2018届高三理科数学一轮复习学案 直线与圆锥曲线
把握位置关系 凸显方程功能——高三第一轮复习课课例《直线与圆锥曲线的位置关系》

( 幻灯片展示 ) 问题 1 已知直线 f 过定点 M( ,) O2 , 抛物线 C y = 直 线 Z :2 , 与抛物线 C何 时有一 个公共 点?
两个公共点 ?没有公共点 ? 探究 1 用什么方法判断公共点个数问题 ?
师: 交点 在 Y轴 右侧 , 用判 别式行 吗?坐在 一起 仅
生,还有斜率不存在时 , : 直线 与抛物 线只有 一个公
共 点. 师: 补充的很好 , 还有吗?
生 还有方程 的二次项 系数为 0时 , : 也只有 一个公
共 点.
师: 这位同学既细 心又严谨 , 注意 到用 点 斜式设 直
求方程 的判 别式 , O时, 线与 圆相交 , = △> 直 a 0时 , 直
呢?请看变式.
2
借助方程这一 工具来 处理 直线 与圆锥 曲线 的位 置关 系
问题. 板 书课题 ) ( 2 讨论交点个数 凸显判别功能 师: 首先我们来看交点问题.
( 幻灯 片展示 ) 变式
过点( ,) 02 的直线 f 与椭 圆"- X
.r
+2 的两个交 点在 Y轴右侧 , y =1 求直线 Z 的斜率 的取值
线与 圆相切 , 0时 , △< 直线与圆时相离. 师: 很好 , 这位 同学所说 的是 代数法 , 其实质 是将交
线时, 要注意斜 率是否存 在. 同时当所得方 程 的二 次项 系数含参数时 , 注意讨论. 要 在几 位同学 的共 同努力下 ,
我们得到 了完整 的解答过程. 幻灯片展示过程 ) (
分布问题来 处理 , 很全面 , 滴水 不漏. 还有 没有哪位 同学 有不同的招数?
师: , 对 就是斜率 !注意 到 P是 弦 A B的 中点 , 中 求
高三数学一轮复习导学案65 直线与圆锥曲线(二)

学案直线与圆锥曲线(二)
一、课前准备:
【自主梳理】
.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦端点的坐标为(,),
(,),直线的斜率为,则:||或利用这个公式求弦长时,要注意结合韦达定理.当弦过圆锥曲线的焦点时,可用焦半径进行运算.
.中点弦问题:点差法
设(,),(,)是椭圆上不同的两点,
则:
对于双曲线、抛物线,可得类似的结论.
【自我检测】
1.过点(,)作直线与抛物线=只有一个公共点,这样的直线有条.
.已知双曲线:-,过点(,)作直线,使与有且只有一个公共点,则满足上述条件的直线共有条.
.已知对∈,直线--与椭圆恒有公共点,则实数的取值范围是.
.若双曲线-=的右支上一点(,)到直线的距离为,则的值为.
.已知双曲线-=,过(,)点作一直线交双曲线于、两点,并使为的中点,则直线的斜率为.
.双曲线-=的左焦点为,点为左支下半支上任意一点(异于顶点),则直线的斜率的变化范围是.
二、课堂活动:
【例】填空题:已知椭圆,
()则过点且被平分的弦所在直线的方程是;
()则斜率为的平行弦的中点轨迹方程是;
()过引椭圆的割线,则截得的弦的中点的轨迹方程是;
()椭圆上有两点为原点,且有直线、斜率满足,则线段
中点的轨迹方程是.
【例】已知椭圆的中心在坐标原点,焦点在坐标轴上,直线与椭圆交于和,且⊥,,求椭圆方程。
高三数学一轮复习优质学案:§9.9 第1课时 直线与圆锥曲线

1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0⇔直线与圆锥曲线________;②Δ=0⇔直线与圆锥曲线________;③Δ<0⇔直线与圆锥曲线________.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点,①若E为双曲线,则直线l与双曲线的渐近线的位置关系是________;②若E为抛物线,则直线l与抛物线的对称轴的位置关系是________.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则|AB|=______________________=1+1k2|y2-y1|.『知识拓展』过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上一点总有三条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线;过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线. 『思考辨析』判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线l 与抛物线y 2=2px 只有一个公共点,则l 与抛物线相切.( ) (2)直线y =kx (k ≠0)与双曲线x 2-y 2=1一定相交.( )(3)与双曲线的渐近线平行的直线与双曲线有且只有一个交点.( ) (4)直线与椭圆只有一个交点⇔直线与椭圆相切.( ) (5)过点(2,4)的直线与椭圆x 24+y 2=1只有一条切线.( )(6)满足“直线y =ax +2与双曲线x 2-y 2=4只有一个公共点”的a 的值有4个.( )1.(2016·黑龙江鹤岗一中月考)在同一平面直角坐标系中,方程a 2x 2+b 2y 2=1与ax +by 2=0(a >b >0)表示的曲线大致是( )2.(2017·青岛月考)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相交B .相切C .相离D .不确定3.若直线y =kx 与双曲线x 29-y 24=1相交,则k 的取值范围是( )A.⎝⎛⎭⎫0,23B.⎝⎛⎭⎫-23,0 C.⎝⎛⎭⎫-23,23 D.⎝⎛⎭⎫-∞,-23∪⎝⎛⎭⎫23,+∞ 4.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________.5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________.第1课时 直线与圆锥曲线题型一 直线与圆锥曲线的位置关系例1 (2016·烟台模拟)已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.思维升华 (1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程根的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)依据直线与圆锥曲线的交点个数求参数时,联立方程并消元,得到一元方程,此时注意观察方程的二次项系数是否为0,若为0,则方程为一次方程;若不为0,则将方程解的个数转化为判别式与0的大小关系求解.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.题型二 弦长问题例2 (2016·全国甲卷)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当|AM |=|AN |时,求△AMN 的面积. (2)当2|AM |=|AN |时,证明:3<k <2.思维升华 有关圆锥曲线弦长问题的求解方法涉及弦长的问题中, 应熟练的利用根与系数的关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数的关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求E 的离心率;(2)设点P (0,-1)满足|P A |=|PB |,求E 的方程.题型三 中点弦问题命题点1 利用中点弦确定直线或曲线方程例3 (1)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 (2)已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是________________.