(2020年整理)人教版七年级数学下册第七章教案.doc

合集下载

七年级数学下册-第七章-平面直角坐标系教学设计-(新版)新人教版

七年级数学下册-第七章-平面直角坐标系教学设计-(新版)新人教版

平面直角坐标系课题主备人执教者课型!新授课课时1时间教学目标情感态度培养学生用数学的意识,激发学生的学习兴趣.通过导入部分的视频激发学生爱国热情。

知识与技能理解有序数对的意义,能利用有序数对表示物体的位置。

过程与方法结合用有序数对表示物体的位置的内容,体会数形结合的思想.教学重难点。

重点有序数对的概念,用有序数对来表示物体的位置是重点;难点用有序数对表示平面内的点是难点。

教法与学法小组合作自主探究,讲授法,练习法教具准备<多媒体课件教学过程教学环节及时间分配教师活动学生活动(一)问题导入(3分钟)、;(二)提出问题,尝试解决(15分钟)…问题12009年60周年国庆庆典活动中,天安门广场上出现了壮观的背景图案,你知道它是怎么组成的吗在日常生活中,我们常常会碰到这样的问题:到电影院看电影你怎样找到自己的位置请3组5号起来回答。

这些都说的是用两个数确定一个物体的位置,那么怎样用两个数来确定一个物体的位置呢今天我们学习了有序数对就会表示了。

〔问题2〕下面是根据教室平面图写的通知:请以下座位的同学:(1,5)、(2,4)、(4,2)、(3,3)、(5,6),今天放学后参加数学问题讨论.观看视频(~·]#`》(三)巩固训练(5分钟)(四)归纳总结,布置作业(5分钟)(五)检测反馈(101234567654321纵排横排怎样确定教室里座位的位置^教师追问:排数和列数的先后顺序对位置有影响吗举例说明。

这就是说用两个数表示物体的位置是有顺序的。

假设我们约定“列数在前,排数在后”,请你在课本图上标出被邀请参加讨论的同学的座位。

上面提到的问题都是通过像“几排几号”这样含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,例如前面的表示“排数”,后面的表示“列数”。

我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)。

$利用有序数对,可以很准确地表示出一个位置。

生活中利用有序数对表示位置的情况是很常见的。

人教版七年级下册第七章平面直角坐标系中的几何图形面积 教学案(PDF版 无答案)

人教版七年级下册第七章平面直角坐标系中的几何图形面积  教学案(PDF版  无答案)

3、 在直角坐标系中,A(0,3),B(4,0),C(4,5.5) (1)求△ABC的面积;
(2)如果在第二象限内有一点P(a ,1 ) ,使用含a的代数式表示四边形ABOP的面积; 2
(3)若点Q的纵坐标为 1 ,是否存在点Q使△AOQ的面积与△ABC的面积相等?若存在,求出点Q的坐标;若 2
不存在,请说明理由.
4.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现 将△ABC平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.
(1)画出△DEF;
(2)连接AD、BE,则线段AD与BE的关系是

(3)求△DEF的面积.
5. 如图,△A’B’C’是△ABC经过平移得到的,△ABC三个顶点的坐标分别为A(﹣4,﹣1), B(﹣5,﹣4),C(﹣1,﹣3),△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+ 4)
例1.如图所示的平面直角坐标系,在直角梯形OABC中,已知:CB∥OA,CB=8,OC=8,OA=16. (1)点A、B、C的坐标; (2)求梯形OABC的面积.
例2. 如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7, 5)、D(2,7).求四边形ABCD的面积.
能力展示
限时考场模拟:15 分钟完成
1. 已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为( )
A.(﹣4,0)
B.(6,0)
C.(﹣4,0)或(6,0)
D.无法确定
2.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)(4,0).将 △ABC沿x轴向右平移,当点C落在直线 y=2x﹣6上时,线段BC扫过的面积为( )

新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

新人教版七年级下册第七章《平面直角坐标系》全章教案(共6份)

7.1.1有序数对问题与情境游戏“找朋友”问题:(1)只给一个数据如“第3列”你能确定好朋友的位置吗?(2)给两个数据如“第3列第2排”你能确定好朋友的位置吗?为什么?(3)你认为需要几个数据能确定一个位置?1. 【提出问题】请在教室找到如下表用数对表示的同学位置:发现:在教室里排数与列数的先后顺序没有约定的情况下,不能确定参加数学问题讨论的同学假设约定“列数在前,排数在后”,你能找到参加数学问题讨论的同学的座位吗?情景引入合作探究二次备课思考:(1) ( 2, 4)和(4, 2)在同一个位置吗?(2) 如果约定“排数在前,列数在后”,刚才那些同学对应的有序 数对会变化吗?2. 【师生归纳】有序数对:我们把有顺序的两个数 a 与b 组成的数对,叫做有序数对。

