162y x =-+与y 轴交于点A ,与直线12y x =相交于点B ,点C 是线段OB 上的点,且△AOC 的面积为12. (1)求直线AC 的表达式;(2)设点P 为直线AC 上的一点,在平面内是否存在点Q ,使四边形OAPQ 为菱形, 若存在,求点Q 的坐标,若不存在,请说明理由.随堂检测ABCOxy ABO xy【习题3】 如图,已知在梯形ABCD 中,AD//BC ,∠B =90°,AD =24cm ,AB =8cm ,BC =26cm ,动点P 从A 点开始沿AD 边以1cm /s 的速度向D 运动,动点Q 从C 点开始沿CB 边以3 cm /s 的速度向B 运动,P 、Q 分别从A 、C 同时出发,当其中一点到端点时,另一点也随之停止运动.设运动时间为t 秒,当t 为何值时,线段PQ =CD .【作业1】 如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像相交于A 、B两点,点A 的坐标为(2,3),点B 的横坐标为6. (1)求反比例函数与一次函数的解析式;(2)如果点C 、D 分别在x 轴、y 轴上,四边形ABCD 是平行四边形,求直线CD 的表达式.课后作业ABCDQPAB CDABOxy【作业2】已知一条直线y=kx+b在y轴上的截距为2,它与x轴、y轴的交点分别为A、B,且△ABO的面积为4.(1)求点A的坐标;(2)若k<0,在直角坐标平面内有一点D,使四边形ABOD是一个梯形,且AD∥BO,其面积又等于20,试求点D的坐标.【作业3】定义[p,q]为一次函数y=px+q的特征数.(1)若特征数为[3,k-1]的一次函数为正比例函数,求k的值;(2)一次函数y=kx+b的图像与x轴交于点A(3-,0),与y轴交于点B,且与正比例函数43y x=的图像的交点为C (m,4).求过A、B两点的一次函数的特征数;(3)在(2)的条件下,若点D与A、O、C构成的四边形为平行四边形,直接..写出所有符合条件的点D的坐标.A BCO x y- 14 -【作业4】 如图所示,直线y =-2x +12,分别与x 轴、y 轴交于点A 、B ,点C 是线段AB 的中点,点D 在线段OC 上,点D 的纵坐标是4. (1) 求点C 的坐标和直线AD 的解析式;(2) P 是直线AD 上的点,请你找出一点Q ,使得以O 、A 、P 、Q 这四个点为顶点的 四边形是菱形,写出所有满足条件的Q 的坐标.BA Cyx。
专题02二次函数中四边形的存在性问题-2023年中考数学毕业班二轮热点题型归纳与变式演练 (原卷版)

专题02 二次函数中四边形的存在性问题目录最新模考题热点题型归纳【题型一】 梯形存在性【题型二】 平行四边形存在性【题型一】 梯形存在性【典例分析】(2023杨浦区一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,且与y轴交于点D.(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD、DC,CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.【提分秘籍】梯形是相对限制较少的一类四边形,要使得一个四边形是梯形,只需要有其中一组对边平行,另一组对边不平行即可。
所以,在此类问题中,要么对点有较高的限制 (在某一直线上),要么对梯形形状有较高要求(等腰或直角)。
综合利用各个条件,才能求出最后的结果【变式演练】1.(2023青浦区一模)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x22﹣x的“不动点”的坐标;②向左或向右平移抛物线y=x22﹣x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.2.【2021年青浦二模】(12分)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=时,求OE的长.【题型二】 平行四边形存在性【典例分析】(2022•宝山区二模)已知抛物线y=ax2+bx﹣2(a≠0)经过点A(1,0)、B(2,0),与y轴交于点C.(1)求抛物线的表达式;(2)将抛物线向左平移m个单位(m>2),平移后点A、B、C的对应点分别记作A1、B1、C1,过点C1作C1D⊥x轴,垂足为点D,点E在y轴负半轴上,使得以O、E、B1为顶点的三角形与△A1C1D相似,①求点E的坐标;(用含m的代数式表示)②如果平移后的抛物线上存在点F,使得四边形A1FEB1为平行四边形,求m的值.【提分秘籍】解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.已知定点的个数不同,选用的方法也不同,通常有以下两种情况:1、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.2、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.【变式演练】﹣与x轴1.