高中物理弹簧类问题试题及答案
高中物理力学弹簧问题专项训练

(A)重球下落压缩弹簧由a至d的过程中,
重球作减速运动
(B)重球下落至b处获得最大速度
(C)由a至d过程中重球克服弹簧弹力做的功
等于小球由c下落至d处时重力势能减少量
(D)重球在b位置处具有的动能等于小球由c下落
到b处减少的重力势能
答案B C
二、举例应用
2、如图所示,轻弹簧下端挂一质量为m的物体,另一端 悬挂于o点,现将物体拉到与悬点等高的位置并保持弹簧 处于原长状态,放手后物体向下运动.在运动到悬点o正下 方的过程中,(不计空气阻力)下列说法正确的是( )
(2)撤去F瞬间,木板A的加速度多大?
设木板A原先静止时弹簧的形变量为xo
kxo= mg
C
O
xo
xo
2xo
F
2xo
P
kxo= mg
2.用劲度系数为k的轻弹簧把质量均为m的木板A、B连接组成 如图所示的装置,静置于水平地面上,A板在上,B板在下。 现用一个竖直向下的力F将木板A缓慢压到P点,撤去F后,A 向上运动,在以后的运动过程中能使B板恰好离开地面.
BA x v3
从弹簧压缩量最大至恢复原长过程中
E p (2m)gx AB分离后,对A:
1 2
(2m)v32
BA l
AB开始压缩弹簧至弹簧恢复原长过程
由以上各式,得:
轻质弹簧的特点: 1.弹力为变力,其大小遵循胡克定律 2.弹力不可突变(弹簧两端连接物体时) 3.弹簧的伸长量与压缩量相等时,弹簧具有的弹性势能相等
a.物体和地球组成的系统机械能守恒
b.物体和地球组成的系统机械能在增加
c.物体、地球和弹簧三者组成的系统机械能守恒
高中物理-实验二:探究弹力和弹簧伸长的关系练习(含答案)

高中物理-实验二:探究弹力和弹簧伸长的关系练习(含答案)真题精做1.(福建卷)某同学做“探究弹力和弹簧伸长量的关系”的实验。
(1)图甲是不挂钩码时弹簧下端指针所指的标尺刻度,其示数为7.73 cm,图乙是在弹簧下端悬挂钩码后指针所指的标尺刻度,此时弹簧的伸长量Δl为______cm。
(2)本实验通过在弹簧下端悬挂钩码的方法来改变弹簧的弹力,关于此操作,下列选项中规范的做法是________。
(填选项前的字母)A.逐一增挂钩码,记下每增加一只钩码后指针所指的标尺刻度和对应的钩码总重B.随意增减钩码,记下增减钩码后指针所指的标尺刻度和对应的钩码总重(3)图丙是该同学描绘的弹簧的伸长量Δl与弹力F的关系图线,图线的AB段明显偏离直线OA,造成这种现象的主要原因是_____________________。
2.(四川卷)某同学在“探究弹力和弹簧伸长的关系”时,安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l1,如图1所示,图2是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l1=______cm。
在弹簧下端分别挂2个、3个、4个、5个相同钩码,静止时弹簧长度分别是l2、l3、l4、l5。
已知每个钩码质量是50 g,挂2个钩码时,弹簧弹力F2=______N(当地重力加速度g=9.8 m/s2)。
要得到弹簧伸长量x,还需要测量的是_______________。
作出F–x曲线,得到弹力与弹簧伸长量的关系。
模拟精做3.在“探究弹力和弹簧伸长的关系”时,某同学把两根弹簧按如图所示连接起来进行探究。
(1)某次测量如图所示,指针示数为_________cm。
(2)在弹性限度内,将50 g的钩码逐个挂在弹簧下端,得到指针A、B的示数L A和L B如表格所示。
用表中数据计算弹簧Ⅰ的劲度系数为_______N/m,弹簧Ⅱ的劲度系数为_______N/m(重力加速度g=10 m/s2,结果均保留三位有效数字)。
高中物理模块六动量与动量守恒定律考点2.2.1类碰撞模型之“滑块+弹簧+滑块”试题

