八年级数学上册 3.3 勾股定理的简单应用学案(无答案)(新版)苏科版
八年级数学上册《3.3 勾股定理的简单应用》学案 (新版)苏科版

八年级数学上册《3.3 勾股定理的简单应用》学案(新版)苏科版1、能运用勾股定理及直角三角形的判定方法解决简单的实际问题、2、了解这一部分常作辅助线的思路是构造直角三角形,如作高、3、在运用勾股定理解决实际问题的过程中,感受数学的转化思想(如把解三角形问题转化为解直角三角形的问题),发展有条理的思考和表达的能力,体会数学的应用价值、教材导读阅读教材P86~P87内容,回答下列问题:1、运用勾股定理解决实际问题假期中,小明和同学到某海岛上去寻宝旅游、按照寻宝图,他们登陆后先向东走8千米,又向北走2千米,遇到障碍后向西走3千米,再折向北走到6千米处向东拐,仅走了1千米就找到宝藏,则登陆点A到宝藏埋藏点B 的距离是多少千米?如图,过点B作BC⊥AC,垂足为C,连接AB、可算出BC=_______,AC=______ ,由勾股定理,得AB =_______、2、勾股定理与方程思想的综合应用我们知道勾股定理揭示了_______三角形三边之间的数量关系,已知直角三角形中的任意两边长就可以根据勾股定理求出_______、从运用勾股定理解决实际问题的过程中,我们进一步认识到把直角三角形的三边关系“a2+b2=c2”看成一个方程,只要根据问题的条件把它转化为我们会解的方程,就把解实际问题转化为_______问题、例题精讲例1 如图,在等腰直角三角形ABC中,∠ABC=90,D为AC边上的中点,过点D作DE⊥DF,交AB于E,交BC于F、若AE=4,FC=3,求EF的长、提示:连接BD,由等腰直角三角形ABC及D是AC边上的中点,可推出BD⊥AC,BD=CD=AD,∠ABD=45,再由DE⊥DF,可推出∠FDC=∠EDB、由等腰直角三角形ABC,可得∠C=45,所以△EDB≌△FDC,从而得出BE=CF=3,那∠AB=7,从而BC=7,BF=4,再根据勾股定理求出EF的长、解答:如图,连接BD、点评:本题着重考查同学们对勾股定理及全等三角形判定方法的掌握,其关键是由已知先证得隐含的两个三角形全等,进而求出BE和BF的长,再由勾股定理求出EF的长、例2 如图,在△ABC中,AB=10,BC=9,AC=17,求BC边上的高、提示:作出BC边上的高,构造直角三角形,再运用勾股定理建立方程求解、解答:如图,过点A作AD⊥BC,交BC的延长线于D、设BD=x,则CD=9+x、在Rt△ACD和Rt△ABD中,由勾股定理,得AD2=AC2-CD2,AD2=AB2-BD2,∴AB2-BD2=AC2-CD2,即102-x2=172-(9+x)2、解得x=6、∴AD2=AB2-BD2=102-62=64、∴AD=8,即BC边上的高是8、点评:本题运用方程思想,结合勾股定理解题,关键是利用勾股定理构造出方程求解、例3 如图①是一个长方体盒子,长AB=4,宽BC=2,高CG=1、(1)一只蚂蚁从盒子下底面的点A沿盒子表面爬到点G,求它所行走的最短路线的长、 (2)这个长方体盒子内能容下的最长木棒长度的平方为多少?提示:(1)需展开成平面图形,分三种情况讨论蚂蚁行走的路线、(2)即求AG的长度的平方、解答:(1)蚂蚁从点A爬到点G可能经过长方体盒子的前面和右面,也可能经过长方体盒子的前面和上面,还可能经过长方体盒子的下面和右面,展开成平面图形如图②所示,由勾股定理计算出AG2的值分别为37、25、29,比较后得AG2最小为25,即最短路线的长是5、 (2)如图③,在Rt△ABC中,由勾股定理,得AC2=AB2+BC2、在Rt△ACG中,由勾股定理,得AG2=AC2+CG2=AB2+BC2+CG2=42+22+12=21、点评:把题中的长方体变成正方体或圆柱时,找直角三角形运用勾股定理的思想方法不变,在计算的过程中,可尝试将计算的过程和结果总结成公式、热身练习1、两只小鼹鼠在地下打洞,从同一地点开始,一只朝南挖,每分钟挖8 cm,另一只朝东挖,每分钟挖6 cm,10分钟后两只小鼹鼠相距 ( )A、50 cmB、100 cmC、140 cmD、80 cm2、如图,在一块平地上,张大爷家屋前9米远处有一棵大树、在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米、出门在外的张大爷担心自己的房子被倒下的大树砸到,那么大树倒下时会砸到张大爷家的房子吗?通过计算,得到的结论是 ( )A、一定不会B、可能会C、一定会D、不能确定3、一个直角三角形的斜边比一直角边长2,另一直角边长为6,则斜边长为 ( )A、6B、8C、10D、124、在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为 ( )A、42B、32C、42或32D、37或335、如图,在长方形纸片ABCD中,AD=8,折叠纸片使边AB 与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB 的长为 ( )A、3B、4C、5D、66、如图,在高为5米,长为13米的楼梯上铺地毯,地毯的长度至少应为_______米、7、一个正方体箱子沿斜坡向下滑动,其截面如图所示,正方形DEFH的边长为2米,∠B=90,AB=8米,BC=6米,当正方形DEFH运动到什么位置,即当AE=_______米时,有DC2=AE2+BC2、8、如图,一架长5米的梯子AB斜靠在一竖直的墙上,这时梯子底端距墙脚3米,如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,证明你的结论、参考答案1、B2、A3、C4、C5、D6、177、3、48、1米。
苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2

苏科版数学八年级上册《3.3 勾股定理的简单应用》教学设计2一. 教材分析《苏科版数学八年级上册》第三单元《勾股定理的简单应用》是学生在学习了勾股定理之后的一个应用部分。
这部分内容主要让学生通过实际问题,运用勾股定理解决生活中的问题,培养学生的数学应用能力。
教材通过丰富的例题和练习题,让学生在解决实际问题的过程中,加深对勾股定理的理解和记忆。
二. 学情分析八年级的学生已经学习了勾股定理,对勾股定理的基本概念和运用有一定的了解。
但是,对于一些生活中的实际问题,如何运用勾股定理来解决,可能还存在一定的困难。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的数学应用能力。
三. 教学目标1.知识与技能:让学生掌握勾股定理的基本概念,能够运用勾股定理解决实际问题。
2.过程与方法:通过解决实际问题,培养学生运用数学知识解决问题的能力。
3.情感态度与价值观:让学生体验数学在生活中的应用,提高学生学习数学的兴趣。
四. 教学重难点1.重点:让学生能够运用勾股定理解决实际问题。
2.难点:如何引导学生将实际问题与勾股定理相结合,提高学生的数学应用能力。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生在解决问题的过程中,运用勾股定理,提高学生的数学应用能力。
同时,采用小组合作的学习方式,让学生在讨论和交流中,共同解决问题,培养学生的合作意识。
六. 教学准备1.准备相关的实际问题,用于课堂上引导学生解决。
2.准备PPT,用于展示问题和引导学生思考。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生的思考,引出本节课的主题。
例题:一块直角三角形的木板,两条直角边的长度分别是3分米和4分米,那么这块木板的最大面积是多少?2.呈现(10分钟)呈现PPT,展示问题,引导学生思考如何解决这个问题。
3.操练(10分钟)学生独立思考,尝试解决PPT上的问题。
教师巡回指导,解答学生的疑问。
新苏科版初中数学八年级上册3.3勾股定理的简单应用导学案

勾股定理的简单应用学习目标:1.能运用勾股定理及直角三角形的判定条件解决实际问题2 在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想,进一步发展有条理思考和有条理表达的能力学习重点:运用勾股定理及方程解决问题学习难点:运用勾股定理及方程解决问题学习过程:一、预习·质疑1若三角形的三边长a 、b 、c 满足()ab c b a 222+=+,则这个三角形是( ) A 锐角三角形 B 钝角三角形 直角三角形 D 形状不能确定2分别以下列四组为一个三角形的三边的长①6、8、10;②5、12、13;③8、15、17;④7、8、9,其中能构成直角三角形的有 ( )A4组 B3组 2组 D1组3小明和小强的跑步速度分别是6/s 和8/s ,他们同时从同一地点分别向东、南练习跑步,那么从出发开始需__________s 可以相距1604要登上8高的建筑物,为了安全需要,需使梯子底端离建筑物6.•问至少需要 米的梯子? 5在△AB 中∠A 、∠B 、∠的对边分别是a 、b 、c ,下列条件中,能判断△AB 为直角三角形的是( )A c b a =+B 5:4:3::=c b a c b a 2== D ∠A =∠B =∠二、展示·探究例1 如下图今年的台风灾害中一棵大树在离 变式:若树高24米,AB =8米,求A的长地面3米处折断树的顶端落在离树杆底部4米处你能知道这棵树折断之前的高度吗?例2 如图,长为10的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8如果梯子的顶端下滑1那么它的底端是否也滑动1?例3 有一个边长为10尺的正方形池塘,一颗芦苇AB生长在它的中央,高出水面部分B为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B',问水深和芦苇长各是多少?例4如图两电线杆AB、D都垂直于地面,现要在A、D间拉电线,则所拉电线最短为多少米?其中AB=8米,D=2米,两电线杆间的距离B=8米三、检测·反馈《同步练习》第53页第1题至第3题四、课后作业《同步练习》第53页至54页补充:1如图,OA⊥OB,OA=45㎝,OB=15㎝,一机器人在点B处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点处截住了小球,求机器人行走的路程B.2如图,一圆柱高8c,底面半径2c,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是()A20c B10c 14c D无法确定3如图,一透明的直圆柱状的玻璃杯,由内部测得其底部半径为3㎝,高为8㎝,今有一支12㎝的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度至少为.。