记作(a ,b )思考:在生活中还有用有序数对表示一个位置的例子吗?3. 【例题讲解】例1:如图,甲处表示 2街与5巷的十字路口,乙处表示5街5巷的十字路口,如果用(2,5 )表示甲处的位置,那么(2,5 ) T (3,5 ) 7( 4,5 )T ( 5,5 )T ( 5,4 )T ( 5,3 )T ( 5,2 )表示从甲处到乙 处的一种路线,请你用有序数对写出几种从甲处到乙处的路线。

例2 :请同学们说出以下各个地点所表示的有序数对。

—1 逼 族(6 T 8 11____d斟9-------d呻(&5)办___ 1 服(:学忙(:挣閒]7^I 23 弓5£ T &? I U例3: 图中五角星五个顶点的位置如何表示?已知 A (0,0 ) B(2,1 )合 作 探 究甲乙5 4 3 21街例5:右图:若黑马的位置用(3, 7)表示,请你用有序数对表示 黑马可以走到的哪几个位置。

例6:如右图,方块中有 25个汉字,用(C,3)表示“天”那么按下 列要求排列会组成一句什么话,把它读出来。

(1) (A,5 ) (A,3) (C,4 ) (E,5 ) (B,1) (C,2) (B,4)(2) (B,4) (C,2) (D,4) (C,5) (A,1) (D,3) (E,1)例7:台风“麦莎” 2005年7月31日生成,8月6日凌晨3点40 分在玉环干江登陆即:东经 121.8度,北纬28.6度,你能找到具体 登落点吗?合 作探 究例4:“怪兽吃豆豆”是一种计算机游戏,图中的•标志表示“怪 兽”先后经过的几个位置,如果用 (1,2)表示“怪兽”经过的第 2个 位置,那么你能用同样的方式表示出图中“怪兽”经过的其他几个5 可 明 个 万 女 4 中 我 的 -一- 学 3 爱 英 天 帅 活 2 球 里 是 生 大 1小孩打习哥AB C D E7.1.2平面直角坐标系(第一课时)II1.在平面直角坐标系内,下列各点在第四象限的是 A.(2,1) B.(-2,1) C.(-3,-5) D.(3,-5)2.已知坐标平面内点 A(m,n)在第四象限,那么点B(n,m)在(3.设点M( a , b )为平面直角坐标系中的点当a>0,b<0时点M 位于第几象限? 当ab>0时,点M 位于第几象限?当a 为任意数时,且b<0时,点M 直角坐标系中的位置是什么?象限;点(-1.5,-1)1•点(3,-2 )在第C.第三象限D.第四象限0 --A.第一象限B.第二象限点的位胃在第PM 彖阳在正半轴上 衣r 轴匕金员拿抽上/ 纽在亟丰粧上 ' 住力半眦上7.1.2平面直角坐标系(第二课时)教学过程设计问题与情境二次备课【复习旧知】1•什么是平面直角坐标系?什么是横轴,纵轴,坐标原点?坐标平面被两条坐标轴分成了哪些象限?2. 平面直角坐标系内点与坐标之间有什么关系?3. 象限内的点和坐标轴上的点有什么特征?入■~~【提出问题】合作探探究一究如图,正方形ABCD勺边长6.(1 )如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A B, C, D的坐标.(2)另建立一个平面直角坐标系,此时正方形的顶点A, B, C, D 的坐标又分别是什么?(3)以点A为原点,AB所在的直线为x轴建立平面直角坐标系中,点C到x轴、y轴的距离是多少?(4 )观察:点E和点C坐标之间有什么联系?点E和点D坐标之间呢?【师生归纳】设P点坐标为(a,b ),则点P到x轴的距离是____________________ ;点P到y平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同探究二:分别写出图中点A、B、C的坐标.观察图形,回答下列问题:合作探究7.2.1用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称教师继续出示问题:你认为利用平面直角坐标系描述地理位置时应注意哪些问题?(1)注意选择适当的位置为坐标原点,这里所说的适当,通常是比较明显的地点或是所要绘制的区域内较居中的位置.(2 )坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致.(3 )要注意标明适当的单位长度.(4)有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称. (同学可举例说明)尝试应用施的位置如何表示?1、如图,一艘船在A处遇险后向相距35 n mile 位于B处的救生船报警.补充提高(1)如何用方向和距离描述救生船相对于遇险船的位置?(2)救生船接到报警后准备前往救援,如何用方向和距离描述遇险船相对于救生船的位置?722用坐标表示平移第六章小结与复习3. 平面直角坐标系的有关概念。

