(天津专用)2018版高考数学总复习专题06数列分项练习(含解析)文
专题06 函数的奇偶性与周期性 复习资料(解析版)

小正周期.
3.函数的对称性常见的结论
a+b (1)函数 y=f(x)关于 x= 对称⇔f(a+x)=f(b-x)⇔f(x)=f(b+a-x).
2
特殊:函数 y=f(x)关于 x=a 对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x); 函数 y=f(x)关于 x=0 对称⇔f(x)=f(-x)(即为偶函数). (2)函数 y=f(x)关于点(a,b)对称⇔f(a+x)+f(a-x)=2b⇔f(2a+x)+f(-x)=2b. 特殊:函数 y=f(x)关于点(a,0)对称⇔f(a+x)+f(a-x)=0⇔f(2a+x)+f(-x)=0; 函数 y=f(x)关于(0,0)对称⇔f(x)+f(-x)=0(即为奇函数). (3)y=f(x+a)是偶函数⇔函数 y=f(x)关于直线 x=a 对称; y=f(x+a)是奇函数⇔函数 y=f(x)关于点(a,0)对称. [知识拓展]
数
f(x)就叫做奇函数
称
(2)定义域关于原点对称是函数具有奇偶性的必要不充分条件.
2.函数的周期性
(1)周期函数:对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时,都有 f(x+T)=f(x),
那么就称函数 f(x)为周期函数,称 T 为这个函数的周期.
(2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最
综上可知:对于定义域内的任意 x,总有 f(-x)=-f(x)成立,∴函数 f(x)为奇函数.
【解法小结】 判断函数的奇偶性,其中包括两个必备条件:
(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断 f(x)与 f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关
06 万有引力与航天高考真题分项详解(解析版)

十年高考分类汇编专题06万有引力与航天(2011-2020)目录题型一、考查万有引力定律、万有引力提供物体重力的综合类问题 ............................................ 1 题型二、考查万有引力提供卫星做圆周运动向心力的相关规律 .................................................... 6 题型三、考查飞船的变轨类问题 ...................................................................................................... 18 题型四、考查万有引力与能量结合的综合类问题 .......................................................................... 20 题型五、考查双星与三星系统的规律 .............................................................................................. 21 题型六、关于开普勒三定律的相关考查 .......................................................................................... 22 题型七、天体运动综合类大题 . (25)题型一、考查万有引力定律、万有引力提供物体重力的综合类问题1.(2020全国1).火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( ) A. 0.2B. 0.4C. 2.0D. 2.5【考点】万有引力在非绕行问题中的应用 【答案】B【解析】设物体质量为m ,在火星表面所受引力的大小为F 1,则在火星表面有:1121M mF GR 在地球表面所受引力的大小为F 2,则在地球表面有:2222M mF GR 由题意知有:12110M M ;1212R R故联立以上公式可得:21122221140.4101F M R F M R ==⨯=。
专题06 第二章 复习与检测(核心素养练习)(解析版)

专题六 第二章 复习与检测 核心素养练习一、核心素养聚焦考点一 数学运算-解一元二次不等式 例题7、解不等式x 2-5x +6>0; 【答案】{x |x >3,或x <2}【解析】方程x 2-5x +6=0有两个不等实数根x 1=2,x 2=3,又因为函数y =x 2-5x +6的图象是开口向上的抛物线,且抛物线与x 轴有两个交点,分别为(2,0)和(3,0),其图象如图(1).根据图象可得不等式的解集为{x |x >3,或x <2}. 考点二----- 数学建模-基本不等式的应用例题8.某种汽车,购车费用是10万元,每年使用保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的年平均费用最少?【解析】设使用x 年平均费用最少.由条件知,汽车每年维修费用构成以0.2万元为首项,0.2万元为公差的等差数列.因此,汽车使用x 年总的维修费用为0.2+0.2x2x 万元.设汽车的年平均费用为y 万元,则有y =10+0.9x +0.2+0.2x2xx =10+x +0.1x 2x =1+10x +x10≥1+210x ·x10=3. 当且仅当10x =x10,即x =10时,y 取最小值.即这种汽车使用10年时,年平均费用最少.二、学业质量测评一、选择题1.(2018·全国高一专题练习(理))若0a b <<,则下列不等式错误的是( ) A .11a b> B .11a b a>- C .a b >D .22a b >【答案】B【解析】∵0a b <<,∴11a b>,故A 对; ∵0a b <<,∴0b <-,0a a b <-<,∴11a a b>-,故B 错; ∵0a b <<,∴0a b ->->,即||||a b ->-,∴||||a b >,故C 对; ∵0a b <<,∴0a b ->->,∴22()()a b ->-,即22a b >,故D 对; 故选B .2.(2019·全国高一课时练习)不等式()20x x ->的解集( ) A.{}0x x B. {|2}x x < C. {20}x x x <或 D.{|02}x x <<【答案】D【解析】()20x x ->,如果展开,其二次项系数为负,对应抛物线开口向下,大于0解集为“两根之间”,故解集为{|02}x x <<,所以正确选项为D 。
高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(解析版)

专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <. 【答案】(1)选择条件见解析,21n a n =+(2)证明见解析 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,∴25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ∴13a =,21n a n =+;若选②,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+;第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)∵()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ∴11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ∴16n T <,得证 例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)213n a n =- (2)122212nn -(1)解:由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-;感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 122212n n-=类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1(211)2n +-(1)解:各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++,整理得()()()1112n n n n n n a a a a a a ++++-=+,由于10n n a a ++≠, 所以12n n a a +-=, 故数列{}n a 是以1为首项,2为公差的等差数列.