考点2.2.1 类碰撞模型之“滑块+弹簧+滑块〞1.对于弹簧类问题,在作用过程中,系统合外力为零,满足动量守恒.2.整个过程涉及到弹性势能、动能、内能、重力势能转化,应用能量守恒定律解决此类问题.3.注意:弹簧压缩最短时,弹簧连接两物体速度相等,此时弹簧弹性势能最大.例4 两物块A 、B 用轻弹簧相连,质量均为2kg ,初始时弹簧处于原长,A 、B 两物块都以v =6m/s 速度在光滑水平地面上运动,质量为4kg 物块C 静止在前方,如图4所示.B 与C 碰撞后二者会粘在一起运动.那么在以后运动中:(1)当弹簧弹性势能最大时,物块A 速度为多大?(2)系统中弹性势能最大值是多少?【解析】(1)当A 、B 、C 三者速度相等时弹簧弹性势能最大.由A 、B 、C 三者组成系统动量守恒,(m A +m B )v =(m A +m B +m C )·v ABC ,解得v ABC =2+2×62+2+4m/s =3 m/s. (2)B 、C 碰撞时B 、C 组成系统动量守恒,设碰后瞬间B 、C 两者速度为v BC ,那么m B v =(m B +m C )v BC ,v BC =2×62+4m/s =2 m/s ,设物块A 、B 、C 速度一样时弹簧弹性势能最大为E p ,根据能量守恒E p =12(m B +m C )v 2BC +12m A v 2-12(m A +m B +m C )v 2ABC =12×(2+4)×22J +12×2×62J -12×(2+2+4)×32J =12J. 【答案】(1)3m/s (2)12J1. (多项选择)光滑水平地面上,A 、B 两物体质量都为m ,A 以速度v 向右运动,B 原来静止,左端有一轻弹簧,如下图,当A 撞上弹簧,弹簧被压缩最短时( AD )A .A 、B 系统总动量仍然为mvB .A 动量变为零C .B 动量到达最大值D .A 、B 速度相等2. 如下图,质量相等两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止滑块N 与挡板P 相连接,弹簧与挡板质量均不计;滑块M 以初速度v 0向右运动,它与档板P 碰撞〔不粘连〕后开场压缩弹簧,最后滑块N 以速度v 0向右运动。
高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高中物理机械振动练习题(含答案)

高中物理机械振动练习题(含答案)一、单选题1.如图,弹簧振子的平衡位置为O 点,在B 、C 两点之间做简谐运动。
B 、C 相距20cm 。
小球经过B 点时开始计时,经过0.5s 首次到达C 点。
下列说法正确的是( )A .小球振动的周期为2.0sB .小球振动的振幅为0.2mC .小球的位移一时间关系为0.1sin 2m 2x t ππ⎛⎫=+ ⎪⎝⎭D .5s 末小球位移为-0.1m2.简谐运动属于下列哪种运动( ) A .匀速直线运动 B .匀加速直线运动 C .匀变速运动D .非匀变速运动3.如图甲所示为以O 点为平衡位置,在A 、B 两点间运动的弹簧振子,图乙为这个弹簧振子的振动图像,由图可知下列说法中正确的是( )A .在t =0.2s 时,弹簧振子的加速度为正向最大B .在t =0.1s 与t =0.3s 两个时刻,弹簧振子的速度相同C .从t =0到t =0.2s 时间内,弹簧振子做加速度增大的减速运动D .在t =0.6s 时,弹簧振子有最小的位移4.一质点做简谐振动,其位移x 与时间t 的关系曲线如图。
由图可知( )A.质点振动的频率是4HzB.质点振动的振幅是4cmC.在t=3s时,质点的速度为最大D.在t=4s时,质点所受的回复力为零5.做简谐运动的物体,回复力和位移的关系图是()A.B.C.D.6.当一弹簧振子在竖直方向上做简谐运动时,下列说法中正确的是()A.振子在振动过程中,速度相同时,弹簧的长度一定相等B.振子从最低点向平衡位置运动过程中,弹簧弹力始终做负功C.振子在运动过程中的回复力由弹簧的弹力提供D.振子在运动过程中,系统的机械能守恒7.为使简谐运动单摆的周期变长,可采取以下哪种方法()A.振幅适当加大B.摆长适当加长C.摆球质量增大D.将单摆从上海移到北京8.做简谐振动的物体经过与平衡位置对称的两个位置时,可能相同物理量是()A.位移B.速度C.加速度D.回复力二、多选题9.弹簧振子在光滑水平面上做简谐振动,把小钢球从平衡位置向左拉一段距离,放手让其运动,从小钢球第一次通过平衡位置时开始计时,其振动图像如图所示,下列说法正确的是()A .在t 0时刻弹簧的形变量为4 cmB .钢球振动半个周期,回复力做功为零C .钢球振动一个周期,通过的路程等于10 cmD .钢球振动方程为y =5sin πt cm10.如图所示,摆长为1m 的单摆做小角度的摆动,振动过程的最大位移为6cm ,不计空气阻力,重力加速度22πm/s g =,从摆球向右通过最低点开始计时,则从 1.0s t =到2.0s t =的过程中( )A .摆球的重力势能先减小后增大B .摆球的动能先减小后增大C .摆球振动的回复力先减小后增大D .摆球的切向加速度先增大后减小11.弹簧振子做机械振动,若从平衡位置O 开始计时,经过0.3 s 时,振子第一次经过P 点,又经过了0.2 s ,振子第二次经过P 点,则到该振子第三次经过P 点可能还需要多长时间( ) A .13sB .1.0 sC .0.4 sD .1.4 s第II 卷(非选择题)请点击修改第II 卷的文字说明三、解答题12.如图甲所示,轻弹簧上端固定,下端系一质量为m =0.1kg 的小球,小球静止时弹簧伸长量为10cm。