2020年人教版七年级数学下册第七章《7.1.1有序数对》学案

2020年人教版七年级数学下册第七章《7.1.1有序数对》学案

新人教版七年级数学下册第七章《7.1.1有序数对》学案学习目标知识:有序数对的概念与用有序数对表示点的位置.方法:分析、建立数学模型。

情感:体验有序数对在现实生活中的应用.学习重点:理解有序数对的意义及作用.学习难点:会用有序数对表示点的位置.教学流程【导课】我们去电影院看电影时,每个人都需要一张电影票,你是怎样根据电影票上的数字找到位置的?(学生思考后回答).这就是今天我们要学习的相关内容--有序数对.(板书)【阅读质疑,自主探究】请同学们自学课本P39-40页,思考并回答以下问题:1.怎样确定教室里同学们的位置?2.排数和列数的先后顺序对位置的确定有影响吗?3.什么是有序数对,怎样表示?4.你能句出有序数对在生活中应用的例子吗?学生自学,教师巡回指导,帮助学困生【多元互动,合作探究】通过学习,让学困生回答,中等生或优等生补充,最后师生共同归纳:1.用排数和列数来确定教室里学生的位置.2.排数和列数的先后顺序对位置的确定有影响.3.我们把有顺序的两个数a与b组成的数对,叫做有序数对.记作(a,b).4.生活中有序数对例子很常见,如用经纬度来表示地球上的点,瓷板转图案的确定等.注:有序:是指(a,b)与(b,a)是两个不同的数对.数对:是指必须由两个数才能确定.例1:请以下坐位的同学今天放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)括号内第一个数表示列数,第二个数表示列数,请你根据上述通知,用“·”再图上标出参加讨论同学的位置。

(图见教材p39图6.1-1)处理方法:先让学生对照上述数对在教材p39的图上画“·”,然后再在班级里找到自己的位置,起立示意。

【训练检测,目标探究】 1.教科书第40页的练习题.2.(!)如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5); B.(5,4); C.(4,2); D.(4,3) (2)如图1所示,B 左侧第二个人的位置是 ( )A.(2,5);B.(5,2);C.(2,2);D.(5,5)(3)如图1所示,如果队伍向西前进,那么A 北侧 第二个人的位置是 ( )A.(4,1);B.(1,4);C.(1,3);D.(3,1) 3.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D4.如图二所示,从2街4巷到4街2巷,走最短的路线, 共有几种走法?处理方法:先让学生独立完成,然后同桌或小组交流. 【迁移运用,拓展探究】 应用拓展:如图三所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经 (3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?(街)(巷)235411453223654176图二 图三 课堂小节(1)DCB A五行三行六行六列五列四列三列二列一行一列你好学会了什么?你有什么收获?1.为了确定点的位置,通常要用两个数来表示. 2.有序数对的概念.3.用有序数对解决生活中的一些实际问题. 作业设计1.必做题:教科书第44页习题6.1第1题(口答改为笔答题) 2. 选做题:(1)如图3所示,如果点A 的位置为(3,2),那么点B 的位置为点D 和点E 的位置分别为______,_______.(2)如图4所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点 C 的位置为_______. 本课知识体系:本节课我们主要学习了确定事物位置的点——有序数对以及什么是有序数对,它的特点及其应用。

初中数学七年级下册第七章《三角形的内角》

初中数学七年级下册第七章《三角形的内角》

新课标人教版初中数学七年级下册第七章《7.2.1三角形的内角》精品教案一.引课:以前在小学,我们就已接触了与三角形有关的知识,那三角形的内角和为多少度呢?(1800)同学们想知道为什么吗?(想).今天,老师将与大家一起研究和讨论“与三角形有关的角”第一节:“三角形的内角”(板书课题)。