所以21n a n =-.(2)解:由(1)可得111212122121n n n n n b a a n n ++--===+-++,所以11(3153...2121)(211)22n S n n n =⨯-+-+++--=+-.例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;(1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =+;(2)证明见解析﹒(1)由题可知,11261861548a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,∴21n a n =+;(2)1122232122321n n n n n b a a n n +-+--===+++-,()()()()()1517395212323212n T n n n n ⎡⎤=-+-+-+++--++--⎣⎦12123132n T n n ⎡⎤=+++--⎣⎦感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.类型三:指数型第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)n S 1212n n +=-++(1)解:设等差数列{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()()()211137a d a d a d +=++,整理得()10d a d -=,又因为10n n a a +->,所以0d >,1a d =,又1410131215a a a a d ++=+=,即15d =15, 所以11a d ==,所以n a n =;感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.(2)解:由(1)知,n a n =, 所以()()12221221n n nn n b n n n n +⋅==-++++,2324312112222222222223243541121n n n n n n n S n n n n n n ---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212n n +=-++.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .【答案】(1)12n na ;(2)1112(1)2n n T n +=-+⋅. (1)因为21n n S a =-,当1n =时,1121S a =-,解得11a =,当2n ≥时,1121n n S a --=-,所以()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥,所以数列{}n a 是首项为1,公比为2的等比数列.故11122n n n a --=⨯=.(2),1122211(1)(1)22(1)2n n n n n n n b a n n n n n n +++++===-⋅⋅++⋅+⋅于是12231111111111122222322(1)22(1)2n n n n T n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:(1)设等差数列{}n a 的公差为d ,则22113222n n n n d d S na d n n n a b -⎛⎫=+=+-=++ ⎪⎝⎭, 所以1,23,20,dd a b ⎧=⎪⎪⎪-=⎨⎪=⎪⎪⎩所以2,2,0,d a b =⎧⎪=⎨⎪=⎩,所以数列{}n a 的通项公式为()32121n a n n =+-=+. 因为23n n n T b +=,当2n ≥时,1113n n n T b --+=, 所以112133n n n n n n n b T T b b --++=-=-, 所以11133n n n n b b --+=,即111n n b n b n -+=-. 所以1232112321n n n n n n n b b b b b b b b b b b b -----=⨯⨯⨯⋅⋅⋅⨯⨯⨯()11432112321n n n n n n n n +-=⨯⨯⨯⋅⋅⋅⨯⨯⨯=+---. (2)()()()()()11111111nn n n n n n n a c b n n n n ++⎛⎫=-=-⋅=-+ ⎪++⎝⎭, 当n 为奇数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅-+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭12111n n n +=--=-++. 当n 为偶数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-+=-++. 综上所述,数列{}n c 的前n 项和2,1,1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数.例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2,2122,21n nn n T n n n ⎧⎪⎪+=⎨+⎪⎪+⎩为偶数为奇数 第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:(1)∴等差数列{an }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列. ∴S n =na 1+n (n ﹣1)(2a 1+2)2=a 1(4a 1+12),a 1=1,∴an =2n ﹣1; (2)∴由(1)可得()()111411112121n n n n n n b a a n n --+⎛⎫=-=-+ ⎪-+⎝⎭, 当n 为偶数时,T n =11111111113355723212121n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n =-=++. 当n 为奇数时,11111111113355723212121n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-⋯-+++ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12212121n n n +=+=++ . 2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. 三、题型归类练1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =+(2)1n n + (1)设等差数列{}n a 的公差为d , 由210353a a a =⎧⎨=⎩,可得()1115932a d a d a d ⎧+=⎪⎨+=+⎪⎩解得13,2a d==,所以()13122n a n n -⨯=++= (2)由(1)可得2111(1)(22)(1)12n n b n a n n n n n n ====-++++所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)31n a n =-,3nn b =(2)64n nT n =+ (1)设数列{}n a 的公差为d ,则0d >, 由540S =得1545402a d ⨯+=,即128a d +=①, 又123,1,a a a -成等比数列,所以()22131a a a -=,所以()()211112a d a a d +-=+,所以21(1)2d a -=②,联立①②及0d >解得12,3a d ==. 