2原子物理第二章-沈光先
原子物理 第二章

第二章 原子的能级和辐射一、学习要点:1.氢原子光谱:线状谱、可分为若干线系,常见五个线系(记住名称、顺序)。
广义巴尔末公式)11(~22nm R -=ν、光谱项()2nR n T =、并合原则:)()(~n T m T -=ν 2.玻尔氢原子理论:(1)玻尔三条基本假设的实验基础和内容(记熟)实验基础:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧氢原子光谱爱因斯坦光量子光电效应普朗克能量子黑体辐射-- 三条假设:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧=-=ππνϕϕ2h n P 2h P 3E E h E E 2......E E 1j i ij j i 21的整数倍,即等于—电子的角动量—能轨道下列条件的轨道才是可,只有满足电子在绕原子核运动中、角动量量子化条件:系:射,其频率满足如下关子形式发射单色辐的另一定态时,才以光具有较低能量的定态跃迁到子从具有较高能量、频率条件:只有当原会发生辐射。
电子虽有加速度,也不,相对应,在这些定态下、这些定态各与一定能量定状态,存在一系列不连续的稳、定态假设:原子只能(2)圆轨道理论(会推导):氢原子中假设原子核静止,电子绕核作匀速率圆周运动02200202220A 529,04,Z Z 4≈===e m a n a n e m r e e n πεπε;13714,Z Z 40202≈===c e n c n c e n πεααπευ; ()n hcT n hc R n e m E e n -=-=-=∞22224220Z 2Z )41( πε,n =1.2.3……(3)实验验证:(a )氢原子五个线系的形成)11(Z ~,)4(222232042n m R c h e m R e -==∞∞νπεπ (会推导)非量子化轨道跃迁 )(212n E E mv h -+=∞ν (b )夫-赫实验:装置、.结果及分析;原子的电离电势、激发电势3.类氢离子(+++Li ,He ,正电子偶素.-μ原子等)(1) He +光谱:毕克林系的发现、波数公式、与氢原子巴耳末系的异同等(2)理论处理(会推导):计及原子核的运动,电子和原子核绕共同质心作匀速率圆周运动ee m M m M +⋅=μ, 正负电荷中心之距Z e n r n 22204μπε =. 能量2242202Z )41(n e En μπε-=,里德伯常数变化M m R R e A +=∞11重氢(氘)的发现4.椭圆轨道理论索末菲量子化条件,q q pdq n h n =⎰ 为整数 a n n b n em a n e m E n p e n ϕϕϕπεπε==-==,Z 4,2Z )41(,2220224220 ,n n n ,,3,2,1;,3,2,1 ==ϕn 一定,n E 一定,长半轴一定,有n 个短半轴,有n 个椭圆轨道(状态),即nE 为n 度简并。
《原子物理学》(褚圣麟)第二章 原子的能级和辐射要点

第2章 原子的能级和辐射
一、 黑体辐射 普朗克能量子
第2章 原子的能级和辐射 二、光电效应 爱因斯坦光量子 (1)光电效应的实验规律
早在1887年,德国物理学家赫兹第一个观察到用紫光照射的尖端放电特别容 易发生,这实际上是光电效应导致的。由于当时还没有电子的概念,所以对其机 制不是很清楚。直到1897年汤姆逊发现了电子。人们才注意到一定频率的光照 射在金属表面上时,有大量电子从表面逸出,称之为光电效应。
第2章 原子的能级和辐射
经过近二个月的努力,普朗克在同年12月14日的一次德国物理学会议上提出: 对一定频率的电磁波,物体只能以 h为单位吸收或发射它,即吸收或发射电磁 波只能以“量子”方式进行,每一份能量 叫一能量子。