八年级数学上册 3.3 勾股定理的简单应用学案(无答案)苏科版(2021年整理)

江苏省句容市八年级数学上册3.3 勾股定理的简单应用学案(无答案)(新版)苏科版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省句容市八年级数学上册3.3 勾股定理的简单应用学案(无答案)(新版)苏科版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省句容市八年级数学上册3.3 勾股定理的简单应用学案(无答案)(新版)苏科版的全部内容。
课题:§3.3勾股定理的简单应用班级 姓名 学号【学习目标】 基本目标:1。
能在实际生活中,利用勾股定理及其逆定理解决问题. 2。
能利用勾股定理及其逆定理进行简单的几何计算与证明。
提高目标:把解斜三角形问题转化为解直角三角形的问题. 【重点难点】重点:能运用勾股定理及直角三角形的判定条件解决实际问题. 难点:把解斜三角形问题转化为解直角三角形的问题。
【预习导航】1.勾股定理:用符号语言表达:2.勾股定理的逆定理:用符号语言表达: 3.已知一个直角三角形的两边长分别为3和5,则第三边长的平方为( ). A 。
16 B.16或1156 C.16或34 D 。
4或344.以下列各组数线段a 、b 、c 为边的三角形中,不是直角三角形的是( ). A 。
a=1.5,b=2,c=3 B 。
a=7,b=24,c=25 C 。
a=6,b=8,c=10 D.a=3,b=4,c=55.若三角形的三边长a 、b 、c 满足(a+b )2=c 2+2ab ,则这个三角形是( ). A.锐角三角形 B 。
钝角三角形 C 。
直角三角形 D.不能确定6.甲、乙两人同时从同一地点出发,甲往东走了5km ,乙往南走了12km ,这时甲、乙两人相距__________km .a bcAC【课堂导学】活动(1)从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形.已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的长?AC= ;AD= ;AE= ;AF= ;AG= .总结: .(2)一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其他的数据弄混了,请你帮助他找出来是第几组,理由是 .A。
苏科版-数学-八年级上册八上3.3 勾股定理的简单应用 参考学案

数学教学设计教材:义务教育教科书·数学(八年级上册)3.3勾股定理的简单应用标1.能运用勾股定理及直角三角形的判定条件解决实际问题.2.构造直角三角形及正确解出此类方程.3.运用勾股定理解释生活中的实际问题.点能运用勾股定理及直角三角形的判定条件解决实际问题.点在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形一步发展有条理思考和有条理表达的能力,体会数学的应用价值.要善于运用直角三角形三边关系,关键情形准确构造出直角三角形.教学过程(教师)学生活动设计思,前一阶段我们学习了勾股定理,数学研究中具有极其重要的地位,罗庚曾经说过:把勾股定理送到外星人进行数学交流!咱们今天就来股定理在数学中的应用.把勾股定理送到外星球,与外星人流!——华罗庚进入状态,兴致盎然.给学生展现前景,激发学生学望.根芦苇的长度各是多少?(图3)面几幅图像,同学之间议一议:它的逆定理在应用上有什么区积极思考,回答问题.勾股定理主要应用于求线段的长度、图形的周长、面积;勾股定理的逆定理用于判断三角形的形状.由学生熟悉给学生一个展示增强学生学习数图4,等边三角形ABC的边长是的面积.5,在△ABC中,AB=AC=17,△ABC的面积6,在△ABC中,AD⊥BC,AB 12,AC=13,求△ABC的周长和互相讨论,踊跃回答:参考答案:解:作AD⊥BC,∵△ABC是等边三角形,∴BD=12BC=12×6=3,在Rt△ABC中,AD=AB2-BD2=62-32=27 ≈5.196,S△ABC=12BC·AD≈12×6×5.196=15.58≈15.6.通过学生相生主动参与到学培养学生合作交散思维能力,同时知识面.ACBAC BD(图4):如图7,在△ABC中,AB=25,=24,问△ABC是什么三角形?如图8,在△ABC中,AB=26,边上的中线AD=24,求AC.小组讨论,代表回答:1.由勾股定理逆定理可以发现△ABC是直角三角形.2.解:∵AD是BC边上的中线,∴BD=CD=12BC=12×20=10.∵AD2+BD2=576+100=676,AB 2=262=676,∴AD2+BD2=AB2,∴∠ADB=90°,AD垂直平分BC.∴AC=AB=26.通过学生相学生的观察分析生善于思考的良AC D(图5)AC BD(图6)CB(图7)9,在△ABC 中, AB =15,AD,AC =13,求△ABC 的周长和面定理的应用中我们进一步体会到直等腰三角形有着密切的联系,把研形转化为研究直角三角形,这是研种策略.讨论后共同小结. 师生互动,锻头表达能力,培养表自己看法的能7练习1、2.DAC (图8)DAC(图9)。