所以2(1)331n a n n =+-⨯=-. 所以161653,6572b S a d ⨯==+=, 所以35723b =+,解得327b =,又231,0b b q q =>,所以3q =,所以3nn b =.(2)由(1)得()311111(31)23log (31)(32)33132n n c n b n n n n ⎛⎫===- ⎪-+-+-+⎝⎭,所以121111111111325583132323264n n n T c c c n n n n ⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)12a =;2n a n =;(2)()()32316812n n T n n +=-++. (1)由()()222220n n S n n S n n -+--+=得:()()()220n n S S n n +-+=;{}n a 为正项数列,0n S ∴>,2n S n n ∴=+;当1n =时,112a S ==;当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=;经检验:12a =满足2n a n =;()2n a n n N *∴=∈.(2)由(1)得:()()111112224282n b n n n n n n ⎛⎫===- ⎪⋅+++⎝⎭,11111111111832435112n T n n n n ⎛⎫∴=⨯-+-+-+⋅⋅⋅+-+- ⎪-++⎝⎭()()()()1111132332318212821216812n n n n n n n n ⎛⎫++⎛⎫=⨯+--=⨯-=- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭. 4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=. (1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)41n nT n =+. (1)因为1332n n S +-=,故当1n =时,13a =,当2n ≥时,1332n n S --=,则()132nn n n a S S n -=-=≥,当1n =时,13a =满足上式,所以3nn a =.(2)由(1)得()33144114log log 11n n n b a a n n n n +⎛⎫===- ⎪⋅++⎝⎭,所以12311111144141223111n n n T b b b b n n n n ⎛⎫⎛⎫=++++=⨯-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 故数列{}n b 的前n 项和41n nT n =+. 5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)n T )112=(1)由1232n n n n S a S S ++-=+得:121211223222n n n n n n n n n n a S S S S S S S a a +++++++-=-+=-+-=-+即122n n n a a a ++=+, 所以数列{}n a 为等差数列, 由53525S a ==得35a =,设公差为d ,315212a a d d ==+=+,得2d =, 所以()11221n a n n =+-⨯=-, 故数列{}n a 的通项公式为21n a n =-.(2)12n b =,所以1122n Tn =++)112=.6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.【答案】(1)选择见解析;3nn a =(2)证明见解析(1)设正项等比数列{}n a 公比为q ,又1330a a +=,选①,()()41234131120S a a a a a a q =+++=++=,所以3q =;选②,13431130a a a q q ⎛⎫+=+= ⎪⎝⎭,所以()()2310390,3q q q q -++==;选③,()()22111112340n n n n n n n n a a a a a a a a ----+-=-+=,所以13n n a a -=,∴3q =;又1311191030a a a a a +=+==,∴13a =,则3nn a =.(2)因为()()()()1112323111131313131n n n n n n n n n b a a +++⋅⋅===-++++++,所以122231111111313131313131n n n n S b b b +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11114314n +=-<+. 7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <【答案】(1)21n a n =-,131(21)22n n b n -⎛⎫=-- ⎪⎝⎭(2)证明见解析(1)解:由数列{}n a 为等差数列,{}n b 且满足11211,,32a b b ===,211412n n n n nn a b a b ++-=+,当1n =时,可得122132a b a b =+,即213322a =⨯+,解得23a =; 因为{}n a 是等差数列,所以21n a n =-,所以2141(21)(21)2n n nn n b n b +--=++,所以1121212n n n b b n n +-=+-, 所以12132121131532123n n n b b b b b b b b n n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭11211112211111311222222212n n n ---⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎝⎭=++++=+=- ⎪⎝⎭-所以131(21)22n n b n -⎛⎫=-- ⎪⎝⎭.(2)解:由(1)得12311(21)(21)22(21)2(21)n n n n n c n n n n -+==--+-+,所以12n n T c c c =+++211111112323252(21)2(21)n n n n -=-+-++-⋅⋅⋅-+ 1112(21)n n =-<+.8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n =(2)最小值为23(1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅, 所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)解:由(1)可得()()()()1111122112121212121212n n n a n n nn a a n n c +++++⎛⎫===- ⎪++++++⎝⎭, 所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为239.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)=n a ()1nn T =-(1)由题可知()22112n n S S n --=≥⇒数列是{}2n S 等差数列,所以()2211n S S n n =+-=,)12n n n n S a S S n -=-=≥,又因为11a ==,所以n a(2)()()11nnnnnb a -===-.所以()()311nnn T =-=+-故答案为:n a ()1n- .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式; (2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值. 【答案】(1)*,N na n n =∈(2)505(1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++,2111412020n T n +=<+,20194n ∴>所以n 的最小值为505.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和. 