二.正课:活动一:结论的证明1.动手操作,发现结论:师:请同学们观看幻灯片,各小组按要求亲自动手实验,你能得到什么结论?幻灯片(一):幻灯片一剪下内角,动手拼拼看,三个内角是否为180度。

生:动手实验,并将自己的做法展示给大家。

(实物投影)。

注:一名学生亲自演示,一名与师进行师生合作。

最后得出结论:三角形内角和等于180度。

(师板书)师:演示幻灯片(二):进一步从直观感性上确定结论的正确性。

2.数学证明,验证结论:师:同学们观察和总结的非常棒,但这只是实验,而观察与实验得到的结论不一定正确,可靠,这样就需要通进数学证明来验正结论是否正确,请同学们结合幻灯片(二),交流讨论说明结论为什么成立。

生:交流讨论。

师:将图画在黑板上,并巡视指导。

生:总结汇报,说明结论成立的理由。

师:同学们表达的十分准确,理由也很充分,但数学还需要书写规范的过程,接下师板演过程。

证明:延长BC ,过点C 做CD ∥AB。

有:∠1=∠A ∠B=∠2A BB幻灯片二因为:∠1+∠2+∠ACB=1800所以:∠A+∠B+∠ACB=18003.方法赏析,巩固结论。

师;同学们还有其他的方法吗?请大家观察幻灯片(三):生:在所给卡片上结合自己的能力仿照板书,选择完成证明过程。

师:有选择的展示汇报。

4.新知应用:幻灯片(四):幻灯片三幻灯片四5.跟踪小练:幻灯片(五):幻灯片五活动二:结论的应用。

1.自学指导,例题解析:师:同学们对“三角形内角和为1800”掌握已经非常牢固了,下面请同学们结合所学知识,按照自学指导完成例题的自学任务,比一比,谁理解的最好。

新人教版七年级下册数学教案第七章实数72立方根(

新人教版七年级下册数学教案第七章实数72立方根(

7.2 立方根(1课时)课程目标一、知识与技能目标1.了解立方根的概念,能够用根号表示一个数的立方根.2.能用类比平方根的方法学习立方根,及开立方运算,并区分立方根与平方根的不同.二、过程与方法目标用类比的方法探寻出立方根的运算及表示方法,•并能自我总结出平方根与立方根的异同.三、情感态度与价值观目标发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.教材解读由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题就留给同学去发现.学情分析在学习完平方根运算后继而学习立方根运算,•通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握.一、创设情境,导入新课劳动节即将来临,学生们纷纷给他们敬爱的老师奉献他们的心意,刘老师所任教的两个班的科代表一同前往老师办公室,他们手中捧着两个形状、•大小一模一样的礼盒,并对老师说:“我代表我班的同学向老师敬礼,并以此小礼物代表我们对老师的敬意”.说完,两个科代表相视一笑,请老师猜一猜里面装的东西是否一样,里面物体的体积是否一样.老师知道,他们葫芦里肯定又要卖什么药了,•就郑重其事地说出两个盒子的大小形状虽然一样,但里面所装的物体的形状肯定不一样,并且它们的体积也相同,但一定有其它不相同的地方.刘老师打开纸盒一看,•发现里面装的果然是两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方形,并且盒子里面各有一张纸条内容相同,经过测算,其体积为125cm2.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?•那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,•我们就来学习开方中的另一种运算:开立方运算.二、师生互动,课堂探究(一)提出问题,引发讨论在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______;(23)3=_____;-(23)3•=_____ ; 03=______.(1)经计算发现正数,0,负数的立方值与平方值有何不同之处?23=8;(-2)3=-8; 0.53=0.125; (-0.5)3=-0.125;(23)3=827; -(23)3=-827; 03=0.我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值了,什么是立方值呢?类似平方值定义可知,若x 3=a 则x 为a 的立方根,读作三次根号a.负数没有平方根,负数有无立方根呢?从(-2)3=-8,(-0.5)3=-0.125,(23)3=-827,可知负数有立方根,•并且其立方根仍为负数.(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,•故请根据上述等式,写出这些互为相反数的立方根.8的立方根为2,-8的立方根为-2,0.125的立方根为0.5,-0.125的立方根为-0.5,827的立方根为23,-827的立方根为-23,23230的立方根为0, 上述过程都是求一个数的立方根的运算,把求一个数的立方根的运算,叫做开立方,开立方与立方运算互为逆运算.故正方体的体积为125时,而球的体积为43πr 3 =125时,r ≈3.1. (二)导入知识,解释疑难1.例题求解既然正数的立方是正数,负数的立方是负数,那么正数的立方根为正数,•负数的立方根为负数,同样0的立方是0,则0的立方根是0,为任意数),或者若a 3=M,则有其中M 为被开方数,3为根指数,且根指数为3时,不能省略,•只有当根指数为2时,才能省略不写.故课本P 170探究中, =-2,- =-2,由此得=-,又=-3,-于是可归纳出其规律,其值也不同,若a>0时,a ;若a<0,则.例2:求下列各数的立方根。