命题点2 由中点弦解决对称问题例4 (2015·浙江)如图,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).思维升华 处理中点弦问题常用的求解方法(1)点差法:即设出弦的两端点坐标后,代入圆锥曲线方程,并将两式相减,式中含有x 1+x 2,y 1+y 2,y 1-y 2x 1-x 2三个未知量,这样就直接联系了中点和直线的斜率,借用中点公式即可求得斜率.(2)根与系数的关系:即联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后,由根与系数的关系求解.(3)解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直直线AB 且A ,B 的中点在直线l 上的应用.设抛物线过定点A (-1,0),且以直线x =1为准线.(1)求抛物线顶点的轨迹C 的方程;(2)若直线l 与轨迹C 交于不同的两点M ,N ,且线段MN 恰被直线x =-12平分,设弦MN的垂直平分线的方程为y =kx +m ,试求m 的取值范围.提醒:完成作业 第九章 §9.9 第1课时答案精析基础知识 自主学习 知识梳理1.(1)①相交 ②相切 ③相离 (2)①平行 ②平行或重合 2.1+k 2|x 2-x 1| 思考辨析(1)× (2)× (3)√ (4)√ (5)× (6)√ 考点自测1.D 2.A 3.C 4.16 5.4 题型分类 深度剖析第1课时 直线与圆锥曲线例1 解 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.跟踪训练1 解 (1)由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t , 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p,因此H ⎝⎛⎭⎫2t2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点,理由如下: 直线MH 的方程为y -t =p2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其他公共点.例2 (1)解 设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4.又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2, 故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得|AN |=12k1+k 23k 2+4.由2|AM |=|AN |,得23+4k 2=k 3k 2+4,即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.跟踪训练2 解 (1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|, 得|AB |=43a ,l 的方程为y =x +c ,其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=-2a 2ca 2+b2,x 1x 2=a 2(c 2-b 2)a 2+b2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1| =2[(x 1+x 2)2-4x 1x 2],即43a =4ab 2a 2+b 2,故a2=2b 2, 所以E 的离心率e =ca=a 2-b 2a =22. (2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-2c 3,y 0=x 0+c =c 3.由|P A |=|PB |,得k PN =-1,即y 0+1x 0=-1,得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.例3 (1)D (2)x +2y -8=0解析 (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝⎛⎭⎫a 24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝⎛⎭⎫a24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32,选D. (2)设直线l 与椭圆相交于A (x 1,y 1),B (x 2,y 2),则x 2136+y 219=1,且x 2236+y 229=1, 两式相减得y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2).又x 1+x 2=8,y 1+y 2=4, 所以y 1-y 2x 1-x 2=-12,故直线l 的方程为y -2=-12(x -4),即x +2y -8=0.例4 解 (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62, 则|AB |=t 2+1·-2t 4+2t 2+32t 2+12. 且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以S (t )=12|AB |·d =12 -2⎝⎛⎭⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22. 跟踪训练3 解 (1)设抛物线顶点为P (x ,y ),则焦点F (2x -1,y ). 再根据抛物线的定义得|AF |=2,即(2x )2+y 2=4,所以轨迹C 的方程为x 2+y 24=1. (2)设弦MN 的中点为P ⎝⎛⎭⎫-12,y 0, M (x M ,y M ),N (x N ,y N ),则由点M ,N 为椭圆C 上的点,可知⎩⎪⎨⎪⎧4x 2M +y 2M =4,4x 2N +y 2N =4.两式相减,得 4(x M -x N )(x M +x N )+(y M -y N )(y M +y N )=0,将x M +x N =2×⎝⎛⎭⎫-12=-1,y M +y N =2y 0, y M -y N x M -x N=-1k 代入上式得k =-y 02.又点P ⎝⎛⎭⎫-12,y 0在弦MN 的垂直平分线上, 所以y 0=-12k +m . 所以m =y 0+12k =34y 0. 由点P (-12,y 0)在线段BB ′上 (B ′,B 为直线x =-12与椭圆的交点,如图所示), 所以y B ′<y 0<y B ,也即-3<y 0< 3. 所以-334<m <334,且m ≠0.。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
吉林省东北师范大学附属中学高三理科数学一轮复习教案直线与圆锥曲线位置关系