【答案】(1)(),2nn n a n b n *=∈=N ;(2)证明见解析;(3)2212221n n T n +=-+(1)设等差数列公差为d ,等比数列公比为q ,所以()2311111132132222222d q d a d b q b q q d q b q a d⎧+==+=⎧⎧⇒⇒⎨⎨⎨=+==+⎩⎩⎩,所以,2n n na b n ==, (2){}n b 的前n 项和为 248222222n n n n n n n n n S n a b =++++≤++++=⋅=⋅,(当1n =时,取等号)命题得证.(3)由(1)得,()()131131222(1)(1)(1)11n nn n n n nn n n n n n a b c a n n a n +++⎛⎫+ ⎪+⋅⋅=-=-=-+⎝+⎭⋅, 所以数列{}n c 的前2n 项和2212244881616122()3222241334522nn n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎭,2212221n n T n +=-+12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .【答案】(1)1n a n =;(2)20222023. (1)由11n n n n a a a a --=-,0n a ≠得:1111n n a a --=,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,1n n a ∴=,1n a n ∴=;(2)由(1)知:()()()()1121111111n n n n b n n n n +++=-=-+++;20221111111111223342021202220222023T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++--+++⋅⋅⋅+++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12022120232023=-=.13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列. (1)求数列{}n a 的通项公式.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.【答案】(1)14n n a -=;(2)证明见解析.(1)依题意,当2n ≥时,1144n n n a S S +-+=, 故11444n n n n a S S a +-=-=, 由1215a S ==,得22144a a a ==,,故数列{}n a 是以1为首项,4为公比的等比数列,则14n n a -=;(2)依题意,()()()()2211123232111141414141n n n n n n n n a a ++++⋅⋅==-++++++,故12231111111111414141414141541n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭, ∴n *∈N ,∴1112111855415n T +=≤-<+,即121855n T ≤<.。
【备战2018】高考数学分项汇编 专题06 数列(含解析)文

专题06 数列一.基础题组1. 【2014上海,文10】设无穷等比数列{n a }的公比为q ,若)(lim 431 ++=∞→a a a n ,则q= .【考点】无穷递缩等比数列的和.2. 【2013上海,文2】在等差数列{a n }中,若a 1+a 2+a 3+a 4=30,则a 2+a 3=______.【答案】15 3. 【2013上海,文7】设常数a ∈R .若25()a x x+的二项展开式中x 7项的系数为-10,则a =______.【答案】-2 4. 【2012上海,文7】有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则12lim ()n n V V V →∞+++=…__________.【答案】875. 【2012上海,文8】在(x -1x)6的二项展开式中,常数项等于__________.【答案】-206. 【2012上海,文14】已知1()1f xx=+,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n).若a2010=a2 012,则a20+a11的值是__________.7. 【2012上海,文18】若π2ππsin sin sin777nnS=+++…(n∈N*),则在S1,S2,…,S100中,正数的个数是( )A.16 B.72 C.86 D.100【答案】 C 8. 【2008上海,文14】若数列{}n a 是首项为1,公比为32a =的无穷等比数列,且{}n a 各项的和为a ,则a 的值是( )A.1 B.2 C.12 D.54【答案】B9. 【2007上海,文14】数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤, 则数列{}n a 的极限值( )A.等于0B.等于1C.等于0或1D.不存在【答案】B二.能力题组1. 【2014上海,文23】(本题满分18分)本题共3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知数列{}n a 满足1113,*,13n n n a a a n N a +≤≤∈=.(1)若2342,,9a a x a ===,求x 的取值范围;(2)若{}n a 是等比数列,且11000m a =,正整数m 的最小值,以及m 取最小值时相应{}n a 的仅比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.【答案】(1)[3,6];(2)1[,2]3;(3)k的最大值为1999,此时公差为11999d=-.【考点】解不等式(组),数列的单调性,分类讨论,等差(比)数列的前n项和.2. 【2013上海,文22】已知函数f(x)=2-|x|,无穷数列{a n}满足a n+1=f(a n),n∈N*.(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值;(3)是否存在a1,使得a1,a2,…,a n,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.【答案】(1)a2=2,a3=0,a4=2 ;(2)a1=2-舍去)或a1=2+(3) 当且仅当a1=1时,a1,a2,a3,…构成等差数列3. 【2012上海,文23】对于项数为m的有穷数列{a n},记b k=max{a1,a2,…,a k}(k=1,2,…,m),即b k为a1,a2,…,a k中的最大值,并称数列{b n}是{a n}的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n}的控制数列为2,3,4,5,5,写出所有的{a n};(2)设{b n}是{a n}的控制数列,满足a k+b m-k+1=C(C为常数,k=1,2,…,m),求证:b k=a k(k=1,2,…,m);(3)设m=100,常数a∈(12,1),若(1)22(1)n nna an n+=--,{b n}是{a n}的控制数列,求(b1-a1)+(b2-a2)+…+(b100-a100).【答案】(1)参考解析;(2) 参考解析;(3) 2 525(1-a)4.【2011上海,文23】已知数列{a n }和{b n }的通项公式分别为a n =3n +6,b n =2n +7(n ∈N *).将集合{x |x =a n ,n ∈N *}∪{x |x =b n ,n ∈N *}中的元素从小到大依次排列,构成数列c 1,c 2,c 3,…c n ,….(1)求三个最小的数,使它们既是数列{a n }中的项又是数列{b n }中的项;(2) c 1,c 2,c 3,…,c 40中有多少项不是数列{b n }中的项?请说明理由;(3)求数列{a n }的前4n 项和S 4n (n ∈N *).【答案】(1)9,15,21; (2)10; (3)241233n S n n=+5. 