2024年新人教版七年级数学下册教案全册

2024年新人教版七年级数学下册教案全册

2024年新人教版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的性质与判定5.3 两条平行线的距离2. 第六章:概率初步6.1 概率的基本概念6.2 概率的计算6.3 概率的实际应用3. 第七章:三角形7.1 三角形的性质7.2 三角形的判定7.3 三角形的面积二、教学目标1. 理解并掌握相交线与平行线的性质和判定方法,能够运用相关知识解决实际问题。

2. 了解概率的基本概念,学会计算简单事件的概率,并能应用于实际情境。

3. 掌握三角形的性质、判定和面积计算方法,培养空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:平行线的判定方法、概率的计算、三角形面积的计算。

2. 教学重点:相交线与平行线的性质、概率的基本概念、三角形的性质和判定。

四、教具与学具准备1. 教具:多媒体教学设备、几何画板、三角板、量角器。

2. 学具:练习本、铅笔、直尺、圆规。

五、教学过程1. 实践情景引入:通过展示生活中常见的相交线与平行线实例,引导学生发现其中的数学问题。

概率部分,通过掷骰子、抽签等游戏,让学生感受概率现象。

三角形部分,利用图片和实物展示,让学生观察三角形的特点。

2. 例题讲解:结合教材中的例题,详细讲解相交线与平行线的性质、判定方法、概率的计算以及三角形的性质、判定和面积计算。

3. 随堂练习:设计相应的练习题,让学生巩固所学知识,并及时给予反馈。

结合实际情境,设计拓展延伸题,提高学生的应用能力。

六、板书设计1. 相交线与平行线:性质、判定方法、应用实例。

2. 概率:基本概念、计算方法、实际应用。

3. 三角形:性质、判定、面积计算。

七、作业设计1. 作业题目:相交线与平行线:判断下列图形中哪些是平行线,并说明理由。

概率:掷两个骰子,求得到两个相同点数的概率。

三角形:已知三角形两边和一角,求第三边。

2. 答案:相交线与平行线:根据判定方法,判断出平行线。

人教版七年级数学下册第七章教案

人教版七年级数学下册第七章教案

WORD格式第七章平面直角坐标系7.1.1有序数对德育目标:学习《中学生日常行为规范》第18条:认真预习、复习,主动学习,按时完成作业,考试不作弊。

教学目标:1.理解有序数对的应用意义,了解平面上确定点的常用方法2.培养学生用数学的意识,激发学生的学习兴趣.教学重点:有序数对及平面内确定点的方法.教学难点:利用有序数对表示平面内的点.学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。

能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。

教学方法:启发、讨论、探究教学过程:一.创设问题情境,引入新课1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。

2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?二、新课讲授765横43 排212 3 4 5 6 1纵排1、由学生回答以下问题:(1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。

(2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。

”学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置.思考:(1)怎样确定教室里坐位的位置?(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章平面直角坐标系7.1.1有序数对德育目标:学习《中学生日常行为规范》第18条:认真预习、复习,主动学习,按时完成作业,考试不作弊。

教学目标:1.理解有序数对的应用意义,了解平面上确定点的常用方法2.培养学生用数学的意识,激发学生的学习兴趣.教学重点:有序数对及平面内确定点的方法.教学难点:利用有序数对表示平面内的点.学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。

能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。

教学方法:启发、讨论、探究教学过程:一.创设问题情境,引入新课1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯。

2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。

3.某人买了一张8排6号的电影票,很快找到了自己Array的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?二、新课讲授1、由学生回答以下问题:(1)引入:影院对观众席所有的座位都按“几排几号”编号,以便确定每个座位在影院中的位置,观众根据入场券上的“排数”和“号数”准确入座。