高中物理弹力试题及答案

高中物理弹力试题及答案一、选择题1. 弹力产生的条件是()A. 物体发生形变B. 物体发生弹性形变C. 物体发生塑性形变D. 物体发生弹性形变且恢复原状答案:B2. 弹簧测力计的工作原理是()A. 弹簧的形变与所受力成正比B. 弹簧的形变与所受力成反比C. 弹簧的形变与所受力无关D. 弹簧的形变与所受力成非线性关系答案:A二、填空题3. 弹力的方向总是与物体的形变方向_________。
答案:相反4. 当弹簧受到拉力时,弹簧的弹力方向与拉力方向_________。
答案:相同三、计算题5. 一根弹簧原长为10cm,劲度系数为500N/m。
当弹簧受到20N的拉力时,弹簧的长度变为多少?答案:弹簧受到20N的拉力时,根据胡克定律F=kx,其中F为弹力,k 为劲度系数,x为弹簧伸长的长度。
解得x=F/k=20N/(500N/m)=0.04m=4cm。
因此,弹簧的长度变为10cm+4cm=14cm。
四、实验题6. 在实验中,如何验证弹簧的弹力与弹簧的形变量成正比?答案:将弹簧固定在一端,另一端挂上不同重量的物体,测量并记录弹簧的伸长量。
通过比较不同重量下弹簧的伸长量,可以发现弹簧的弹力与形变量成正比。
具体操作时,需要保持其他条件不变,只改变挂重物的重量,然后观察并记录弹簧的伸长量,通过数据分析得出结论。
五、简答题7. 简述弹力在生活中的应用。
答案:弹力在生活中的应用非常广泛,例如:弹簧门的自动关闭、弹簧秤的称重、汽车的减震器、蹦床的弹跳等。
这些应用都是基于物体发生弹性形变后产生的弹力,通过弹力的作用来实现特定的功能或效果。
高中物理弹簧问题

弹簧问题轻弹簧是不考虑弹簧本身质量与重力弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化几何关系,分析形变所对应弹力大小、方向,以此来分析计算物体运动状态可能变化。
性质1、轻弹簧在力作用下无论是平衡状态还是加速运动状态,各个局部受到力大小是一样。
其伸长量等于弹簧任意位置受到力与劲度系数比值。
性质2、两端与物体相连轻质弹簧上弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连轻弹簧上弹力能够在瞬间变化为零。
性质3、弹簧形变有拉伸与压缩两种情形,拉伸与压缩形变对应弹力方向相反。
分析弹力时,在未明确形变具体情况时,要考虑到弹力两个可能方向。
弹簧问题题目类型1、求弹簧弹力大小、形变量〔有无弹力或弹簧秤示数〕2、求与弹簧相连接物体瞬时加速度3、在弹力作用下物体运动情况分析〔往往涉及到多过程,判断v S a F变化〕4、有弹簧相关临界问题与极值问题除此之外,高中物理还包括与弹簧相关动量与能量以及简谐振动问题1、弹簧问题受力分析受力分析对象是弹簧连接物体,而不是弹簧本身找出弹簧系统初末状态,列出弹簧连接物体受力方程。
〔灵活运用整体法隔离法〕;通过弹簧形变量变化来确定物体位置。
〔高度,水平位置〕变化弹簧长度改变,取决于初末状态改变。
〔压缩——拉伸变化〕参考点,F=kx 指是相对于自然长度〔原长〕改变量,不一定是相对于之前状态长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零特点求解。
注:如果a一样,先整体后隔离。
隔离法求内力,优先对受力少物体进展隔离分析。
2、瞬时性问题题型:改变外部条件〔突然剪断绳子,撤去支撑物〕针对不同类型物体弹力特点〔突变还是不突变〕,对物体做受力分析3、动态过程分析三点分析法〔接触点,平衡点,最大形变点〕竖直型:水平型:明确有无推力,有无摩擦力。
(完整版)弹簧振动运动练习题

(完整版)弹簧振动运动练习题
以下是一些关于弹簧振动运动的练题,帮助你加深对该概念的理解。
练题一
一个质量为m的物体用一个弹簧悬挂,弹簧的弹性常数为k。
当物体达到振动平衡后,下面四种情况中哪一种是正确的?