【2021年杨浦二模】如图,已知在平面直角坐标系xOy中,直线y=x5相交于点A,与y轴相交于点B,抛物线y=ax2+6x+c经过A、B两点.(1)求这条抛物线的表达式;(2)设抛物线与x轴的另一个交点为C,点P是抛物线上一点,点Q是直线AB上一点,当四边形BCPQ是平行四边形时,求点Q的坐标;(3)在第(2)小题的条件下,联结QC,在∠QCB内作射线CD与抛物线的对称轴相交于点D,使得∠QCD=∠ABC,求线段DQ的长.2.(2021·上海宝山区·九年级一模)已知抛物线()20=+¹经过y ax bx a()1,3B-两点,抛物线的对称轴与x轴交于点C,点 D与点B关于抛A,()4,0物线的对称轴对称,联结BC、BD.(1)求该抛物线的表达式以及对称轴;(2)点E在线段BC上,当CED OBDÐÐ时,求点 E的坐标;=(3)点M在对称轴上,点N在抛物线上,当以点O、A、M、N为顶点的四边形是平行四边形时,求这个平行四边形的面积.﹣经过点A(﹣3.【2021年崇明二模】(12分)已知抛物线y=ax2+bx41,0),B(4,0),与y轴交于点C,点D是该抛物线上一点,且在第四象限内,联结AC、BC、CD、BD.(1)求抛物线的函数解析式,并写出对称轴;(2)当S△BCD=4S△AOC时,求点D的坐标;(3)在(2)的条件下,如果点E是x轴上的一点,点F是抛物线上一点,当点A、D、E、F为顶点的四边形是平行四边形,请直接写出点E的坐标.【题型三】 矩形的存在性【典例分析】【提分秘籍】二次函数中的矩形存在性问题相交于平行四边形的存在性问题而言,其难度更大。
二次函数中的梯形、菱形存在性问题 学生版

二次函数中的梯形、菱形存在性问题学生版二次函数在数学中起着重要的作用。
学生在研究二次函数时,常常会遇到与梯形和菱形相关的问题。
本文将讨论二次函数中梯形和菱形的存在性问题。
梯形的存在性问题一个梯形是由两个平行线段和连接它们的两个非平行线段组成的四边形。
在二次函数中,存在一个梯形的问题是问是否有一组值可以满足二次函数图像上的四个点构成一个梯形。
具体而言,我们需要找到一组x坐标值,使得对应的y坐标值满足梯形的定义。
在解决梯形的存在性问题时,我们可以利用二次函数的性质。
首先,如果一个函数的二次项系数为正,则函数图像是开口向上的抛物线。
这意味着我们可以通过选择x坐标值,使得对应的y坐标值形成一个梯形。
然而,如果二次项系数为负,则函数图像是开口向下的抛物线。
在这种情况下,我们无法找到一组值构成一个梯形。
菱形的存在性问题一个菱形是一个具有四个相等边长且相邻两边互相垂直的四边形。
在二次函数中,存在一个菱形的问题是问是否有一组值可以满足二次函数图像上的四个点构成一个菱形。
具体而言,我们需要找到一组x坐标值,使得对应的y坐标值满足菱形的定义。
解决菱形的存在性问题与解决梯形的问题类似。
如果二次函数图像是对称的,即以y轴或x轴为对称轴,则可以找到一组值构成一个菱形。
这是因为对称性保证了相邻两边互相垂直,并且相等边长可以通过选择x或y坐标值来实现。
总的来说,在二次函数中,梯形和菱形的存在性问题取决于函数的性质。
通过了解二次函数的开口方向和对称性,我们可以判断是否存在满足梯形和菱形定义的点集。
2020年中考专题练习---梯形的存在性问题

A B C M 1 M 2梯形是相对限制较少的一类四边形,要使得一个四边形是梯形,只需要有其中一组对边平行,另一组对边不平行即可。
所以,在此类问题中,要么对点有较高的限制(在某一直线上),要么对梯形形状有较高要求(等腰或直角)。
综合利用各个条件,才能求出最后的结果.1、 知识内容:梯形的限制较少,所以可能出现的情况就会有很多,在处理时需要想清所有可能情况,再进行讨论处理。
有一种比较常见的情况是:若已知三点ABC ,另一点M 在某固定直线上,形成的四边形ABCM 为梯形,则会有两种情况:①AM //BC ;②CM //AB ,如图所示。
梯形的存在性问题内容分析知识结构模块一:一般梯形的存在性问题 知识精讲2、 解题思路:(1) 根据题目条件,求出已知3个点的坐标;(2) 分情况进行讨论;(3) 对可能的各种情况,求出已知边所在直线的方程;(4) 根据直线方程,求得与其平行的直线的方程,再解出待求点的坐标;(5) 根据题目实际情况,验证所有可能点是否满足要求并作答.注:若两条直线平行,则这两条直线的斜率相等.【例1】 在平面直角坐标系中,已知抛物线223y x bx c =++与x 轴交于点A (1-,0)和点B ,与y 轴交于点C (0,2-).(1)求该抛物线的表达式,并写出其对称轴;(2)点E 为该抛物线的对称轴与x 轴的交点,点F 在对称轴上,四边形ACEF 为梯形, 求点F 的坐标;(3)点D 为该抛物线的顶点,设点P (t ,0),且t > 3,如果BDP ∆和CDP ∆的面积相 等,求t 的值.【答案】见解析.【解析】(1)将A 、C 代入抛物线解析式,解得抛物线解析式为:224233y x x =--. 对称轴为:直线1x =.(2)E 点为(1,0),分情况讨论: ①AC // EF 例题解析。
立体几何存在性问题

5.(1)证明见解析;(2) .