知识梳理:1.直线与圆锥曲线位置关系问题转化为研究方程组的实数解的问题或利用数形结合方法解决.几何角度:直线与圆锥曲线位置关系,从几何角度可分为三类:无公共点,.仅有一个公共点及有两个相异公共点.代数角度:直线与圆锥曲线位置关系的研究方法可通过代数方法即解方程组办法来研究,设直线l的方程为Ax+By+C=0,圆锥曲线C的方程为F(x,y)=0,联立方程组,消去y (或消去x)得到一个关于变量x的一元二次方程:ax2+bx+x=0(1)当0时,则有下表中的结论(方程的判别式2—4ac)交点的个数位置关系方程的判别式方程组的实数解的个数00相离21相切22相交(2)当0时,得到一个一元一次方程,则直线l与圆锥曲线相交,且只有一个交点,此时若C为双曲线,则直线与双曲线的渐近线平行,若C为抛物线,则直线l与抛物线的对称轴平行或重合,因此直线与抛物线,直线与双曲线有一个公共点是直线与抛物线,双曲线相切的必要条件,但不是充分条件.2.常用方法及公式(1).把研究直线与圆锥曲线的位置关系问题转化为研究方程组的实数解的问题;(2).当根不易求解时一般用韦达定理建立参数与根的关系,同时要注意用判别式检验根存在性;(3).能利用弦长公式解决直线与圆锥曲线相交所得弦长的有关问题.弦长公式:设A(x1,y1),B(,y2),则|AB|==(方程是x的方程); |AB|==(方程是y的方程),当直线斜率不存在时,可求出交点坐标,直线计算弦长,另外,过焦点的弦长还可根据定义求解.(4).处理弦的中点问题时,用点差法较为方便,能直接体现弦的斜率和中点的坐标之间的关系,但不易验证根的存在.二、题型探究探究一:直线与圆锥曲线的交点个数问题例1:直线y=kx+1与双曲线—的右支有两个不同的公共点,求实数k的取值范围.探究二:弦长问题例2(2014新课标II)设F为抛物线C:23y x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.33B.93C.6332D.94解析:直接利用公式结合图形,选D例3:已知直线y=kx+b与椭圆交于A,B两点,记的面积为S,(1)在k=0,的条件下,求S的最大值.(2).当|AB|=2,S=1时,求直线AB的方程.探究三:有关弦的中点问题例4:已知椭圆的左焦点为F,O为坐标原点.设过F的直线交椭圆于A,B两点,且线段AB的中点在直线x+y=0上,求直线AB方程及|AB|.三、 方法提升:1、直线与圆锥曲线的公共点问题,实际上是研究由它们的方程组成的方程组的实数解的问题,此时要注意分类讨论与数形结合的思想方法;2、关于直线与圆锥曲线的相交弦问题则结合韦达定理采用设而不求的办法; 3、合理引入参数表示点的坐标,减少变量。
高考数学一轮复习直线与圆锥曲线的位置关系课件理

4.椭圆 ax2+by2=1 与直线 y=1-x 交于 A、B 两点,若
过原点与线段 AB 中点的直线的倾斜角为 30°,则ab的值为( )
3
3
A. 4 B. 3
3 C. 2 D. 3
解析:设 AB 的中点为 M(x0,y0),A(x1,y1),B(x2, y2),
由点差法得yx11- -yx22=-abxy00=-1,
解析:方法 1:设以 Q 为中点的弦 AB 端点坐标为 A(x1, y1),B(x2,y2),则有 y12=8x1,y22=8x2,
两式相减,得(y1-y2)(y1+y2)=8(x1-x2). 又 x1+x2=8,y1+y2=2, 则 k=xy22--xy11=y1+8 y2=4,
∴所求直线 AB 的方程为 y-1=4(x-4), 即 4x-y-15=0. 方法 2:设弦 AB 所在的直线方程为 y=k(x-4)+1,
由yy= 2=k8xx-4+1, 消去 x 整理,得 ky2-8y-32k+8=0. 设 A(x1,y1),B(x2,y2),
由韦达定理得 y1+y2=8k. 又∵Q 是 AB 中点,∴y1+2 y2=1,
∴8k=2,∴k=4. ∴弦 AB 所在直线方程为 4x-y-15=0.
点评:有关弦中点轨迹、中点弦所在直线的方程,中点坐 标的问题,有时采用“平方差”法,可优化解题方法,简化运 算.
=2 5m+20.
(3)设线段 AB 中点坐标为(x,y),则 x=x1+2 x2=-2, y=y1+2 y2=2x1+2 x2=-4. ∴AB 中点坐标为(-2,-4).
题型三 圆锥曲线的中点弦问题 例 3 过点 Q(4,1)作抛物线 y2=8x 的弦 AB,恰被 Q 所平分, 求 AB 所在直线的方程.
高考数学一轮复习 55 直线与圆锥曲线学案 理-人教版高三全册数学学案

第五十五课时 直线与圆锥曲线的位置关系课前预习案1、了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.2、掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.3、了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.4、了解圆锥曲线的简单应用.5、理解数形结合的思想.1.直线和圆锥曲线的位置关系 (1)位置关系:相交、相切、相离。
(2)位置关系的判断:已知直线:0l ax by c ++=,圆锥曲线:(,)0M f x y =,联立方程组0(,)0ax by c f x y ++=⎧⎨=⎩,消元(消x 或y ),整理得20Ax Bx C ++=<1>若0A =,则直线l 和圆锥曲线M 只有一个公共点. ①当曲线为双曲线时,直线l 与双曲线的渐近线平行或重合; ②当曲线为抛物线时,直线l 与抛物线的对称轴平行. <2>若0A ≠,设24B AC ∆=-①当0∆>时,直线和圆锥曲线M 有两个不同的公共点; ②当0∆=时,直线和圆锥曲线M 相切,只有一个公共点; ③当0∆<时,直线和圆锥曲线M 没有公共点. 2.弦长问题(1)斜率为k 的直线与圆锥曲线交于两点111(,)P x y ,222(,)P x y ,则所得弦长1212|||PP x x =-或1212|||PP y y =-(0k ≠);(2)椭圆与双曲线的通径长为22b a;(3)抛物线22(0)y px p =>的焦点为F ,弦AB 过焦点F ,①;()121222p pAB AF BB x x x x p =+=+++=++ ②若直线AB 与x 轴的夹角为θ,则22||sin pAB θ=;特别地,抛物线的通径长为2p.1.双曲线方程为2221x y -=,则它的右焦点坐标为( ) A、,02⎛⎫ ⎪ ⎪⎝⎭ B、2⎛⎫⎪ ⎪⎝⎭ C、2⎛⎫ ⎪ ⎪⎝⎭ D、)2.以抛物线24=y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A.2220++=x y x B.220++=x y x C.220+-=y x χ D.2220+-=x y x 3.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP⋅的最大值为( )A.2B.3C.6D.8第五十五课时 直线与圆锥曲线的位置关系课堂探究案考点一:圆锥曲线定义、方程的综合【典例1】(1)若双曲线)0,0(12222>>=-b a by a x 的左右焦点分别为1F 、2F ,线段21F F 被抛物线bx y 22=的焦点分成2:3的两段,则此双曲线的离心率为 ( )A .89 B .37376 C .335 D .21215 (2)已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:则1与2的标准方程分别为( )A. 2214x y +=;24y x = B. 2212x y +=;24y x = C. 2214x y +=;22y x = D. 22143x y +=;24y x =【变式1】(1)已知三个数2,8m ,构成一个等比数列,则圆锥曲线2212x y m +=的离心率为(A (B (C )2 (D )2(2)已知双曲线()0,012222>>=-b a by a x 的一条渐近线的斜率为2,则该双曲线的离心率等于( )A .2B .3C .2D .23考点二:直线和圆锥曲线的位置关系【典例2】过抛物线24y x =的焦点F 作弦AB ,且||8AB ≤,直线AB 与椭圆22322x y +=相交于两个不同的点,求直线AB 的倾斜角的取值范围.【变式2】椭圆22221(0,0)x y a b a b +=>>的左、右焦点分别为1F 、2F ,点(,)P a b 满足212||||PF F F =.(1)求椭圆的离心率e ;(2)设直线2PF 与椭圆相交于A 、B 两点,若直线2PF 与圆22(1)(16x y ++=相交于M 、N 两点,且5||||8MN AB =,求椭圆的方程.考点三:最值问题【典例3】已知椭圆22221(0,0)x y a b a b+=>>的左右焦点分别为1F 、2F ,由4个点(,)M a b -,(,)N a b ,2F 和1F ,面积为.