苏教科版初中数学八年级上册 3.3 勾股定理的简单应用学案

苏教科版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!勾股定理的简单应用学习目标:1.能运用勾股定理及直角三角形的判定条件解决实际问题2. 在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想,进一步发展有条理思考和有条理表达 的能力学习重点:运用勾股定理及方程解决问题学习难点:运用勾股定理及方程解决问题学习过程:一、预习·质疑1.若三角形的三边长a 、b 、c 满足()ab c b a 222+=+,则这个三角形是( ) A.锐角三角形 B.钝角三角形 C.直角三角形 D.形状不能确定2.分别以下列四组为一个三角形的三边的长①6、8、10;②5、12、13;③8、15、17;④7、8、9,其中能构成直角三角形的有 ( )A.4组 B.3组 C.2组 D.1组3.小明和小强的跑步速度分别是6m/s 和8m/s ,他们同时从同一地点分别向东、南练习跑步,那么从出发开始需__________s 可以相距160m.4.要登上8m 高的建筑物,为了安全需要,需使梯子底端离建筑物6m . 问至少需要 米的梯子?5.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列条件中,能判断△ABC 为直角三角形的是 ( )A.c b a =+B. 5:4:3::=c b aC.c b a 2==D.∠A =∠B =∠C二、展示·探究例1. 如下图,今年的台风灾害中,一棵大树在离 变式:若树高24米,AB =8米,求AC 的长 地面3米处折断,树的顶端落在离树杆底部4米处,你能知道这棵树折断之前的高度吗?例2. 如图,长为10m的梯子AB斜靠在墙上,梯子的顶端距地面的垂直距离为8m. 如果梯子的顶端下滑1m,那么它的底端是否也滑动1m?相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
数学思维可以让他们更理性地看待人生。
苏科版八年级数学上册第3章3.3《勾股定理的简单应用》导学案(无参考解析)

八年级上数学教学案使用时间:课题:3.3勾股定理的简单应用班级:姓名:一、教学目标:1、能运用勾股定理及直角三角形的判定方法解决简单的实际问题.2、在运用勾股定理解决实际问题的过程中,感受数学的转化思想(如把解三角形问题转化为解直角三角形的问题),发展有条理的思考和表达的能力,体会数学的应用价值.二、学习新课:(一)探索活动一,自主学习:阅读课本P86-87,今有竹高一丈,末折抵地,去根三尺,问折者高几何?意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?活动二如图,在△ABC中,AB=AC=17,BC=16,求△ABC的面积(二)、例题讲解:1、在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?2、如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13,求△ABC的周长和面积.3、例:如图8,在△ABC中,AB=26,BC=20,BC边上的中线AD=24,求AC.(三)变式训练:1、等腰△ABC的腰长为10cm,底边长为16cm,则底边上的高为__,面积为______,腰上的高是 .2、等腰直角△ABC中,∠C=90°,AC=2cm,那么它的斜边上的高为______.3、一张长方形纸片宽AB=8cm,长BC=10cm.现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长.4、一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?5、如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?(五)归纳小结:ADE BCAB CFED(六)当堂检测:数学补充习题P50-51四、布置作业:(分层作业,学辅资料精选习题)。
八年级数学苏科版上册3.3勾股定理的简单应用 学案