【2010上海,文21】已知数列{a n }的前n 项和为S n ,且S n =n -5a n -85,n ∈N *.(1)证明:{a n -1}是等比数列;(2)求数列{S n }的通项公式,并求出使得S n +1>S n 成立的最小正整数n .【答案】(1)参考解析; (2) S n =n +75·(56)n -1-90, 最小正整数n =156. (2009上海,文23)已知{a n}是公差为d的等差数列,{b n}是公比为q的等比数列.(1)若a n=3n+1,是否存在m、k∈N*,有a m+a m+1=a k?请说明理由;(2)若b n=aq n(a,q为常数,且aq≠0),对任意m存在k,有b m·b m+1=b k,试求a、q满足的充要条件;(3)若a n=2n+1,b n=3n,试确定所有的p,使数列{b n}中存在某个连续p项的和是数列{a n}中的一项,请证明.【答案】(1)不存在m、k∈N*, (2) a=q c,其中c是大于等于-2的整数;(3) p为奇数7. 【2008上海,文21】(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a :11a =,22a =,3a r =,32n n a a +=+(n 是正整数),与数列{}n b :11b =,20b =,31b =-,40b =,4n n b b +=(n 是正整数).记112233n n n T b a b a b a b a =++++ .(1)若1231264a a a a ++++= ,求r 的值;(2)求证:当n 是正整数时,124n T n =-;(3)已知0r >,且存在正整数m ,使得在121m T +,122m T +, ,1212m T +中有4项为100.求r 的值,并指出哪4项为100.【答案】(1)4;(2)参考解析;(3)293294297298,,,T T T T()1241.121,12241;123,12441;125,12645;127,1284;129,121044;m n n n n T m m n m m T m n m m T m r nn m m T m r n m m T m r n m m T m =-≥=++=+=++=-+-=++=+-=++=--=++=+当时,当时,当时,当时,当时,8. 【2007上海,文20】(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.如果有穷数列123m a a a a ,,,,(m 为正整数)满足条件m a a =1,12-=m a a ,…,1a a m =,即1+-=i m i a a (12i m = ,,,),我们称其为“对称数列”. 例如,数列12521,,,,与数列842248,,,,,都是“对称数列”.(1)设{}n b 是7项的“对称数列”,其中1234b b b b ,,,是等差数列,且21=b ,114=b .依次写出{}n b 的每一项;(2)设{}n c 是49项的“对称数列”,其中492625,,c c c ⋅⋅⋅是首项为1,公比为2的等比数列,求{}n c 各项的和S ;(3)设{}n d 是100项的“对称数列”,其中5152100d d d ,,,是首项为2,公差为3的等差数列.求{}n d 前n 项的和n S (12100)n = ,,,.【答案】(1)25811852,,,,,,;(2)67108861;(3)参考解析9. 【2006上海,文20】(本题满分14)本题共有2个小题,第1小题满分6分,第2小题满分8分。
专题06+考前必做难题30题-2018年高考数学(理)走出题海之黄金30题系列+Word版含解析

2018年高考数学走出题海之黄金30题系列1.三棱锥S ABC -及其三视图中的正视图和侧视图如图所示,则该三棱锥S ABC -的外接球的表面积为( )A .32πB .112π3C .28π3D .64π3【答案】B【解析】如图,取AC 中点F ,连接BF ,则在Rt BCF △中2BF CF ==,4BC =,在Rt BCS △中,4CS =,所以BS =112π3,故选A . 2.若直线y kx b =+与曲线ln 2y x =+相切于点P ,与曲线()ln 1y x =+相切于点Q ,则k =_________. 【答案】23.点B 是以线段AC 为直径的圆上的一点,其中2AB =,则AC AB ⋅=( ) A. 1 B. 2 C. 3 D. 4 【答案】D【解析】2cos 4AB AC AB AC AB BAC AC ABAB AC=∠===故选D4.已知实数b a ,满足225ln 0a a b --=,c ∈R ,则22)()(c b c a ++-的最小值为( )A .21 B .22 C .223 D .29 【答案】C5.已知M 是ABC △内的一点,且23AB AC =30BAC ∠=,若MBC △,MCA △,MAB △的面积分别为12x y ,,,则14x y+的最小值为( ) A .20 B .18 C .16 D .9 【答案】B 【解析】11sin cos tan 22ABC S AB AC A AB AC A A =⨯⨯⨯∠=⨯⨯⨯∠⨯∠△11tan 122AB AC A =∠=⨯=,即11122x y x y ++=⇒+=,那么()141442252518y x x y x y x y x y ⎛⎛⎫⎛⎫+=+⨯+=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝≥,故选B . 6.已知函数,将其图象向右平移个单位长度后得到函数的图象,若函数为奇函数,则的最小值为( ) A. B. C. D. 【答案】B 【解析】将函数图象向右平移个单位长度后,得到的图象对应的解析式为.由为奇函数可得,故,又,所以的最小值为.选B .7.抛物线212x y =在第一象限内图像上的一点2(,2)i i a a 处的切线与x 轴交点的横坐标记为1i a +,其中*i ∈N ,若232a =,则246a a a ++等于( )A .21B .32C .42D .64【答案】C8.若曲线212y x e=与曲线ln y a x =在它们的公共点(),P s t 处具有公共切线,则实数a =( ) A. 1 B. 12C. 1-D. 2 【答案】A【解析】曲线212y x e =的导数为:y ′=x e ,在P (s ,t )处的斜率为:k=s e. 曲线y=alnx 的导数为:y ′=a x ,在P (s ,t )处的斜率为:k=as.曲线212y x e =与曲线y=alnx 在它们的公共点P (s ,t )处具有公共切线, 可得s a e s =,并且t=212s e,t=alns , 即221{,ln ,.122s ae s s s e s alns e=∴=∴==可得a=2 1.s e e e==故选A .9.已知双曲线C : 22221x y a b -= ()0,0a b >>的左右焦点分别为1F , 2F ,P 为双曲线C 上一点, Q 为双曲线C 渐近线上一点, P , Q 均位于第一象限,且23QP PF =, 120QF QF ⋅=,则双曲线C 的离心率为( )A. 8B. 222【答案】B【解析】由题意得,双曲线在第一、三象限的渐近线为b y x a =,设点Q 坐标为,(0)bm m m a ⎛⎫> ⎪⎝⎭, 则12,,,bm bm QF c m QF c m a a ⎛⎫⎛⎫=---=-- ⎪ ⎪⎝⎭⎝⎭, ∵120QF QF ⋅=,∴222222222,,0bm bm b m c m c m c m m c c a a a a ⎛⎫⎛⎫---⋅--=-+=-= ⎪ ⎪⎝⎭⎝⎭,∴m a =.设()00,P x y ,由23QP PF =得,∴()00003,,bm x m y c x y a ⎛⎫--=-- ⎪⎝⎭,∴003344{ 3344c m c ax bm b y a ++====,∵点()00,P x y 在双曲线上,∴222233441c a b a b+⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=, ∴226160c ac a +-=,∴26160e e +-=,解得2e =或8e =-,∴双曲线C 的离心率为2.选B .10.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为1F ,2F .