(1)求椭圆的方程;(2)过点1F 的直线和椭圆交于两点A 、B ,求2F AB ∆面积的最大值.【变式3】已知椭圆22221(0,0)x y a b a b+=>>过点(0,2)M ,离心率3e =.(1)求椭圆的方程;(2)设过定点(2,0)N 的直线l 与椭圆相交于A 、B 两点,且AOB ∠为锐角(其中O 为坐标原点),求直线l 斜率的取值范围.1. 若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 A .2- B .2 C .4- D .42.在区间[1,5]和[2,6]内分别取一个数,记为a 和b , 则方程22221()x y a b a b-=<表示离心率A.12 B.1532 C.1732 D. 31323. 已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|||AK AF =,则AFK ∆的面积为( )A.4B.8C.16D.324.设F 是抛物线1:C 24y x =的焦点,点A 是抛物线与双曲线2:C 22221(0,0)x y a b a b-=>>的一条渐近线的一个公共点,且AF x ⊥轴,则双曲线的离心率为 .第五十五课时 直线与圆锥曲线的位置关系(课后拓展案)组全员必做题1.两个正数a 、b 的等差中项是25, 一个等比中项是1,,62222=->b y a x b a 则双曲线且的离心率e 等于( )A .23B .215C .13D .3132.已知12F 、F 分别是双曲线()222210,0x y a b a b -=>>的左、右焦点,过1F 作垂直于x 轴的直线交双曲线于A 、B 两点,若2ABF ∆为锐角三角形,则双曲线的离心率的范围是( )(A)(1,1(B)()1++∞(C)(1(D))13.已知抛物线x y 42=,以)1,1(为中点作抛物线的弦,则这条弦所在直线方程为( ) A .012=+-y x B .012=--y x C .032=-+y x D .032=-+y x4. 已知椭圆22221(0)x y a b a b +=>>倍,斜率为1的直线l 与椭圆相交,截得的弦长为正整数的直线l 恰有3条,则b 的值为( )A.2C.D.5.已知抛物线C :22(0)y px p =>过点A (1 , -2). (1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L的距离等于?若存在,求直线L 的方程;若不存在,说明理由.组提高选做题设12,F F 分别是椭圆E:22221x y a b +=(a>b>0)的左、右焦点,过1F 斜率为1的直线l 与E 相交于,A B 两点,且2AF ,AB,2BF 成等差数列.(1)求E 的离心率; (2)设点P (0,-1)满足PA PB=,求E 的方程.第五十五课时 直线与圆锥曲线的位置关系参考答案1.C2.D3.C【典例1】(1)D ;(2)A 【变式1】(1)C ;(2)B 【典例2】23[,)(,]4334ππππ; 【变式2】(1)12;(2)2211612x y +=. 【典例3】(1)22143x y +=;(2)3.【变式3】(1)221124x y +=;(2)k >k <1.D2.B3.D4.组全员必做题1.D2.A3.B4.C5.(1)24y x =;准线为1x =-. (2)存在.210x y +-=组提高选做题(1)2;(2)221189x y +=.。
高考数学一轮复习精品教学案8.8 直线与圆锥曲线(学生版) 新人教版

【考纲解读】1.了解圆锥曲线的简单应用. 2.理解数形结合的思想. 【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.中点坐标公式:设点11(,)A x y 、22(,)B x y ,则AB 中点的坐标为12(,2x x +12)2y y +.2.韦达定理:已知12,x x是一元二次方程20ax bx c ++=的两个根,则12x x +=b a -,12x x =ca .3.弦长公式:设点11(,)A x y 、22(,)B x y ,直线AB 的斜率为k ,则弦长|AB|=2121||k x x +-=12211||y y k +-.【例题精析】考点一 直线与椭圆的位置关系例1. (2012年高考北京卷文科19) 已知椭圆C :22x a +22y b =1(a >b >0)的一个顶点为A (2,0),离心率为22, 直线y=k(x-1)与椭圆C 交与不同的两点M,N(Ⅰ)求椭圆C 的方程(Ⅱ)当△AMN 的面积为103时,求k 的值 .【变式训练】1. (2012年高考陕西卷文科20)已知椭圆221:14x C y +=,椭圆2C 以1C 的长轴为短轴,且与1C 有相同的离心率。
(1)求椭圆2C 的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆1C 和2C 上,2OB OA =,求直线AB 的方程。
考点二 直线与双曲线(抛物线)例2. (2012年高考上海卷文科22)在平面直角坐标系xOy 中,已知双曲线22:21C x y -=. (1)设F 是C 的左焦点,M 是C 右支上一点,若22MF =,求点M 的坐标;(2)过C 的左焦点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(3)设斜率为k (2k <)的直线l 交C 于P 、Q 两点,若l 与圆221x y +=相切,求证:OP ⊥OQ .【变式训练】2.(2012年高考全国卷文科22)已知抛物线2:(1)C y x =+与圆2221:(1)()(0)2M x y r r -+-=>有一个公共点A ,且在点A 处两曲线的切线为同一直线l .(Ⅰ)求r ;(Ⅱ)设m 、n 是异于l 且与C 及M 都相切的两条直线,m 、n 的交点为D ,求D 到l 的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 解析几何 第八节 直线与圆锥曲线本节主要包括2个知识点:1.直线与圆锥曲线的位置关系;2.圆锥曲线中弦的问题.突破点(一) 直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的根的判别式为Δ,则⎩⎪⎨⎪⎧Δ>0⇔直线与圆锥曲线C 相交;Δ=0⇔直线与圆锥曲线C 相切;Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 与抛物线的对称轴平行或重合.[例1] (1)直线y =kx -k +1与椭圆x 9+y 4=1的位置关系为( )A .相交B .相切C .相离D .不确定(2)直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0[解析] (1)直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.(2)因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点. [答案] (1)A (2)A[例2] 若直线l :y =(a +1)x -1与曲线C :y 2=ax 恰好有一个公共点,试求实数a 的取值集合.[解] 因为直线l 与曲线C 恰好有一个公共点,所以方程组⎩⎪⎨⎪⎧y =(a +1)x -1,y 2=ax 有唯一一组实数解,消去y ,得[(a +1)x -1]2=ax , 整理得(a +1)2x 2-(3a +2)x +1=0 ①.(1)当a +1=0,即a =-1时,方程①是关于x 的一元一次方程,解得x =-1,这时,原方程组有唯一解⎩⎪⎨⎪⎧x =-1,y =-1.(2)当a +1≠0,即a ≠-1时,方程①是关于x 的一元二次方程,判别式Δ=(3a +2)2-4(a +1)2=a (5a +4),令Δ=0,解得a =0或a =-45.当a =0时,原方程组有唯一解⎩⎪⎨⎪⎧x =1,y =0,当a =-45时,原方程组有唯一解⎩⎪⎨⎪⎧x =-5,y =-2.