课题:3.3 勾股定理的简单应用班级:姓名:学习目标:能运用勾股定理及勾股定理的逆定理解决实际问题.学习重点、难点:在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想(把解斜三角形问题转化为解直角三角形的问题),进一步发展有条理思考和有条理表达的能力,体会数学的应用价值.【复习旧知】勾股定理:直角三角形两条直角边a,b的等于斜边c的 .如图:如果直角三角形两直角边分别为a,b,斜边为c,则有: .勾股定理的逆定理:如果三角形的三边长分别为a、b、c,且,那么这个三角形是直角三角形.勾股数:满足关系的3个数a、b、c称为勾股..数..【合作探究】1.如图,一根电线杆因超过使用寿命被大风刮倒,折断处离地面9m,电线杆顶部在离电线杆底部12m,处,这根电线杆在折断前有米?B912A2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 .3.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?4.一架云梯AB=CD长25米,斜靠在一面墙上,梯子底端离墙OB为7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动的距离BD是多少米?5.为了推广城市绿色出行,南沙区交委准备在蕉门河沿岸东西走向AB路段建设一个共享单车停放点,该路段附近有两个广场C和D,如图所示,CA⊥AB于A,DB⊥AB于B,AB=3km,CA=2km,DB=1.6km,试问这个单车停放点E应建在距点A多远,才能使它到两广场的距离相等.6.如图,△ABC中,AB=13,BC=14,AC=15,求BC边上的高AD.【当堂反馈】学习与评价P55-P56【课堂小结】通过本节课的学习,你有什么体会?【课后作业】订正错题拓展提升:如图,沿海城市A 接到台风警报,在该市正南方向130km 的B 处有一台风中心,正沿BC 方向以15km/h 的速度向D 移动,已知城市A 到BC 的距离AD=50km.(1)台风中心经过多长时间从B 处移动到D 处?(2)如果在距台风中心30km 的圆形区域内都会受到台风的影响,D 处的游人在接到台风警报后的几小时内撤离才能不被台风影响?DC BA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理的简单应用
学习目标:
1.能运用勾股定理及直角三角形的判定条件解决实际问题
2.在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想,进一步发展有条理思考和有条理表达的能力
学习重点:运用勾股定理及方程解决问题
学习难点:运用勾股定理及方程解决问题
学习过程:
一、预习·质疑
1.若三角形的三边长a、b、c满足,则这个三角形是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.形状不能确定
2.分别以下列四组为一个三角形的三边的长①6、8、10;②5、12、13;③8、15、17;④7、8、9,其中能构成直角三角形的有()A.4组 B.3组 C.2组 D.1组
3.小明和小强的跑步速度分别是6m/s和8m/s,他们同时从同一地点分别向东、南练习跑步,那么从出发开始需__________s可以相距160m.
4.要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m.•问至少需要米的梯子?
5.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,下列条件中,能判断△ABC为直角三角形的是 ( )
A. B. C. D.∠A=∠B=∠C
二、展示·探究
例1. 如下图,今年的台风灾害中,一棵大树在离变式:若树高24米,AB=8米,求AC的长
地面3米处折断,树的顶端落在离树杆底部4米处,
你能知道这棵树折断之前的高度吗?
例2.如图,长为10m的梯子AB斜靠在墙上,梯子的顶端距地面的垂直距离为8m.
如果梯子的顶端下滑1m,那么它的底端是否也滑动1m?
例3.有一个边长为10尺的正方形池塘,一颗芦苇AB生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B',问水深和芦苇长各是多少?
例4.如图两电线杆AB、CD都垂直于地面,现要在A、D间拉电线,则所拉电线最短为多少米?
其中AB=8米,CD=2米,两电线杆间的距离BC=8米.
三、检测·反馈:
《同步练习》第53页第1题至第3题
四、课后作业:
《同步练习》第53页至54页
补充:1.如图,OA⊥OB,OA=45㎝,OB=15㎝,一机器人在点B处发现有一个小球自A点出发沿着AO方向匀速滚向点O,机器人立即从B处出发以相同的速度匀速直线前进去拦截小球,在点C处截住了小球,求机器人行走的路程BC.
2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,
要爬行的最短路程(取3)是()
A.20cm
B.10cm
C.14cm
D.无法确定
3.如图,一透明的直圆柱状的玻璃杯,由内部测得其底部半径为3㎝,高为8㎝,今有一支12㎝的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度至少为m.。