这两条曲线在第一象限的交点为P ,12PF F △是以1PF 为底边的等腰三角形.若1||10PF =,记椭圆与双曲线的离心率分别为1e 、2e ,则12e e 的取值范围是( )A .1(,)9+∞ B .1(,)5+∞C .1(,)3+∞D .(0,)+∞【答案】C11.已知直线l 是曲线x y e =与曲线22x y e =-的一条公切线, l 与曲线22x y e =-切于点(),a b ,且a 是函数()f x 的零点,则()f x 的解析式可能为( ) A. ()()222ln211xf x ex =+-- B. ()()222ln212x f x e x =+-- C. ()()222ln211xf x e x =--- D. ()()222ln212x f x e x =---【答案】B【解析】:设直线l 与曲线xy e =切点为(),m n , xy e =的导数为'xy e =, 22xy e =-的导数为2'2x y e =,曲线xy e =在(),m n 的切线的方程为()m my e ex m -=-,即()1m y e x m =-+,曲线22x y e =-在点(),a b 处的切线方程为()()2222a a y e e x a --=-,即()222122a a y e x e a =+--,可得()()222{1122m am a e e e m e a =-+=--,则2ln2m a =+,即()222ln2120a e a +--=,即有()()222ln212x f x e x =+--,故选B .12. 已知双曲线C 的中心在原点O ,焦点()F -,点A 为左支上一点,满足|OA |=|OF |且|AF |=4,则双曲线C 的方程为( )A .221164x y -=B .2213616x y -=C .221416x y -=D .2211636x y -=【答案】C【解析】如下图,由题意可得c =F ′,由|OA |=|OF |=|OF′|知,∠AFF ′=∠FAO ,∠OF′A=∠OAF′,所以∠AFF′+∠OF′A=∠FAO+∠OAF′,由∠AFF′+∠OF′A+∠FAO+∠OAF′=180°知,∠FAO+∠OAF′=90°,即AF⊥AF′.在Rt△AFF′中,由勾股定理,得'8AF==,由双曲线的定义,得|AF′|-|AF|=2a=8-4=4,从而a=2,得a2=4,于是b2=c2-a2=16,所以双曲线的方程为221416x y-=.故选C.13.某产品进入商场销售,商场第一年免收管理费,因此第一年该产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对该产品征收销售额的错误!未找到引用源。
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考化学总复习专题06镁铝铁铜金属的冶炼习思用练习含解析

专题六镁、铝、铁、铜金属的冶炼考点1 镁及其化合物1. [2018全国名校第二次大联考]镁、铝都是较活泼的金属,下列描述中正确的是( )A.高温下,镁、铝在空气中都有抗腐蚀性B.镁、铝都能跟稀盐酸、稀硫酸、强碱反应C.镁在点燃条件下可以与二氧化碳反应,铝在一定条件下可以与氧化铁发生氧化还原反应D.铝热剂是镁条、铝粉和氧化铁的混合物2.在标准状况下,进行甲、乙、丙三组实验,三组各取 60 mL 同浓度盐酸,加入同一种镁铝合金粉末,产生气体,有关数据列表如下:则下列说法正确的是( )A.甲组和乙组的实验中,盐酸均是过量的B.盐酸的物质的量浓度为0.8 mol·L-1C.合金中镁铝的物质的量之比为1∶1D.丙组中铝的物质的量为0.009 mol3.(1)[2014新课标全国卷Ⅱ,36(4),4分]采用石墨阳极、不锈钢阴极电解熔融的氯化镁,发生反应的化学方程式为;电解时,若有少量水存在会造成产品镁的消耗,写出有关反应的化学方程式。
(2)[2015新课标全国卷Ⅰ,27(6)改编]单质硼可用于生产具有优良抗冲击性能的硼钢。
以硼酸(H3BO3)和金属镁为原料可制备单质硼,用化学方程式表示制备过程: 。
考点2 铝及其化合物4.下列关于铝的说法中正确的有( )①铝制容器可盛装热的浓硫酸②工业上电解熔融状态AlCl3制备Al ③常温下将Al片放入浓硝酸中无明显变化,说明Al与浓硝酸不反应④铝镁合金可完全溶解于烧碱溶液中⑤氧化铝和氧化镁都可以作耐火材料A.1个B.2个C.3个D.4个5.[2016上海,20,4分]已知NaOH+Al(OH)3 Na[Al(OH)4]。
向集满CO2的铝制易拉罐中加入过量NaOH浓溶液,立即封闭罐口,易拉罐渐渐凹瘪;再过一段时间,罐壁又重新凸起。
上述实验过程中没有发生的离子反应是( )A.CO2+2OH- C-+H2OB.Al2O3+2OH-+3H2O 2[Al(OH)4]-C.2Al+2OH-+6H2O 2[Al(OH)4]-+3H2↑D.Al3++4OH- [Al(OH)4]-6.铝分别与足量的稀盐酸和氢氧化钠溶液反应,当两个反应放出的气体在相同状况下体积相等时,反应中消耗的HCl和NaOH的物质的量之比为( )A.3∶1B.2∶1C.1∶1D.1∶37.[2014北京理综,7,6分]下列金属中,表面自然形成的氧化层能保护内层金属不被空气氧化的是( )A.KB.NaC.FeD.Al8.向MgSO4、(NH4)2SO4和Al2(SO4)3的混合溶液中,逐滴加入NaOH溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题06 数列一.基础题组1.【2005天津,文14】在数列{}n a 中,121,2a a ==,且21(1)nn n a a +-=+-*()n N ∈,则10S = . 【答案】2600()()()210010011505021005050260022a a S a a ++=+=+=本题答案填写:26002.【2006天津,文2】设{}n a 是等差数列,13569,9.a a a a ++==则这个数列的前6项和等于( )(A )12 (B )24 (C )36 (D )48【答案】B 【解析】{}n a 是等差数列,13533639,3,9.a a a a a a ++==== ∴ 12,1d a ==-,则这个数列的前6项和等于166()242a a +=,选B.3.【2007天津,文8】设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( ) A.2B.4C.6D.8【答案】B【解析】解:因为a k 是a 1与a 2k 的等比中项, 则a k 2=a 1a 2k ,9d+(k-1)d]2=9d•9d+(2k-1)d], 又d≠0,则k 2-2k-8=0,k=4或k=-2(舍去). 故选B .4.【2008天津,文4】若等差数列{}n a 的前5项和525S =,且23a =,则7a =(A )12 (B )13 (C )14 (D )15 【答案】B 【解析】1524545()5()722a a a a S a ++==⇒=,所以4272255132a a a a d a -=+=+⋅=,选B .5.【2010天津,文15】设{a n }是等比数列,公比qS n 为{a n }的前n 项和.记T n =2117n nn S S a +-,n ∈N *.设Tn 0为数列{T n }的最大项,则n 0=__________.【答案】4 【解析】解析:an +1,Snn ,2n n2n n17].≥8,当且仅当n =4时等号成立, 又10,∴当n =4时,Tn 取最大值,故n0=4.6.【2011天津,文11】已知{}n a 是等差数列,n S 为其前n 项和,n N *∈.若316a =,2020S =,则10S 的值为 . 【答案】1107.【2014天津,文5】设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项和,若,,,421S S S 成等比数列,则1a =( )A.2B.-2C.21 D .12- 【答案】D 【解析】试题分析:因为124S S S ,,成等比数列,所以2214S S S =,即211111(21)(4.2a a a a -==--6),选D.考点:等比数列8. 