综上,实数a 的取值集合是⎩⎨⎧⎭⎬⎫-1,-45,0.1.[考点一]过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知(图略),满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线y =1,以及过点(0,1)且与抛物线相切的直线y =x +1.2.[考点一]若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多一个 B .2 C .1 D .0解析:选B ∵直线mx +ny =4和圆O :x 2+y 2=4没有交点,∴圆心到直线的距离d =4m 2+n2 >2,∴m 2+n 2<4.∴m 29+n 24<m 29+4-m 24=1-536m 2<1, ∴点(m ,n )在椭圆x 29+y 24=1的内部,∴过点(m ,n )的直线与椭圆x 29+y 24=1的交点有2个.3.[考点二]若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( )A.⎝⎛⎭⎫-153,153 B.⎝⎛⎭⎫0,153 C.⎝⎛⎭⎫-153,0 D.⎝⎛⎭⎫-153,-1 解析:选D 由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2-4(1-k 2)×(-10)>0,x 1+x 2=4k 1-k 2>0,x 1x 2=-101-k 2>0,解得-153<k <-1.即k 的取值范围是⎝⎛⎭⎫-153,-1. 4.[考点二]已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解:将直线l 的方程与椭圆C 的方程联立,得方程组 ⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ② 将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.突破点(二) 圆锥曲线中弦的问题圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则 |AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2= 1+1k 2·|y 1-y 2| =1+1k2·(y 1+y 2)2-4y 1y 2.求解弦长的四种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x (或y )的一元二次方程,利用根与系数的关系得到(x 1-x 2)2,(y 1-y 2)2,代入两点间的距离公式.(4)当弦过焦点时,可结合焦半径公式求解弦长.[例1] 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a>b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程; (2)若|AB |+|CD |=487,求直线AB 的方程.[解] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3, 所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k 2+1·(x 1+x 2)2-4x 1x 2=12(k 2+1)3+4k 2.同理,|CD |=12⎝⎛⎭⎫1k 2+13+4k 2=12(k 2+1)3k 2+4.所以|AB |+|CD |=12(k 2+1)3+4k 2+12(k 2+1)3k 2+4=84(k 2+1)2(3+4k 2)(3k 2+4)=487,解得k =±1, 所以直线AB 的方程为x -y -1=0或x +y -1=0.[易错提醒](1)利用弦长公式求弦长要注意斜率k 不存在的情形,若k 不存在,可直接求交点坐标再求弦长.(2)涉及焦点弦长时要注意圆锥曲线定义的应用.中点弦问题处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:考法(一) 由中点弦确定直线或曲线方程[例2] (1)(2017·福州质检)抛物线C 的顶点为原点,焦点在x 轴上,直线x -y =0与抛物线C 交于A ,B 两点,若P (1,1)为线段AB 的中点,则抛物线C 的方程为( )A .y =2x 2B .y 2=2xC .x 2=2yD .y 2=-2x(2)(2017·江西九校联考)已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦交椭圆于A ,B 两点,且此弦被P 点平分,则此弦所在的直线方程为________.[解析] (1)设A (x 1,y 1),B (x 2,y 2),抛物线方程为y 2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2×(y 1+y 2)=k AB ×2=2,即可得p =1,所以抛物线C 的方程为y 2=2x . (2)法一:易知此弦所在直线的斜率存在,所以设其方程为y -1=k (x -1),A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k (x -1),x 24+y 22=1消去y 得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0, ∴x 1+x 2=4k (k -1)2k 2+1.又∵x 1+x 2=2, ∴4k (k -1)2k 2+1=2,解得k =-12.故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.法二:易知此弦所在直线的斜率存在,所以设斜率为k ,A (x 1,y 1),B (x 2,y 2),则x 214+y 212=1,① x 224+y 222=1,② ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.[答案] (1)B (2)x +2y -3=0 考法(二) 对称问题[例3] 已知抛物线y =x 2上存在两个不同的点M ,N 关于直线l :y =-kx +92对称,求k 的取值范围.[解] 法一:由题意知k ≠0,设M (x 1,y 1),N (x 2,y 2)是曲线上关于直线l 对称的两点,则MN 的方程可设为y =1k x +b (b >0),代入y =x 2,得x 2-1kx -b =0,所以Δ=1k 2+4b >0,①x 1+x 2=1k .设MN 中点的坐标为(x 0,y 0),则x 0=12k ,y 0=12k2+b , 因为(x 0,y 0)在直线l :y =-kx +92上,所以12k 2+b =-k ·12k +92,所以b =4-12k 2.② 将②代入①,得1k 2+16-2k2>0.所以1k 2<16,即k 2>116,所以k >14或k <-14.故k 的取值范围为⎝⎛⎭⎫-∞,-14∪⎝⎛⎭⎫14,+∞. 法二:设M (x 1,x 21),N (x 2,x 22)关于直线l 对称, 因为MN ⊥l ,所以x 21-x 22x 1-x 2=1k ,即x 1+x 2=1k .又MN 的中点在l 上,所以x 21+x 222=-k ·x 1+x 22+92=-k ·12k +92=4,因为MN 的中点必在抛物线内,所以x 21+x 222>⎝⎛⎭⎫x 1+x 222,即4>⎝⎛⎭⎫12k 2, 所以k 2>116,即k >14或k <-14.故k 的取值范围为⎝⎛⎭⎫-∞,-14∪⎝⎛⎭⎫14,+∞.[方法技巧]解决对称问题除掌握解决中点弦问题的方法外,还要注意:如果点A ,B 关于直线l 对称,则l 垂直于直线AB 且A ,B 的中点在直线l 上的应用.能力练通 抓应用体验的“得”与“失”1.