电子辐射的能量
E nhv (n 1,2,3)
这一概念严重偏离了经典物理;因此,这一假设提出后的5年时间内,没有 引起人的注意,并且在这以后的十多年时间里,普朗克很后悔当时的提法,在 很多场合他还极力的掩饰这种不连续性是“假设量子论”。
难点 • 量子理论的建立
• 空间量子化
第2章 原子的能级和辐射
2.1 玻尔理论的实验基础
1. 黑体辐射 普朗克能量子 2. 光电效应 爱因斯坦光量子 3. 氢原子光谱
第2章 原子的能级和辐射
卢瑟福模型把原子看成由带正电的原子核和围绕核运动的一些电子组成, 这个模型成功地解释了α粒子散射实验中粒子的大角度散射现象,可是当我们 准备进入原子内部作进一步的考察时,却发现已经建立的物理规律无法解释原 子的稳定性,同一性和再生性。
原子物理学第二章

b.原子中的电子和原子核绕二者的质心运动 在这种情况下讨论问题,利用玻尔理论
m r1 r mM
r1 r2 r
Mr1 mr2
M r2 r mM
此时二粒子所受向心力是 Ze 2 M 2 r1 m 2 r2 4 0 r 2 Mm ze2 rw2 有 令 mM 4 0 r 2 h 由玻尔理论:角动量量子化: Mvr1 mvr2 n 2 h 2 可得 r w n 2 4 0 n 2 h 2 可以得到:r= 4 2 e2 z
结果:
当U KG =4.68,4.9,5.29,5.78, I 6.73V时, A下降。
1
分析:
4.9V是已测得的第一激发电势, 6.37V有相应的光谱线被观察到,波 长是1849埃,其余的相当于原子被激 发到一些状态,但是很难发生自发跃 迁而发出辐射,所以光谱中没有相应 谱线,这些状态称为亚稳态。
中)。也就是说原子的角动量的取向是量子化的,
称为原子的空间取向量子化
一. 电子轨道运动的磁矩
电子的轨道运动相当于一个闭合电路中的电流, 故它将产生一定的磁矩
iA
e i t A
2 0
1 2 1 2 2 1 r d r dt mr 2 dt 2 2 0 2m t
n nr
值,也就是有
n=
n
, nr =0 对应与圆轨道。
2. 能量与简并 a
1 2 2 2 1 ze2 E (r r ) 2 4 0 r
2 2 me4 z 2 2 2 2 (4 0 ) n h
b. E只与n有关,对于同一个n有n个可能的轨道, n个轨道对应于n个运动状态,而n个轨道的能量相 同 。也就是n个运动状态的能量相同——称这种 情况为n维简并。
原子物理课件第二章_课件

黑体辐射 光电效应 光谱
第二天鲁本斯就把这一喜讯告诉了普朗克, 从而使普朗克决心:“不惜一切代价,找到 一个理论解释。”
back
next 目录 结束
第二章:原子的量子态:玻尔模型
第一节:背景知识
经过近二个月的努力,普朗克在同年12月14 日的一次德国物理学会议上提出:
电子辐射能量的假设:E=nhv(n=1,2,3,……)?
玻尔假设
电子的运 动
氢光谱的 解释
2.频率条件:电子并不永远处于一个轨道上, 当它吸收或放出能量时,会在不同轨道间发 生跃迁,跃迁前后的能量差满足频率法则:
back
next 目录 结束
第二章:原子的量子态:玻尔模型
第二节:玻尔模型
3.角动量量子化假设:电子处于上述定态时, 角动量L=mvr是量子化的.
1916年,美国物理学家密立根通过实验, 证实了(4)式的正确性,并精确测定了普朗克
常数h;但他还是认为:"尽管爱因斯坦的公
式是成功的,但其物理理论是完全站不住脚."
黑体辐射 光电效应 光谱
不仅如此,1913年包括普朗克在内的德国最 著名的物理学家也都认为,爱因斯坦的光量 子理论是他在思辩中"迷失了方向".