【解析】分析:〔1〕推导出 BE⊥CD,AB⊥CD,从而 CD⊥平面 ABE,由此能证明平面 ABE⊥平 面 ACD; 〔2〕取 BD 的中点 G,连接 EG,那么 EG∥BC.推导出 BC⊥平面 ABD,从而 EG⊥平面 ABD, 由此能求出线段 AE 的长.
详解:〔1〕证明:因为
的体积.
4.如图 2,在四棱锥
中,平面
平面 ,底面 为矩形.
〔1〕求证:平面
平面 ;
〔2〕假设
1 / 14
,试求点 到平面 的距离.
5.如图,三棱锥 点.
的三条侧棱两两垂直,
, , 分别是棱 , 的中
〔1〕证明:平面
平面 ;
〔2〕假设四面体 的体积为 ,求线段 的长.
6.如图,在四棱锥
中,
,
,
,
.
7.〔1〕见解析;〔2〕
【解析】分析:〔1〕先利用直角三角形和线线平行的性质得到线线垂直,再利用线面垂直的 判定定理和性质得到线面垂直和线线垂直;〔2〕分析四棱锥的各面的形状,利用相关面积公 式进展求解. 详解:〔1〕因为∠C=90°,即 AC⊥BC,且 DE∥BC,
所以 DE⊥AC,那么 DE⊥DC,DE⊥DA1, 又因为 DC∩DA1=D,所以 DE⊥平面 A1DC. 因为 A1F⊂ 平面 A1DC,所以 DE⊥A1F. 又因为 A1F⊥CD,CD∩DE=D,所以 A1F⊥平面 BCDE, 又因为 BE⊂ 平面 BCDE,所以 A1F⊥BE. 〔2〕由 DE∥BC,且 DE=BC,得 D,E 分别为 AC,AB 的中点,
折起到 的位置,如图 2 所示.
图1图2 〔Ⅰ〕求证:
平面 ;
〔Ⅱ〕证明:平面
二次函数中的梯形、菱形存在性问题 学生版

二次函数中的梯形、菱形存在性问题学生版引言二次函数是数学中一类重要的函数,在求解问题时经常被使用。
本文将讨论二次函数中的梯形和菱形存在性问题。
我们将探讨在何种情况下,二次函数图像可以形成梯形和菱形,以及梯形和菱形的特征和性质。
梯形的存在性问题在二次函数中,当函数图像呈现梯形形状时,我们需要考虑以下情况:1.当二次函数的二次项系数为正数时,函数图像可以形成正梯形。
正梯形的特点是上底和下底之间的差值逐渐增大。
2.当二次函数的二次项系数为负数时,函数图像可以形成倒梯形。
倒梯形的特点是上底和下底之间的差值逐渐减小。
3.当二次函数的二次项系数为零时,函数图像将退化为一条直线,无法形成梯形。
菱形的存在性问题在二次函数中,当函数图像呈现菱形形状时,我们需要考虑以下情况:1.当二次函数的一次项系数为零时,函数图像将变为一个完美的菱形。
菱形的特点是上底和下底之间的差值恒定。
2.当二次函数的一次项系数不为零时,函数图像将出现略微变形的菱形。
菱形的特点是上底和下底之间的差值会随着一次项系数的变化而变化。
结论在二次函数中,梯形和菱形的形成与二次项系数和一次项系数的取值有关。
通过了解二次函数的系数对函数图像形状的影响,我们可以更好地理解二次函数的性质和特点。
深入研究二次函数中梯形和菱形存在性问题,有助于学生对二次函数的图像有着更清晰的认识和理解。
以上是关于二次函数中的梯形、菱形存在性问题的学生版文档。
希望能够帮助学生们更好地理解和应用二次函数的图像特点。
数学“存在性”问题的解题策略(含解答)-

数学“存在性”问题的解题策略存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来各地中考的“热点”。
这类题目解法的一般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。
由于“存在性”问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算,对基础知识,基本技能提出了较高要求,并具备较强的探索性,正确、完整地解答这类问题,是对我们知识、能力的一次全面的考验。
【典型例题】例1. 223(1)9200x x m x m m -++-+=若关于的一元二次方程有两个实数根,390cos 5a b c ABC A B C C B ==又已知、、分别是△的∠、∠、∠的对边,∠°,且, 3b a m Rt -=,是否存在整数,使上述一元二次方程两个实数根的平方和等于 ABC c m △的斜边的平方?若存在,求出满足条件的的值,若不存在,请说明理由。