【2015高考天津,文18】(本小题满分13分)已知{}n a 是各项均为正数的等比数列,{}n b 是等差数列,且112331,2a b b b a ==+=,5237a b -=. (I )求{}n a 和{}n b 的通项公式;(II )设*,n n n c a b n N =?,求数列{}n c 的前n 项和.【答案】(I )12,n n a n -*=∈N ,21,n b n n *=-∈N ;(II )()2323nn S n =-+【解析】21,n b n n *=-∈N .(II )由(I )有()1212n n c n -=- ,设{}n c 的前n 项和为n S ,则()0121123252212,n n S n -=⨯+⨯+⨯++-⨯()1232123252212,n n S n =⨯+⨯+⨯++-⨯两式相减得()()2312222122323,n n n n S n n -=++++--⨯=--⨯-所以()2323nn S n =-+ .【考点定位】本题主要考查等差、等比数列的通项公式及错位相减法求和,考查基本运算能力. 二.能力题组1.【2005天津,文18】若公比为的等比数列{}n a 的首项11a =且满足13(3,4,)2n n n a a a n --+==. (I )求的值;(II )求数列{}n na 的前项和n S .【答案】(I )c =1或21-=c (II )]223)1(4[911-+--=n n n n S 【解析】 (Ⅰ)解:由题设,当3n ≥时,2212,n n n n a c a a ca ---==,221212---+=+=n n n n a ca a a ,由题设条件可得20n a -≠,因此212cc +=,即2210c c --= 解得c =1或21-=c式两边同乘21-,得 n n n n n S )21()21)(1()21(2212112-+--++-+-=-- ②①式减去②式,得n nn n n n n S )21(211)21(1)21()21()21()21(1)211(12--+--=---++-+-+=+- 所以]223)1(4[911-+--=n n n n S (n ∈N*)2.【2007天津,文20】在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N .(Ⅰ)证明数列{}n a n -是等比数列 (Ⅱ)求数列{}n a 的前项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立.【答案】(Ⅰ)详见解析;(Ⅱ)41(1)32n n n n S -+=+;(Ⅲ)详见解析(Ⅲ)证明:对任意的n ∈*N ,1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立. 3.【2008天津,文20】已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(20n q ≠≥,.(Ⅰ)设1()n n n b a a n +=-∈*N ,证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求的值,并证明:对任意的n ∈*N ,n a 是3n a +与6n a +的等差中项.【答案】(I )详见解析,(II )11111 1.n n q q a q n q -⎧-+≠⎪=-⎨⎪=⎩,,,(Ⅲ)详见解析 【解析】(Ⅰ)证明:由题设11(1)(2)n n n a q a qa n +-=+-≥,得11()n n n n a a q a a +--=-,即12n n b qb n -=,≥.又1211b a a =-=,0q ≠,所以{}n b 是首项为1,公比为的等比数列. (Ⅱ)解:由(Ⅰ),211a a -=, 32a a q -=,……21(2)n n n a a q n ---=≥.3611q q -=-, ①整理得323()20q q +-=,解得32q =-或31q =(舍去).于是q =另一方面,21133(1)11n n n n n q q q a a q q q +--+--==---,15166(1)11n n n n n q q q a a q q q-+-+--==---.由①可得36n n n n a a a a n ++-=-∈*N ,.所以对任意的n ∈*N ,n a 是3n a +与6n a +的等差中项.4.【2009天津,文20】已知等差数列{a n }的公差d 不为0,设S n =a 1+a 2q+…+a n q n -1,T n =a 1-a 2q+…+(-1)n -1a n qn -1,q≠0,n∈N *.(1)若q =1,a 1=1,S 3=15,求数列{a n }的通项公式; (2)若a 1=d 且S 1,S 2,S 3成等比数列,求q 的值;(3)若q≠±1,证明(1-q)S 2n -(1+q)T 2n 221)1(2qq dq n --=,n∈N *. 本小题主要考查等差数列的通项公式、等比数列的通项公式与前n 项和公式等基础知识,考查运算能力和推理论证能力.满分12分.【答案】(Ⅰ)a n =4n -3;(Ⅱ)q =-2;(Ⅲ)详见解析S 2n =a 1+a 2q+a 3q 2+a 4q 3+…+a 2n q2n -1,①T 2n =a 1-a 2q+a 3q 2-a 4q 3+…-a 2n q 2n -1.②①式减去②式,得 S 2n -T 2n =2(a 2q+a 4q 3+…+a 2n q 2n -1).①式加上②式,得S 2n +T 2n =2(a 1+a 3q 2+…+a 2n -1q 上标2n -2).③ ③式两边同乘q,得q(S 2n +T 2n )=2(a 1q+a 3q 3+…+a 2n -1q2n -1).所以,(1-q)S 2n -(1+q)T 2n =(S 2n -T 2n )-q(S 2n +T 2n ) =2d(q+q 3+…+q2n -1)221)1(2qq dq n --=,n∈N *.5.【2012天津,文18】已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n >2). 【答案】(Ⅰ)an =3n -1,bn =2n ;(Ⅱ)详见解析-Tn =2×2+3×22+3×23+…+3×2n-(3n -1)×2n+1=6(12)12n ⨯---(3n -1)×2n+1-2=-(3n -4)×2n+1-8,即Tn -8=(3n -4)×2n+1,而当n >2时,an -1bn +1=(3n -4)×2n+1.所以,Tn -8=an -1bn +1,n∈N*,n >2. 三.拔高题组1.【2006天津,文21】已知数列{}n x 满足121x x ==并且11,(n n n n x xx x λλ+-=为非零参数,2,3,4,...).n = (I )若1x 、3x 、5x 成等比数列,求参数λ的值;(II )设01λ<<,常数*k N ∈且3,k ≥证明*1212...().1kk k n k kn x x x n N x x x λλ++++++<∈- 【答案】(I ) 1.λ=±(II )详见解析1112....n k n k n k n n n k n k nx x x xx x x x +++-++-+-=231(3)2.....n k n k n k k kn λλλλ+-+---+=因此,对任意*,n N ∈1212...k k n k n x x xx x x ++++++ (3)(3)(3)2222...k k k k k k k k kn λλλ---+++=+++(3)22(3)2(...)(1).1k k k k nk k k k nk kλλλλλλλλ--=+++-=-当3k ≥且01λ<<时,(3)201,011,k k nk λλ-<≤<-<所以*1212...().1k k k n k k n x x x n N x x x λλ++++++<∈-2.【2010天津,文22】在数列{a n }中,a 1=0,且对任意k ∈N *,a 2k -1,a 2k ,a 2k +1成等差数列,其公差为2k .(1)证明a 4,a 5,a 6成等比数列; (2)求数列{a n }的通项公式;(3)记T n =222323a a ++ (2)n a ,证明32<2n -T n ≤2(n ≥2).【答案】(1) 详见解析,(2) an =22n +114n --(),(3) 详见解析由a1=0,得a2k +1=2k(k +1),从而a2k =a2k +1-2k =2k2.