[考点二·考法(一)](2017·运城模拟)已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线方程为( )A .x 2=32yB .x 2=6yC .x 2=-3yD .x 2=3y解析:选D 设点M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧x 2=ay ,y =2x -2消去y ,得x 2-2ax +2a =0,所以x 1+x 22=2a2=3,即a =3,因此所求的抛物线方程是x 2=3y .2.[考点二·考法(一)]已知椭圆:y 29+x 2=1,过点P 12,12的直线与椭圆相交于A ,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( )A .9x -y -4=0B .9x +y -5=0C .2x +y -2=0D .x +y -5=0解析:选B 设A (x 1,y 1),B (x 2,y 2),因为A ,B 在椭圆y 29+x 2=1上,所以⎩⎨⎧y 219+x 21=1,y 229+x 22=1,两式相减得y 21-y 229+x 21-x 22=0,即(y 1-y 2)(y 1+y 2)9+(x 1-x 2)(x 1+x 2)=0,又弦AB 被点P ⎝⎛⎭⎫12,12平分,所以x 1+x 2=1,y 1+y 2=1,将其代入上式得y 1-y 29+x 1-x 2=0,即y 1-y 2x 1-x 2=-9,即直线AB 的斜率为-9,所以直线AB 的方程为y -12=-9⎝⎛⎭⎫x -12,即9x +y -5=0. 3.[考点一]设抛物线C :y 2=2px (p >0),A 为抛物线上一点(A 不同于原点O ),过焦点F 作直线平行于OA ,交抛物线于P ,Q 两点.若过焦点F 且垂直于x 轴的直线交直线OA 于B ,则|FP |·|FQ |-|OA |·|OB |=________.解析:设OA 所在的直线的斜率为k ,则由⎩⎪⎨⎪⎧y =kx ,y 2=2px得到A ⎝⎛⎭⎫2p k 2,2p k ,易知B ⎝⎛⎭⎫p 2,kp 2,P ,Q 的坐标由方程组⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px 得到,消去x 得,ky 22p -y -kp 2=0,设P (x 1,y 1),Q (x 2,y 2),由根与系数的关系得,y 1y 2=-p 2,根据弦长公式,|FP |·|FQ |= 1+1k 2·|y 1|· 1+1k 2·|y 2|=⎝⎛⎭⎫1+1k 2|y 1y 2|=⎝⎛⎭⎫1+1k 2p 2,而|OA |·|OB |= ⎝⎛⎭⎫2p k 22+⎝⎛⎭⎫2p k 2·⎝⎛⎭⎫p 22+⎝⎛⎭⎫kp 22=1+1k2p 2,所以|FP |·|FQ |-|OA |·|OB |=0.答案:04.[考点一]椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32,离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点.(1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.解:(1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝⎛⎭⎫1,32, 所以1a 2+94b2=1.①又因为离心率为12,所以c a =12,所以b 2a 2=34.②解①②得a 2=4,b 2=3. 所以椭圆C 的方程为x 24+y 23=1.(2)当直线的倾斜角为π2时,A ⎝⎛⎭⎫-1,32,B ⎝⎛⎭⎫-1,-32, S △ABF 2=12|AB |·|F 1F 2|=12×3×2=3≠1227.当直线的倾斜角不为π2时,设直线方程为y =k (x +1),代入x 24+y 23=1得(4k 2+3)x 2+8k 2x +4k 2-12=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以S △ABF 2=12|y 1-y 2|·|F 1F 2|=|k |(x 1+x 2)2-4x 1x 2 =|k |⎝⎛⎭⎫-8k 24k 2+32-4·4k 2-124k 2+3=12|k |k 2+14k 2+3=1227,所以17k 4+k 2-18=0,解得k 2=1⎝⎛⎭⎫k 2=-1817舍去,所以k =±1, 所以所求直线的方程为x -y +1=0或x +y +1=0.5.[考点二·考法(二)]已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.求实数m 的取值范围.解:由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 中点⎝⎛⎭⎫2mb m 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63.故m 的取值范围为⎝⎛⎭⎫-∞,-63∪⎝⎛⎭⎫63,+∞.[全国卷5年真题集中演练——明规律]1.(2013·新课标全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1) 解析:选C 法一:如图所示,作出抛物线的准线l1及点A ,B 到准线的垂线段AA 1,BB 1,并设直线l 交准线于点M .设|BF |=m ,由抛物线的定义可知|BB 1|=m ,|AA 1|=|AF |=3m .由BB 1∥AA 1可知|BB 1||AA 1|=|MB ||MA |,即m 3m =|MB ||MB |+4m,所以|MB |=2m ,则|MA |=6m .故∠AMA 1=30°,得∠AFx =∠MAA 1=60°,由抛物线的对称性可知∠AFx =120°时也符合题意.结合选项知选C 项.法二:由|AF |=3|BF |可知 AF =3 FB ,易知F (1,0),设B (x 0,y 0),则⎩⎪⎨⎪⎧1-x A =3(x 0-1),-y A =3y 0,从而可解得A 的坐标为(4-3x 0,-3y 0).因为点A ,B 都在抛物线上,所以⎩⎪⎨⎪⎧y 20=4x 0,(-3y 0)2=4(4-3x 0),解得x 0=13,y 0=±23,所以k l =y 0-0x 0-1=±3.故直线l 的方程为y =3(x -1)或y =-3(x -1).2.(2016·全国甲卷)已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA .(1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解:设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由已知及椭圆的对称性知,直线AM 的倾斜角为π4.因此直线AM 的方程为y =x +2. 将x =y -2代入x 24+y 23=1得7y 2-12y =0.解得y =0或y =127,所以y 1=127. 因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0).将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x 2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2,得x 1=t (3-tk 2)3+tk 2,故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk 2.由题设,直线AN 的方程为y =-1k (x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t .由2|AM |=|AN |,得23+tk 2=k 3k 2+t, 即(k 3-2)t =3k (2k -1).