1.对一定金属有一个临界频率v0 ,当ν<ν0
时,无论光强多大,无电子产生;
黑体辐射 光电效应 光谱
back
next 目录 结束
第二章:原子的量子态:玻尔模型
第一节:背景知识
2.当ν>ν0 时,无论光多弱,立即有光电子
产生;
3.光电子能量只与照射光的频率有关。光强 只影响光电子的数目。
黑体辐射 光电效应 光谱
不过当玻尔理论应用于复杂一些的原子 时,就与实验事实产生了较大的出入。这说 明玻尔理论还很粗略,直到1925年量子力学 建立以后,人们才建立了较为完善的原子结 构理论。
原子物理学第2章

目
CONTENCT
录
• 原子结构 • 原子光谱 • 原子力与分子结构 • 原子核物理 • 放射性与核辐射
01
原子结构
原子核与电子
原子核位于原子的中心,由质子和中子组成,具有 正电荷。
电子围绕原子核运动,具有负电荷,与原子核的电 荷数相等但电性相反。
原子核的质量约占整个原子质量的99.96%,但体积仅 占原子体积的极小部分。
衰变过程中,原子核会释放出放射性射线,如α 射线、β射线和γ射线等。
3
衰变过程中,原子核的质子数和中子数会发生变 化,从而转变为另一种元素。
原子核的裂变与聚变
原子核的裂变是指一个重原子核分裂成两个或多 个较轻的原子核,同时释放出大量的能量。
聚变是指轻元素原子核融合成重元素原子核线是原子能级跃 迁产生的谱线,具有特 定的波长和强度,可用 于光谱分析和原子识别 。
共振线是当激发能级与 辐射能级接近时,由于 共振效应而产生的强辐 射线。
带光谱
95% 85% 75% 50% 45%
0 10 20 30 40 5
带光谱是由多个线光谱的叠加而成的连续光谱带,其 特征是具有明显的边缘和中心波长。
金属键
总结词
金属键是一种化学键,存在于金属原子之间,通过自由电子的相互作用而形成。
详细描述
金属键的特点是具有方向性和饱和性,对金属材料的机械性质和导电性等物理 性质有重要影响。金属键的形成是由于金属原子失去部分外层电子后形成的正 离子与其它金属原子的外层电子之间的相互作用。
04
原子核物理
原子核的结构
裂变过程中,中子起到关键作用,因为它们可以 轰击重原子核并引发裂变反应。
太阳和其他恒星通过聚变反应释放出巨大的能量 。
原子核物理课件第二章(杨福家版)

第2章 核力与核结构
• (3)幻数核的最后一个核子的结合能比幻数大1的最后一 个核子的结合能大得多。 • 如16O的最后一个中子的结合能为15.7MeV,而17O的最后 一个中子的结合能为4.2MeV,可见幻数核结合紧密。 • (4)中子数为50,82和126的原子核俘获中子的几率比 邻近的核素要小得多,说明幻数核不易再结合一个中子。 • (5)幻数核的第一激发态能量约为2MeV,比邻近核素 要大得多。
第2章 核力与核结构
• 2.幻数存在的实验根据 • (1)核素丰度 • 核素丰度是指核素在自然界中的含量,和邻近核 素相比,丰度的大小是核素稳定的一种标志。 • 偶数Z(Z>32)的稳定核素中,核素丰度一般都 不大可能超过50%,但是 38 Sr 的丰度为82.56%,
138 56 140 Ba 的丰度为71.66%, 58 Ce 的丰度为88.48%,
第2章 核力与核结构
• 利用理论计算,对于奇质子核的单粒子壳模型的 电四极矩为:
2 j −1 2 Q=− 〈r 〉 2( j + 1)
• 奇中子也会产生电四极矩,因为中子影响质子的 分布。
第2章 核力与核结构
• 习题: • 1.根据壳层模型决定下列一些核的基态自旋和宇
3 称: 2
He Li
7 3
第2章 核力与核结构
• (1)若最后两个奇核子的自旋和轨道角动量都是 平行的,即 • • • jn=ln+1/2 jn=ln-1/2 jp=lp+1/2 jp=lp-1/2
• 或者反平行,即 • 核的自旋大多数情况下是: I=jn+jp
第2章 核力与核结构
• (2)若最后两个核子中的一个核子自旋与轨道角 动量是平行的,另一个核子的自旋和轨道角动量 是反平行的,则核的自旋 •
2原子物理第二章-沈光先

第二章 原子的能级和辐射 二、新的规律-量子化 氢原子光谱的经验公式: 两边同乘 hc :
RH RH v 2 2 m n
物 理 含 义
hcRH hcRH hcv 2 2 m n
左边:为每次发射光子的能量;
右边:也必为能量,应该是原子在辐射 前后的能量之差
h E2 E1
Rhc En 2 n
减少的能量以光子的形式辐射,
1 Rhc 2 h meV 2 2 n
频率连续分布,在线系限的短波方向。
上页 下页 返回 结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
1 1 v RH 2 2 n m
并合原则:
v T (m) T (n)
每一谱线的波数差都可表达为二光谱项之差
令:
RH T ( m) 2 m
RH T ( n) 2 n
光谱项
这些经验公式是否反映了原子内部结构的规律性??