(2)根据下面这个教室的平面图你能确定某同学的坐位吗?对于下面这个根据教师平面图写的通知,你明白它的意思吗?“今天以下座位的同学放学后参加数学问题讨论:(1,5),(2,4),(4,2),(3,3),(5,6)。

”学生通过合作交流后得到共识:规定了两个数所表示的含义后就可以表示座位的位置.思考:(1)怎样确定教室里坐位的位置?(2)排数和列数先后顺序对位置有影响吗?(2,4)和(4,2)在同一位置。

(3)假设我们约定“列数在前,排数在后”,你在图书6 1-1上标出被邀请参加讨论的同学的座位。

让学生讨论、交流后得到以下共识:(1)可用排数和列数两个不同的数来确定位置。

(2)排数和列数先后顺序对位置有影响。

(2,4)和(4,2)表示不同的位置,若约定“列数在前排数在后”则(2,4)表示第2列第4排,而(4,2)则表示第4列第2排。

因而这一对数是有顺序的。

(3)让学生到黑板贴出的表格上指出讨论同学的位置。

2、有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b)利用有序数对,可以很准确地表示出一个位置。

3、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

(以后学习)三、巩固练习:1、教材65页练习2.如图,马所处的位置为(2,3).(1)你能表示出象的位置吗?(2四、课堂小结:1、什么要用有序数对表示点的位置,没有顺序可以吗?2、常用的表示点位置的方法.五、作业教材68页:第1题板书设计:一.创设问题情境,引入新课二、新课讲授1、由学生回答以下问题:2、有序数对3、常见的确定平面上的点位置常用的方法三、巩固练习四、课堂小结五、作业教学反思:7.1.2平面直角坐标系德育目标:学习《中学生日常行为规范》第19条:积极参加生产劳动和社会实践,积极参加学校组织的其他活动,遵守活动的要求和规定。

教学目标知识与技能:1、能正确地画出平面直角坐标系;2、在给定的平面直角坐标系中,能由点的位置写出它的坐标,并会根据坐标描出点的位置,理解坐标平面内的点与有序实数对的一一对应关系;3、明确各象限内点的坐标的符号特点,并能判断所给出的点在哪个象限.过程与方法:1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力. 情感、态度与价值观:明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想.教学重、难点:重点:理解平面直角坐标系的有关概念,能由点位置写出坐标, 由坐标描出点的位置.难点:理解坐标平面内的点与有序实数对的一一对应关系.学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。

能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。

教学方法:启发、讨论、探究教学过程:(一)复习导入数轴上的点可以用什么来表示?可以用一个数来表示,我们把这个数叫做这个点的坐标。

如图,点A 的坐标是2,点B 的坐标是-3.坐标为-4的点在数轴上的什么位置? 在点C 处.这就是说,知道了数轴上一个点的坐标,这个点的位置就确定了。

(二)平面直角坐标系思考:平面内的点又怎样表示呢?这就是我们这节课所学的——平面直角坐标系(并板出课题)什么是平面直角坐标系? 带着这个问题阅读课本P66页,并完成平面直角坐标系概念: -3-11BA 0324C平面内画两条互相、原点的数轴,组成平面直角坐标系.水平的数轴称为或,习惯上取向为正方向;竖直的数轴为或,取向为正方向;两个坐标轴的交点为平面直角坐标系的。

有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了。

(三)点的坐标如图,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4)。

类似地,写出点B、C、D的坐标.B(-3,-4)、C(0,2)、D(0,-3).注意:写点的坐标时,横坐标在前,纵坐标在后。

练习:课本P68练习第1题(四)思考:原点O 的坐标是什么? x 轴和y 轴上的点的坐标有什么特点?原点O 的坐标是(0,0).在x 轴上的点的纵坐标为0,记作(x ,0).在y 轴上的点的横坐标为0,记作(0,y ).(五)四个象限建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限。

坐标轴上的点不属于任何象限。

各象限上的点有何特点? 学生交流后得到共识,各象限坐标的符号:第一象限上的点,横坐标为正数,纵坐标为正数, 即(+,+) 第二象限上的点,横坐标为负数,纵坐标为正数, 即(-,+) 第三象限上的点,横坐标为负数,纵坐标为负数, 即(-,-) 第四象限上的点,横坐标为正数,纵坐标为负数, 即(+,-)练习:点A(4,5)在第 象限; 点B(-2,3)在第____象限.;点C(-4,-1)在第____象限; 点D(2.5,-2)在第____象限;(点E(0,-4).在 ; 点F (0,在 。