分析:这个题目题设较长,分析时要抓住关键,假设存在这样的m ,满足的条件有m 是整数,一元二次方程两个实数根的平方和等于Rt △ABC 斜边c 的平方,隐含条件判别式Δ≥0等,这时会发现先抓住Rt △ABC 的斜边为c 这个突破口,利用题设条件,运用勾股定理并不难解决。
解:在△中,∠°,∵Rt ABC C B ==9035cos ∴设a=3k ,c=5k ,则由勾股定理有b=4k , 33343==-=-k k k a b ∴,∴,∵ ∴,,a b c ===91215设一元二次方程的两个实数根为,x m x m m x x 2212319200-++-+=() 则有:,x x m x x m m 1212231920+=+=-+()∴x x x x x x m m m 122212212222312920+=+-=+--+()[()]() =+-736312m m 由,x x c c 1222215+==有,即73631225736256022m m m m +-=+-= ∴,m m 124647==-∵不是整数,应舍去,m =-647当时,m =>40∆∴存在整数m=4,使方程两个实数根的平方和等于Rt △ABC 的斜边c 的平方。
中考二次函数中角相等问题、二次函数的平移、四边形存在性和相似三角形(原卷版)

预测02 二次函数中角相等问题、二次函数的平移、四边形存在性和三角形相似2015-2020上海中考“二次函数”考点及分值分布年份题型考点分值15综合24主要考查了待定系数法,勾股定理,三角形相似,锐角三角比。
1416综合24二次函数的图象,二元一次方程组,三角函数,三角形的面积.二次函数中的角相等问题1417综合24主要考查了待定系数法,抛物线的顶点坐标的求法,二次函数的平移。
1418综合24涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.1419综合24抛物线的顶点坐标的求法,新定义,梯形存在性问题。
1420综合24主要考查了待定系数法,两点间的距离公式,抛物线的顶点坐标的求法,求出点D的坐标是解本题的关键.14考点分类总结类型一:已知等角,求点的坐标当题目中出现相等的角时,可以通过计算已知角的三角比,用所求点的横纵坐标表示另一角的三角比,从而建立等量关系;同时也可以通过构造相似三角形,利用比例线段解决问题。
方法辨析:平面直角坐标系中的角相等问题,首选锐角三角比,但是当计算复杂或者某个点坐标难求时,可以构造相似三角形解决问题。
类型二:构造等角,求点的坐标方法总结:以上的第2、3、4题通过已知中出现的45°特殊角,通过外角性质或者角的和差,构造了等角,进而再利用三角比进行问题解决。
因此,如何巧妙利用和拆分特殊角成为了构造等角的关键所在。
综合上面题目,对于二次函数中的角相等问题,首选方法是利用等角的三角比解决问题(利用一线三等角模型或者拆分特殊角来发现等角),其次选择利用相似三角形中的比例线段解决问题。
二次函数中的角相等问题比较灵活,同学们在遇到具体问题时具体分析,合理构造等角,解决问题。
二次函数中矩形的存在性问题二次函数中的矩形存在性问题相交于平行四边形的存在性问题而言,其难度更大。
本文将从知识梳理和例题讲解两部分进行讲解,具体分析矩形存在性问题中的“定”与“动”以及具体的解题策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
梯形存在性问题解析
模型一:梯形
例1:如图,A(10,0),B (4,-3)
(1)求经过O 、B 、A 三点的抛物线的函数表达式;
(2)抛物线上是否存在一点P ,使以P 、O 、B 、A 为顶点的四边形为梯形?若存在,求出
梯形存在性问题分析思路
定结果:三种情况汇总; 解法1: (1)x x y 4
5812-=
情形一:B P ∥OA;四边形OBPA 为梯形。
B 、P 关于对称轴对称得:P (6,-3) 情形二:B A ∥OP;四边形OBAP 为梯形。
易证:△PO
C ∽△BAD
OC AD
PC BD =
OC
PC 6
3=
;PC OC 2= 则设P (2a ,a )
a a a 24
5
4812⋅-⋅=
7),(021==a a 舍去
P (14,7)
情形三:PA ∥OB;四边形OBAP 为梯形。
易证:△PA C ∽△BOD
AC OD
PC BD
= AC PC
43=;PC AC 34= 则设P (b 34
,b )
3