当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 因此得⎩⎪⎨⎪⎧ k -2>0,k 3-2<0或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 故k 的取值范围是(32,2).3.(2016·全国乙卷)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |; (2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解:(1)如图,由已知得M (0,t ),P ⎝⎛⎭⎫t22p ,t . 又N 为M 关于点P 的对称点,故N ⎝⎛⎭⎫t2p ,t , 故直线ON 的方程为y =pt x ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p .因此H ⎝⎛⎭⎫2t 2p ,2t . 所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.4.(2012·新课标全国卷)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径|FA |=|FB |=|FD |=2p .由抛物线定义可知A 到l 的距离d =|FA |=|FB |=|FD |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2或p =-2(舍去). 所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°. 由抛物线定义知|AD |=|FA |=12|AB |,所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0.由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的纵截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为-33时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. [课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.已知双曲线x 212-y 24=1的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则该直线的斜率的取值范围是( )A.⎝⎛⎭⎫-33,33 B .(-3,3) C.⎣⎡⎦⎤-33,33 D .[-3, 3 ]解析:选C 由题意知,右焦点为F (4,0),双曲线的两条渐近线方程为y =±33x .当过点F 的直线与渐近线平行时,满足与双曲线的右支有且只有一个交点,数形结合可知该直线的斜率的取值范围是⎣⎡⎦⎤-33,33,故选C. 2.已知经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q ,则k 的取值范围是( )A.⎝⎛⎭⎫-22,22 B.⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞ C .(-2,2) D .(-∞,-2)∪(2,+∞)解析:选B 由题意得,直线l 的方程为y =kx +2,代入椭圆方程得x 22+(kx +2)2=1,整理得⎝⎛⎭⎫12+k 2x 2+22kx +1=0.直线l 与椭圆有两个不同的交点P 和Q 等价于Δ=8k 2-4⎝⎛⎭⎫12+k 2=4k 2-2>0,解得k <-22或k >22,即k 的取值范围为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫22,+∞.故选B.3.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A ,B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B ∵通径2p =2,|AB |=x 1+x 2+p ,∴|AB |=3>2p ,故这样的直线有且只有两条.4.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105 D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0.则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2,故当t =0时,|AB |max =4105. 5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F (2,0)为其右焦点,过F 且垂直于x 轴的直线与椭圆相交所得的弦长为2.则椭圆C 的方程为________.解析:由题意得⎩⎪⎨⎪⎧c =2,b2a =1,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,故椭圆C 的方程为x 24+y 22=1.答案:x 24+y 22=1[练常考题点——检验高考能力]一、选择题1.椭圆ax 2+by 2=1与直线y =1-x 交于A ,B 两点,过原点与线段AB 中点的直线的斜率为32,则a b =( ) A.32B.233C.932D.2327解析:选A 设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),结合题意,由点差法得,y 2-y 1x 2-x 1=-a b ·x 1+x 2y 1+y 2=-a b ·x 0y 0=-a b ·23=-1,所以a b =32.2.经过椭圆x 22+y 2=1的一个焦点作倾斜角为45°的直线l ,交椭圆于A ,B 两点.设O 为坐标原点,则 OA ·OB 等于( )A .-3B .-13C .-13或-3D .±13解析:选B 依题意,当直线l 经过椭圆的右焦点(1,0)时,其方程为y -0=tan 45°(x -1),即y =x -1,代入椭圆方程x 22+y 2=1并整理得3x 2-4x =0,解得x =0或x =43,所以两个交点坐标分别为(0,-1),⎝⎛⎭⎫43,13,∴ OA ·OB =-13,同理,直线 l 经过椭圆的左焦点时,也可得 OA ·OB =-13. 3.已知抛物线y 2=2px 的焦点F 与椭圆16x 2+25y 2=400的左焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则点A 的横坐标为( )A .2B .-2C .3D .-3解析:选D 16x 2+25y 2=400可化为x 225+y 216=1,则椭圆的左焦点为F (-3,0),又抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线为x =-p 2, 所以p2=-3,即p =-6,即y 2=-12x ,K (3,0).设A (x ,y ),则由|AK |=2|AF |得(x -3)2+y 2=2[(x +3)2+y 2],即x 2+18x +9+y 2=0, 又y 2=-12x ,所以x 2+6x +9=0,解得x =-3.4.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2解析:选B 设A (x 1,y 1),B (x 2,y 2),∵两点在抛物线上,∴⎩⎪⎨⎪⎧y 21=2px 1, ①y 22=2px 2, ② ①-②得(y 1-y 2)(y 1+y 2)=2p (x 1-x 2), 又线段AB 的中点的纵坐标为2,∴y 1+y 2=4, 又直线的斜率为1,∴y 1-y 2x 1-x 2=1,∴2p =4,p =2,∴抛物线的准线方程为x =-p2=-1.5.