上页 下页 返回 结束
第二章 原子的能级和辐射
原子的能量仍采用负值, 则原子能量的一般表示:
RH hc Em m2
上页 下页 返回 结束
第二章 原子的能级和辐射 玻尔基本假设(1913年) (1) 定态(stationary state)假设
电子只能在一系列分立的轨道上绕核运动,且不辐射电 磁波,能量稳定。
电子轨道和能量分立
1 Ze2 En 2 4π 0 rn
原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。
电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。
α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。
1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射 参阅: 翁斯灏等. Franck-Hertz实验中电子与汞原子的碰撞机理. 大学物理,1995,14(3):7-9 刘战存,张国英.弗兰克和赫兹对原子能级存在的实验研究. 物理,2003,32(1):47
带光谱
按光谱机制分类 发射光谱 吸收光谱
连续光源 样品 分光器 记录仪
I
返回 结束
光谱由物质内部运动决定,包含内部结构信息
上页 下页
第二章 原子的能级和辐射
§2.2 氢原子的光谱和原子光谱的一般情况
上页
下页
返回
结束
第二章 原子的能级和辐射
§2.2
氢原子的光谱和原子光谱的一般情况
一.氢原子光谱的线系 1.巴尔末系 光谱的研究从1853年Angstron 发现 到14条谱线, 开始。 1885年,已观察
上页
下页
返回
结束
第二章 原子的能级和辐射
三、关于氢原子的主要结果
1、量子化轨道半径
电子定态轨道角动量满足量子化条件:
圆周运动:
me rn vn n
2 vn Ze 2 me rn 4π 0 rn2
4 0 n n rn a0 2 me e Z Z
2 2
2
n 1, 2,...
2
3
4
1
上页
下页
返回
结束
第二章 原子的能级和辐射 (3) 角动量量子化假设 为保证定态假设中能量取不连续值,必须 rn取不连续值, 如何做到? 玻尔认为:符合经典力学的一切可能轨道中,只有那些角 动量为 的整数倍的轨道才能实际存在。
h L n n 2
n 1, 2,3....
一个硬性的规定常常是在建立一个新理论开始时所必须的。
第二章 原子的能级和辐射
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射 §2.1 §2.2 §2.3 §2.4 §2.5 §2 .6 §2 .7 教学内容 光谱—-研究原子结构的重要途径之一 氢原子的光谱和原子光谱的一般情况 玻尔的氢原子理论和关于原子的普遍规律 类氢粒子的光谱 夫兰克-赫兹实验与原子能级 量子化通则 电子的椭圆轨道与氢原子能量的相对论效应
! 原子稳定性困难:
电子加速运动辐射电磁波,能量不断损失,电子回转半径 不断减小,最后落入核内,原子塌缩。 原子寿命
~ 1010 s
! 光谱分立性困难:
电子绕核运动频率
v e 1 2πr 2π 4π 0 me r 3
电磁波频率等于电子回转频率,发射光谱为连续谱。
描述宏观物体运动规律的经典理论,不能随意地推广到原子 这样的微观客体上。必须另辟蹊径!