A. 物体处于平衡位置,没有振动。
B. 物体向上运动,并维持振动状态。
C. 物体向下运动,并维持振动状态。
D. 物体以振动的方式进行上下运动。
练题二
一个振动系统的周期T与其弹性常数k以及质量m有关。
下面哪个数学式子描述了这种关系?
A. T = √(k/m)
B. T = k/m
C. T = m/k
D. T = k^2/m
练题三
一个弹簧振动系统具有频率f和周期T。
下列哪个数学式子描述了这种关系?
A. f = 1/T
B. T = 1/f
C. f = T
D. f = 2π/T
练题四
一个质量为m的物体通过一个弹簧振动系统,其振动频率f与弹簧的劲度系数k有关。
下面哪个数学式子描述了这种关系?
A. f = √(k/m)
B. f = k/m
C. f = m/k
D. f = k^2/m
练题五
一个弹簧振动系统的势能和动能之和恒定。
下列哪一个数学式子描述了这种关系?
A. E_potential + E_kinetic = 0
B. E_potential = E_kinetic
C. E_potential - E_kinetic = 0
D. E_potential + E_kinetic = constant
希望以上练习题能够帮助你巩固对弹簧振动运动的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。
若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( D ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 42、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( AD )A.有可能N 处于拉伸状态而M 处于压缩状态B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O 点与管口A 的距离为2x 0,一质量为m 的小球从管口由静止下落,将弹簧压缩至最低点B ,压缩量为x 0,不计空气阻力,则( AD ) A.小球运动的最大速度大于20gxB.小球运动中最大动能等于2mgx 0C.弹簧的劲度系数为mg/x 0D.弹簧的最大弹性势能为3mgx 04、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( B )A 、加速度为0,作用力为mg 。
B 、加速度为mF2,作用力为2F mg +C 、速度为F/m ,作用力为mg+FD 、加速度为mF2,作用力为2mgF +5、如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( A ) A..g m L L 212)1(+B..g m m L L))(1(2112++m 2k 1m 1k 2C.g m L L 212 D.g m m L L)(2112+ 6、如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为L 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。
现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是( A )A .g m k L 1μ+B .g m m k L )(21++μC .g m kL 2μ+D .g m m m m k L )(2121++μ7、如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。
现缓慢向上提上面的木块,直到它刚离开上面弹簧。
在这过程中下面木块移动的距离为( C )A .11m g kB .21m g kC .12m g kD .22m g k8、如图所示,竖直放置在水平面上的轻质弹簧上端叠放着两个物块A 、B ,它们的质量均为2.0kg ,并处于静止状态。
某时刻突然将一个大小为10N 的竖直向上的拉力加在A 上,则此时刻A 对B 的压力大小为(g 取10m/s 2)( C ) A .25N B. 20N C. 15N D. 10N9、如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。
若小车以1m/s 2的加速度向右运动后,则(g=10m/s 2)( AC )A .物体A 相对小车仍然静止B .物体A 受到的摩擦力减小C .物体A 受到的摩擦力大小不变D .物体A 受到的弹簧拉力增大10、如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( C )A.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下11、如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( C )A.一直加速运动 B .匀加速运动C.先加速运动后减速运动 D .先减速运动后加速运动12、如图所示,质量为m 的小球用水平弹簧系住,并用倾角为30度的光滑木板斜托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度为(C ) A .O B .大小为g 332,方向竖直向下 C .大小为g 332,方向垂直于木板向下 D .大小为g 33,方向水平向左 13.木块A 、B 分别重20N 和30N ,它们与水平地面之间的动摩擦因数均为0.3。
开始时连接在A 、B 之间的轻弹簧已经被拉伸了3cm ,弹簧劲度系数为100N/m ,系统静止在水平地面上。