(六)例题讲解 P67例 在平面直角坐标系中描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(2.5,-2),E(0,-4). 分析:根据点的坐标的意义,经过A 点作x 轴的垂线,垂足的坐标是A 点横坐标,作y 轴的垂线,垂足的坐标是A 点的纵坐标。

你认为应该怎样描出点A 的坐标?先在x 轴上找出表示4的点,再在y 轴上找出表示5的点, 过这两个点分别作x 轴和y 轴的垂线,垂线的交点就是A.类似地,我们可以描出点B 、C 、D 、E.因此,我们可以得出:对于坐标平面内任意一点M ,都有唯一的一对有序实数对(x ,y )(即点M 的坐标)和它对应;反过来,对于任意一对有序实数对(x ,y ),在坐标平面内都有唯一的一点M (即坐标为(x ,y )的点)和它对应。

也就是说,坐标平面内的点与有序实数对是一一对应的。

(七)建立平面直角坐标系P68 探究:如图,正方形ABCD 的边长为6.A(O)x D CB(1)如果以点A 为原点,AB 所在的直线为x 轴,建立平面坐标系,那么y 轴是哪条线? y 轴是AD 所在直线。

(2)写出正方形的顶点A、B、C、D的坐标. A(0,0), B(0,6),C(6,6), D(6,0).(3)请你另建立一个平面直角坐标系,此时正方形的顶点A、B、C、D的坐标又分别是多少?与同学交流一下。

可以看到建立的直角坐标系不同,则各点的坐标也不同。

你认为怎样建立直角坐标系才比较适当?(要尽量使更多的点落在坐标轴上)(八)课堂小结我们这节课学了哪些内容?(九)作业:第70页第5题板书设计: x轴:(x,0)1、数轴y轴:(0,y)平面直角坐标系2、原点:(0,0)第一象限:(+,+)3、象限第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)坐标平面内的点与有序实数对是一一对应的。

教学反思:7.2.1 用坐标表示地理位置德育目标:学习《中学生日常行为规范》第20条;认真值日,保持教室、校园整洁优美。

不在教室和校园内追逐打闹喧哗,维护学校良好秩序。

教学目标:1.了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际问题的能力.2.通过学习如何用坐标表示地理位置,发展学生的空间观念.3. 通过学习,学生能够用坐标系来描述地理位置教学重点:利用坐标表示地理位置.教学难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题.学情分析:七年级105班学生学习基础太差,学习态度不端正,没有形成良好的学习习惯,学习主动性很差,学习方法不恰当。

能称得上好一点的学生几乎不到十分之一,学困生面积很大,加之大部分学生的心思不在学习上,整天无所事事,上课不专心听讲,课后大部分学生有抄袭作业的不良习惯,有的学生甚至没有动笔写作业,更谈不上认真复习的习惯。

教学方法:启发、讨论、探究教学过程一、创设问题情境观察:教材第73页图7.2-1.今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.二、新课讲授活动1:根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后再向东走小敏家:出校门向南走100米,再向东走300米,最后向南走75米.问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).由学生画出平面直角坐标系,标出学校的位置,即(0,0).引导学生一同完成示意图.问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地写出三位同学家的位置.活动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.经过学生讨论、交流,教师适当引导后得出结论:(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y 轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的应注意的问题:用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.(举例)练习:若向西走200米,再向北走350米,记为(-200,350)则向北走350米,再向西走200米,如何记?(-200,-350)又表示什么意思呢?活动3:进一步理解如何用坐标表示地理位置.展示问题:(教材第56页,公园平面图)春天到了,初一(13)班组织同学到人民公园春游,张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置.张明:“我这里的坐标是(300,300)”.王丽:“我这里的坐标是(200,300)”.李华:“我在你们东北方向约420米处”.用他们的方法,你能描述公园内其他景点的位置吗?让学生分别画出直角坐标系,标出其他景点的位置.三、小结1、让学生归纳说出如何利用坐标表示地理位置.2、建立恰当的坐标系四、课后作业教材第78页习题7.2 第1,8,10题板书设计:一、创设问题情境活动1:二、新课讲授活动2活动3三、小结四、课后作业教学反思:7.2.2用坐标表示平移(1)德育目标:学习《中学生日常行为规范》第21条; 爱护校舍和公物,不在黑板、墙壁、课桌、布告栏等处乱涂改刻画。

相关文档
最新文档