445)34(812b b b ⋅-⋅=
12),(021==b b 舍去
P (-6,12)
综上所述:P (6,-3)、(14,7)、(-6,12解法2:
情形三:PA ∥OB;四边形OBAP 为梯形。
直线OB 的解析式:x y 43-= 所以设PA 解析式:b x y +-=4
3
直线PA 经过A (10,0)
2
1543+-=x y
⎪⎪⎩
⎪⎪⎨
⎧+-=-=215434
5812x y x x y ⎩
⎨⎧=-=126
y x )(102舍去=x P (-6,12)
模型二:直角梯形
例2:二次函数y =﹣x 2 + ax + b 与x 轴交于A (-2
1
,0),B (2,0)两点,与y 轴交点C . (1)求该抛物线的解析式,并判断△ABC 的形状;
(2)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由.
答案:(1)y (2)解法1情形一:B C 易证:△PAD OB AD
OC PD
= 2
1
AD
PD
=;则设P (a ,)412(=+-a (211-=a P 为53,22⎛- ⎝P 5,92⎛⎫-- ⎪⎝⎭
综上所述:P 解法2:
情形一:B C ∥AP;四边形CAPB 为梯形。
B (2,0)、C (0,1) 则直线BC 解析式:12
1
+-=x y A (0,2
1
-
) B C ∥则直线AP 解析式:y ⎪⎪⎩
⎪⎪⎨
⎧
++-=--=1
234
1212x x y x y
⎪⎪⎩
⎪⎪⎨⎧-==23
2
5y x )(212
舍去-=x P 为53,22⎛⎫- ⎪⎝⎭
情形二:类似可得:P 5,92⎛⎫-- ⎪⎝⎭
.
综上所述:P 为53,22⎛⎫-
⎪⎝⎭或5,92⎛⎫-- ⎪⎝⎭
. 点睛:(1)如果条件改为“A 、C 、B 、P 四点为顶点的四边形是梯形”就有三种情况,还要
加上过点C 作AB 的平行线这种构造梯形的情况。
但是本题在梯形的基础上,加强为直角梯形。
所以要依托∠ACB=90°进行构造梯形。
因而只有两种。
(2)代数法联立方程求解和几何法构造相似求解都可以解决本题。
不妨都尝试一下。
练习2:Rt △ABC ,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE ⊥ PQ ,且交PQ 于点D ,交BC 于点E .点P 、Q 同时出发,设点P 、Q 运动的时间是t 秒(t >0).在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;
答案: ①当DE ∥QB 时,如图4.
∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =
, 即335t t -=. 解得98
t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得
AQ AP
AB AC
=
,
P
图16
P
图
4
x
即353t t -=. 解得158
t =.
模型三:等腰梯形
例3:函数y =2x +12的图象分别交x 轴、y 轴于A 、B 两点.C (0,6)。
在坐标平面内是否存在这样的点D ,使以A 、B 、C 、D 为顶点的四边形是等腰梯形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.
x
AB
解析式:y =2x +12
则过C (0,6)的直线:y =2x +6 设D (a ,2 a +6)
∴2
2
2
2
()62(++=+=a a AE DE AD ∵BC=A D
∴2
2
2
6)6()62(=+++a a
)(6,5
6
21舍去-=-=a a
D(-65 ,185
)
综上所述:D(-6,18)(-12,0)(-65 点睛:线,都需要掌握。
(2)情形三也可以运用对角线相等建立方程,本质都是用代数法建立方程求解。
本题用几何法,难以构造相似三角形。
练习3:抛物线经过B (3,0)和顶点(2,-1),在第一象限内,直线y=x 上是否存在一点
直线BC 解析式:3-=x y ;则直线O D ∥BC;以B 为圆心,OC 长为半径画弧得到等腰梯形OCBD 。
解法一:利用BD=OB 建立方程;(通法) 解法二:利用OB=CD 建立方程;(通法) D (2,2)。