所以数列{an}的通项公式为an =22122n n n n ⎧-⎪⎪⎨⎪⎪⎩,奇,,偶,为数为数或写为an =22n +114n--(),n∈N*.(3)证明:由(2)可知a2k +1=2k(k +1),a2k =2k2. 以下分两种情况进行讨论:①当n 为偶数时,设n =2m(m∈N*).若m =1,则2n -22nk kk a =∑=2.若m≥2,则22nk kk a =∑=22111221(2)(21)mm k k k k k k a a -==-++∑∑=221211444122(1)mm k k k k k k k k -==++++∑∑=2m +211441[]2(1)2(1)m k k k k k k k -=++++∑ =2m +11111[2()]2(1)m k k k -=+-+∑ =2m +2(m -1)+12 (1-1m)=2n -32-1n . 所以2n -22nk kk a =∑=32+1n ,从而32<2n -22nk kk a =∑<2,n =4,6,8,….有32<2n -Tn≤2. 3.【2011天津,文20】已知数列{}n a 与{}n b 满足11(2)1nn n n n b a b a +++=-+,13(1),2n n b n N -+-=∈*,且12a =. (Ⅰ)求23,a a 的值;(Ⅱ)设2121n n n c a a +-=-,n N ∈*,证明{}n c 是等比数列; (Ⅲ)设n S 为{}n a 的前n 项和,证明21212122121()3n n n n S S S S n n N a a a a *--++++≤-∈. 【答案】(1) 233,8,2a a =-=(2)详见解析,(3)详见解析 【解析】(Ⅰ)由1*3(1),2n n b n N-+-=∈,可得2,1n n b n ⎧=⎨⎩是奇数,是偶数 ,11(2)1n n n n n b a b a +++=-+,当1n =时,1221a a +=-,由12a =得232a =-; 当2n =时,2325a a +=可得38a =.由①得212122221k k k a --+=-+,所以21*212,2k k a k N -=-∈ , 因此21234212()().. (2)k kk kS a a a a a a-=++++++=,于是212122122k k k k k S S a ---=-=+ , 故21212212221212121212211222144(41)22k k k kk k k k k kk k kk kS S k k k a a ------+-++=+=-=-----, 所以*21212122121......()3n n n n S S S S n n N a a a a --++++≤-∈ 【命题意图】本小题主要考查等比数列的定义、求和公式等基础知识,考查运算能力、推理论证能力、综合分析能力和解决问题的能力及分类讨论思想方法. 4.【2013天津,文19】已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明1136n n S S +≤(n ∈N *). 【答案】(Ⅰ)11313(1)222n n n n a --⎛⎫=⨯-=-⋅⎪⎝⎭;(Ⅱ)详见解析11112112nn n n S S ⎛⎫+=--+ ⎪⎝⎭⎛⎫-- ⎪⎝⎭1122212.221n n n n n n +⎧+⎪()⎪=⎨⎪+⎪(-)⎩,为奇数,,为偶数 当n 为奇数时,1n nS S +随n 的增大而减小,所以111113=6n n S S S S +≤+. 当n 为偶数时,1n nS S +随n 的增大而减小,所以221125=12n n S S S S +≤+. 故对于n∈N*,有1136n n S S +≤. 5.【2017天津,文18】(本小题满分13分)已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(Ⅰ)32n a n =-,2nn b =;(Ⅱ)2(34)216n n +-+.【解析】试题分析:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,等比数列的公比为,建立方程(组)即可求解;(Ⅱ)先求2{}n a 的通项公式,可得2{}n n a b 的通项公式,再根据错位相减法即可求其前n 项和.试题解析:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为.由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①;由11411S b =,可得1516a d +=②,122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前项和为2(34)216n n +-+. 【考点】等差数列、等比数列、错位相减法、数列求和【名师点睛】利用等差数列和等比数列通项公式及前项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 6.【2014天津,文20】已知和均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}n i M x q x q x x x x A i n n ,2,1,,121=∈++==-,(1)当3,2==n q 时,用列举法表示集合A ;(2)设,,,,121121--++=+++=∈n n n n q b q b b t q a q a a s A t s 其中,,2,1,,n i M b a i i =∈证明:若,n n b a <则t s <.【答案】(1) {}0,1,2,3,4,5,6,7A =, (2) 详见解析. 【解析】试题分析:(1)本题实质是具体理解新定义,当3,2==n q 时,{}0,1M =,{}12324,,1,2,3i A x x x x x x M i ==++∈=,再分别对123(,,)x x x 取(0,0,0),(0,0,1),(0,1,0),(1,0,0),(1,0,1),(1,1,0),(0,1,1),(1,1,1), 得到{}0,1,2,3,4,5,6,7A = (2)证明大小不等式,一般利用作差法. 21112211()()()()n n n n n n s t a b a b q a b q a b q -----=-+-++-+-,根据新定义:1,1,(1,2,,1)i i n n a b q a b i n -≤--≤-=-,所以1211(1)(1)(1)(1)(1)101n n n n q q s t q q q q qqq q-------≤-+-++--=-=-<-,即t s <.考点:新定义,作差证明不等式,等比数列求和 7.【2016高考天津文数】(本小题满分13分)已知{}n a 是等比数列,前n 项和为()n S n *∈N ,且6123112,63S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,n n b *∈N 是2log n a 和21log n a +的等差中项,求数列(){}21nnb -的前2n 项和.【答案】(Ⅰ)12-=n n a ;(Ⅱ)22n . 【解析】试题分析:(Ⅰ)求等比数列通项,一般利用待定系数法:先由2111211q a q a a =-,解得1,2-==q q ,分别代入616(1)631a q S q-==-,得1-≠q ,11=a ;(Ⅱ)先根据等差中项得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n ,再利用分组求和法求和:2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-.设数列})1{(2n n b -的前项和为n T ,则2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-.【考点】等差数列、等比数列及其前项和公式 【名师点睛】分组转化法求和的常见类型:(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为,,n n nb n ac n ⎧⎪=⎨⎪⎩为奇数,为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.。