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8解析:选C ∵y 2=4x ,∴F (1,0),准线l :x =-1,过焦点F 且斜率为3的直线l 1:y =3(x -1),与y 2=4x 联立,解得A (3,23),∴AK =4,∴S △AKF =12×4×23=4 3.6.若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点⎝⎛⎭⎫1,12作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆的方程是( )A.x 24+y 23=1 B.x 23+y 22=1C.x 25+y 24=1 D.x 28+y 25=1解析:选C 由题可设斜率存在的切线的方程为y -12=k (x -1)(k 为切线的斜率),即2kx -2y -2k +1=0,由|-2k +1|4k 2+4=1,解得k =-34,所以圆x 2+y 2=1的一条切线的方程为3x +4y -5=0,可求得切点的坐标为⎝⎛⎭⎫35,45,易知另一切点的坐标为(1,0),则直线AB 的方程为y =-2x +2,令y =0得右焦点为(1,0),令x =0得上顶点为(0,2),故a 2=b 2+c 2=5,所以所求椭圆的方程为x 25+y 24=1.二、填空题7.设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析:c =5,设过点F 平行于一条渐近线的直线方程为y =43(x -5),即4x -3y -20=0,联立直线与双曲线方程,求得y B =-3215,则S =12×(5-3)×3215=3215.答案:32158.在平面直角坐标系xOy 中,过y 轴正方向上一点C (0,c )任作一条直线,与抛物线y=x 2相交于A ,B 两点,若 OA ·OB =2,则c 的值为________.解析:设过点C 的直线为y =kx +c (c >0),代入y =x 2得x 2=kx +c ,即x 2-kx -c =0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k ,x 1x 2=-c , OA =(x 1,y 1), OB =(x 2,y 2),因为 OA · OB=2,所以x 1x 2+y 1y 2=2,即x 1x 2+(kx 1+c )(kx 2+c )=2,即x 1x 2+k 2x 1x 2+kc (x 1+x 2)+c 2=2,所以-c -k 2c +kc ·k +c 2=2,即c 2-c -2=0,所以c =2或c =-1(舍去).答案:29.中心为原点,一个焦点为F (0,52)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为________. 解析:由已知得c =52,设椭圆的方程为x 2a 2-50+y2a2=1,联立得⎩⎪⎨⎪⎧x 2a 2-50+y 2a 2=1,y =3x -2消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=12(a 2-50)10a 2-450,由题意知x 1+x 2=1,即12(a 2-50)10a 2-450=1,解得a 2=75,所以该椭圆方程为y 275+x 225=1.答案:y 275+x 225=110.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若 MA ·MB =0,则k =________. 解析:如图所示,设F 为焦点,易知F (2,0),取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由 MA ·MB =0,知MA ⊥MB ,则|MP |=12|AB |=12(|AF |+|BF |)=12(|AG |+|BH |),所以MP为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,由|MP |=|AP |,得∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1kMF=2.答案:2 三、解答题11.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,0),离心率为63.过点F 2的直线l (斜率不为0)与椭圆C 交于A ,B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于M ,N 两点.(1)求椭圆C 的方程;(2)当四边形MF 1NF 2为矩形时,求直线l 的方程. 解:(1)由题意可知⎩⎪⎨⎪⎧c =2,c a =63,a 2=b 2+c 2,解得a =6,b = 2. 故椭圆C 的方程为x 26+y 22=1.(2)由题意可知直线l 的斜率存在.设其方程为y =k (x -2), 点A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (-x 3,-y 3), 由⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2)得(1+3k 2)x 2-12k 2x +12k 2-6=0, 所以x 1+x 2=12k 21+3k 2,则y 1+y 2=k (x 1+x 2-4)=-4k1+3k 2,所以AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫6k 21+3k 2,-2k 1+3k 2,因此直线OD 的方程为x +3ky =0(k ≠0). 由⎩⎪⎨⎪⎧x +3ky =0,x 26+y 22=1解得y 23=21+3k 2,x 3=-3ky 3. 因为四边形MF 1NF 2为矩形, 所以F 2M ―→·F 2N ―→=0, 即(x 3-2,y 3)·(-x 3-2,-y 3)=0, 所以4-x 23-y 23=0.所以4-2(9k 2+1)1+3k 2=0.解得k =±33.故直线l 的方程为3x -3y -23=0或3x +3y -23=0.12.(2016·大连双基测试)已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x =-2交x 轴于点Q .(1)设直线QA ,QB 的斜率分别为k 1,k 2,求k 1+k 2的值;(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点,OM · ON =2,求抛物线C 的方程.解:(1)设直线l 1的方程为x =my +2,点A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =my +2,y 2=2px ,得y 2-2pmy -4p =0,则y 1+y 2=2pm ,y 1y 2=-4p . k 1+k 2=y 1x 1+2+y 2x 2+2=y 1my 1+4+y 2my 2+4=2my 1y 2+4(y 1+y 2)(my 1+4)(my 2+4)=-8mp +8mp(my 1+4)(my 2+4)=0.(2)设点P (x 0,y 0),直线PA :y -y 1=y 1-y 0x 1-x 0(x -x 1),当x =-2时,y M =-4p +y 1y 0y 1+y 0,同理y N =-4p +y 2y 0y 2+y 0.因为 OM · ON =2,所以4+y N y M =2, 即-4p +y 2y 0y 2+y 0·-4p +y 1y 0y 1+y 0=16p 2-4py 0(y 2+y 1)+y 20y 1y 2y 2y 1+y 0(y 2+y 1)+y 20 =16p 2-8p 2my 0-4py 20-4p +2pmy 0+y 20=-4p (-4p +2pmy 0+y 20)-4p +2pmy 0+y 2=-2, 故p =12,所以抛物线C 的方程为y 2=x .。