现用F =10N 的水平推力作用在木块A 上,如图所示。
力F 作用后(B )A .木块A 所受摩擦力大小是1NB .木块A 所受摩擦力大小是1NC .木块A 所受摩擦力大小是1ND .木块A 所受摩擦力大小是1N14.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态,若小车以1m/s 2的加速度向右运动后,则 ( AC )A .物体A 相对小车仍然静止B .物体A 受到的摩擦力减小C .物体A 受到的摩擦力大小不变D .物体A 受到的弹簧拉力增大15.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。
现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d ,( ABC ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0C .若M <m ,则d <d 0D .d = d 0,与M 、m 无关ABC 16. 如图a所示,水平面上质量相等的两木块A、B用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F拉动木块A,使木块A向上做匀加速直线运动,如图b所示.研究从力F刚作用在木块A的瞬间到木块B刚离开地面的瞬间这个过程,并且选定这个过程中木块A的起始位置为坐标原点,则下列图象中可以表示力F和木块A的位移x之间关系的是( A )17.如图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k的轻质弹簧相连的物块A、B,质量均为m,开始两物块均处于静止状态。
现下压A再静止释放使A开始运动,当物块B刚要离开挡板时,A的加速度的大小和方向为( B )A.0 B.2g sinθC.2g sinθ,方向沿斜面向上 D.g sinθ18.如图甲所示,一轻弹簧的两端分别与质量为m1和m2的两物块相连接,并且静止在光滑的水平面上.现使m1瞬时获得水平向右的速度3m/s,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( BC ) A.在t1、t3时刻两物块达到共同速度1m/s且弹簧都是处于压缩状态 B.从t3到t4时刻弹簧由伸长状态逐渐恢复原长C.两物体的质量之比为m1∶m2 = 1∶2D.在t2时刻两物体的动量之比为P1∶P2 =1∶219.一小球自A点由静止自由下落到B点时与弹簧接触.到C点时弹簧被压缩到最短.若不计弹簧质量和空气阻力,在小球由A-B—C程中( AD )A.小球和弹簧总机械能守恒B.小球的重力势能随时间均匀减少C.小球在B点时动能最大D.到C点时小球重力势能的减少量等于弹簧弹性势能的增加量-v甲A B C Db20.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。
现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( AC )A.小球P 的速度是先增大后减小B.小球P 和弹簧的机械能守恒,且P 速度最大时所受弹力与库仑力的合力最大C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变D.小球P 合力的冲量为零21.如图所示,质量都是m 的物体A 、B 用轻质弹簧相连,静置于水平地面上,此时弹簧压缩了Δl .如果再给A 一个竖直向下的力,使弹簧再压缩Δl ,形变始终在弹性限度内,稳定后,突然撤去竖直向下的力,在A 物体向上运动的过程中,下列说法中:①B 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;②B 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大;③A 物体受到的弹簧的弹力大小等于mg 时,A 物体的速度最大;④A 物体受到的弹簧的弹力大小等于mg 时,A 体的加速度最大。
其中正确的是 ( A )A.只有①③正确B.只有①④正确C.只有②③正确D.只有②④正确22.质量相等的两木块A 、B 用一轻弹簧栓接,静置于水平地面上,如图(a )所示。
现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图(b )所示。
从木块A 开始做匀加速直线运动到木块B 将要离开地面时的这一过程,下列说法正确的是(设此过程弹簧始终处于弹性限度内 )( A ) A .力F 一直增大B .弹簧的弹性势能一直减小C .木块A 的动能和重力势能之和先增大后减小D .两木块A 、B 和轻弹簧组成的系统的机械能先增大后减小 23.如图所示,两根轻弹簧AC 和BD ,它们的劲度系数分别为k 1和k 2,它们的C 、D 端分别固定在质量为m 的物体上,A 、B 端分别固定在支架和正下方地面上,当物体m 静止时,上方的弹簧处于原长;若将物体的质量增为原来的3倍,仍在弹簧的弹性限度内,当物体再次静止时,其相对第一次静止时位置下降了(C )BA .2121k k k k mg+ B .21212k k k k mg+C .2112k k mg+D .2113k k mg+24.如图所示,弹簧下面挂一质量为m 的物体,物体在竖直方向上作振幅为A 的简谐运动,当物体振动到最高点时,弹簧正好为原长。
则物体在振动过程中( AC )A .物体在最低点时的弹力大小应为2mgB .弹簧的弹性势能和物体动能总和不变C .弹簧的最大弹性势能等于2mgAD .物体的最大动能应等于mgA25、如图所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。