Balmer经验公式
n2 B 2 n 4
n 3, 4, 5,
1890年 Rydberg用波数改写:
41 1 v 2 2 RH B 2 n 1
1 1 2 n 3, 4, 5, 2 2 n
RH 1.0967758 107 m1 氢原子的Rydberg常数
上页
下页
返回
结束
第二章 原子的能级和辐射
里德堡原子
当多电子原子的外层一个电子被激发到量子数n很高 激发态上时,它看到内层电子屏蔽后的剩余电荷是 +e, 所以可以借助玻尔氢原子理论描述。这样的原子称里 德堡原子。这样的原子半径很大 ,对n=250, r250~3.3µ m 接近细菌大小;其寿命也很长 ,τ正比于
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射 1932年
Urey发现巴耳末系的双线结构,证实氘的存在, 获1934年Nobel化学奖
上页
下页
返回
结束
第二章 原子的能级和辐射
玻尔理论解释了原子光谱分立性和原子的稳定性
r
me v 2 Ze 2 r 4 0 r 2
2 2 1 Ze 1 Ze 原子体系的能量: E me v 2 2 4π 0 r 4π 0 2r
电子轨道运动的频率:
f
V e 2 r 2
上页
Z 4 0 me r 3
返回 结束
下页第二Biblioteka 原子的能级和辐射 2. 经典理论的困难
Rhc En 2 n
减少的能量以光子的形式辐射,
1 Rhc 2 h meV 2 2 n
频率连续分布,在线系限的短波方向。
上页 下页 返回 结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
The Nobel Prize in Physics 1922
N. Bohr (1885-1962)
for his services in the investigation of the structure of atoms and of the radiation emanating from them
1 1 v RH 2 2 n m
并合原则:
v T (m) T (n)
每一谱线的波数差都可表达为二光谱项之差
令:
RH T ( m) 2 m
RH T ( n) 2 n
光谱项
这些经验公式是否反映了原子内部结构的规律性??
上页 下页 返回 结束
第二章 原子的能级和辐射
1.光谱及其分类
光谱(spectrum)
电磁辐射频率成分和强度分布的关系图
光源 分光器(棱镜或光栅)
记录仪 (感光 底片或 光电记 录器)
光谱仪:将混合光按不同波长成分展开成光谱的仪器。
上页
下页
返回
结束
第二章 原子的能级和辐射 按光谱结构分类 连续光谱 线光谱 固体热辐射 原子发光 分子发光
I
样品光源 分光器 记录仪
原子的能量仍采用负值, 则原子能量的一般表示:
RH hc Em m2
上页 下页 返回 结束
第二章 原子的能级和辐射 玻尔基本假设(1913年) (1) 定态(stationary state)假设
电子只能在一系列分立的轨道上绕核运动,且不辐射电 磁波,能量稳定。
电子轨道和能量分立
1 Ze2 En 2 4π 0 rn
轨道量子化
4π 0 2 a0 0.529 Å 2 me e
氢原子玻尔半径
上页 下页 返回 结束
第二章 原子的能级和辐射 电子的轨道运动速度:
Vn
c
n
n 1, 2, 3,
精细结构常数:
1 4 0 c 137
e2
有用的组合常数:
c 197 nm eV
e2 4 0
n4.5 ;但能级间距十分小,如 电磁场、温度等的影响。
上页
,而室 En30 0.001 ev
温对应的能量为kBT(=300)=0.026eV ,所以易受外界
下页 返回 结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
返回
结束
第二章 原子的能级和辐射
上页
下页
1.44nm eV
me c 511keV
2
上页
下页
返回
结束
第二章 原子的能级和辐射
2、量子化能量
1 Ze 2 En 4 π 0 2rn me e 2(4 0 ) 2
4 2
Z2 Z2 2 13.59 2 n n
n 1,2,.....
能量的数值是分立的,能量量子化
(实验值)
下页 返回 结束
上页
第二章 原子的能级和辐射
电子轨道
赖曼系 巴耳末系 帕邢系
n 3
2
n
1
2
3
4
1
上页
下页
返回
结束
第二章 原子的能级和辐射
4、非量子化轨道跃迁——连续谱的形成
连续谱是由自由电子与氢离子结合形成氢原子时产生 的光谱。
俘获前:
1 meV02 2
俘获后:电子处于氢原子某一能量状态,
(Å )
H 6562.8 H 4861.3
n2 B 2 n 4
n 3, 4, 5,
B 3645.6 Å
---------Balmer经验公式
H 4340.5
H 4101.7 H 3970.1
n , B
上页 下页
线系限
返回 结束
第二章 原子的能级和辐射
巴尔末线系限:
RH v 2 2
上页 下页 返回 结束
第二章 原子的能级和辐射 2.H原子光谱的其它线系
(远紫外) 赖曼系:
1 1 v RH 2 2 n 2,3, 4 1 n