线性代数行列式的性质山东财经大学线性代数
《线性代数》1.3行列式的性质

a1n ain ka jn D1 a jn ann
n 2 ka j1 an1ai1 a a j1 an1
证 由行列式性质4 以及性质3 的推论2 可得到
a11 ai1 D1 a j1 an1 a j2 an 2 a jn ann a12 ai 2 a1n ain a j1 an1 a j2 an 2 a jn ann a11 ka j1 a12 ka j 2 a1n ka jn
x n 1 a r2 , r3 rn都减去r1 0 0
a xa 0
a 0 xa
x n 1 a x a
n 1
ቤተ መጻሕፍቲ ባይዱ
练习 计算
a1 0 Dn 1 0 1
a1 a2 0 1
0
0 0
0 0 an 1
a2 0 1
an 1
c2 c1后c3 c2 类推 1 a1a2
n
a1 0 0 a2 0 1 0 2
0 0 0 3
0 0 an n
0 0 0 n 1
an n 1
例4
计算 2 n 阶行列式(行列式的空白处为零)
a a a b b a b b a a b b
D2 n
同理 ci c j ; kci ; ci kc j 分别表示行列式互换第 i列与第 j
列;数k乘以第 i列;第 i列的各元素加上第 j列对应元素 的k倍.
例1 计算
1 2 D 1 1 3 2 2 1 1 4 0 3 2 1 0 1 2 3 1 5 1
3 1 2 1 1 2 0 3
b
a b
小结: 本次课我们学习了行列式的性质,重点要掌握如何 灵活应用行列式的性质来计算行列式。 作业: P26 习题一:5⑥⑦,6①②
大学线性代数知识点总结

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j nija a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。
(转置行列式TD D =) ②行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。
克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。
化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置 注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A=-1(非奇异矩阵、奇异矩阵|A|=0、伴随矩阵)初等变换1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列)初等变换不改变矩阵的可逆性 初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的(对换阵 倍乘阵 倍加阵) 等价标准形矩阵⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
线性代数克莱姆(Cramer)法则山东财经大学线性代数

x1 x2 x3 0 ax1 bx2 cx3 0
a2 x1 b2 x2 c2 x3 0
(1)只有零解;(2)有非零解?
山东财经大学数学与数量经济学院
例1.5.3 设齐次线性方程组
x1 (k 2 1)x2 x1 (2k 1)x2
2x3 0 2x3 0
kx1
a11 a1, j1 b1 a1, j1 a1n Dj
an1 an, j1 bn an, j1 ann
山东财经大学数学与数量经济学院
证明 用D中第j列元素的代数余子式A1 j , A2 j , , Anj依次
乘方程组(1)的n个方程,得
a11x1 a12 x2
a21x1 a22 x2
an1x1 an2 x2
a2n
an1 an2
ann
为方程组的系数行列式
山东财经大学数学与数量经济学院
定理1.5.1(克莱姆法则)含n个方程n个未知量的线性方程组(1),
当其系数行列式D 0时有惟一解
xj
Dj D
,
( j 1, 2,
, n)
其中Dj是把系数行列式D中的第j列的元素用方程组右端的常数项
代替后得到的n阶行列式,即
Dxj Dj j 1, 2, , n
(2)
当D 0时,方程组(2)有惟一解
x1
D1 D
,
x2
D2 D
,
x3
D2 D
,
,
xn
Dn D
由于方程组(2)与方程组(1),所以
山东财经大学数学与数量经济学院
例1.5.1 解线性方程组
x1 x2
2
x1 x1
2x2 3x2
x3 x4 2 x3 4x4 5 x3 3x4 3
线性代数1-4 行列式的性质

(1)N( j1 jt js jn)a1j1 asjt atjs anjn 它与D的一般项相差一个负号 所以D1D
因为由推论1 可将行列式中这两行(列)的比例系数提到 行列式外面 则余下的行列式有两行(列)对应元素相同 由性 质2可知此行列式的值等于零 所以原行列式的值等于零
性质4 如果行列式中的某一行(列)的每一个元素都是两 个数的和 则此行列式可以写成两个行列式的和 例如
a11 a12 a1n
a11 a12 a1n a11 a12 a1n
a11 a12 a1n
a11 a21 an1
D
a21
a22
a2n
则 DT
a12
a22
an2
an1 an2 ann
a1n a2n ann
显然 若D|aij| DT|bij| 则bijaji(i j1 2 n)
行列式的转置 将行列式D的行与列互换后得到的行列式称为D的转置
§1.4 行列式的性质
n阶行列式共有n!项 因此定义计算n阶行列式是较 为困难的 只有少数行列式用定义计算比较方便
我们已经知道三角行列式的值就是主对角线上各元 素的乘积 因此我们想到能否把一般的行列式化成三角 行列式来计算 这就需要研究行列式的性质
行列式的转置
将行列式D的行与列互换后得到的行列式称为D的转置 行列式 记为DT或D 即如果
a12 a1n
ai1 ai2 ain ai1 kas1 ai2 kas2 ains1
线性代数行列式的性质与计算

线性代数行列式的性质与计算线性代数中的行列式是一种非常重要的数学工具,它在各个领域的数学和物理问题中都具有广泛的应用和重要性。
行列式是一个数,它与矩阵的元素有关,在许多情况下可以通过一些算法进行计算。
一、行列式的性质1.行列式有可加性:若A为n阶方阵,有两列完全相同,则行列式的值为0;若A为n阶方阵,交换两列,行列式的值变号。
2.行列式有因子约束:若A的其中一行或其中一列的元素是两个数之和,则A的行列式等于这两个数的和的行列式之和。
3.行列式有数乘的性质:若将A的其中一行或其中一列的元素都乘以k,则A的行列式等于k乘以这个行列式。
4.行列式对其中一行与另一行的代换变号,对其中一列与另一列的代换变号,换行、换列对行列式无影响。
5.方阵A与其转置矩阵A'行列式相等,即,A,=,A'。
6.若A为可逆的方阵,则,A,≠0;若A的其中一行全为0,则,A,=0。
二、行列式的计算1.二阶行列式的计算:设A为二阶方阵。
2.三阶行列式的计算:设A为三阶方阵a11a12a1A=,a21a22a23a31a32a33.高阶行列式的计算:a)拉普拉斯展开法:以行或列为基准进行展开,逐步减小行列式的阶数,直至计算到二阶行列式。
b)三角形矩阵法:若A为上(下)三角矩阵,则A的行列式等于对角元素的乘积。
c)伴随矩阵法:设A为n阶方阵,A的伴随矩阵的转置矩阵为A*,则,A,=,A*,=A*A^-1d)特征值法:设A的特征值为λ1,λ2,…,λn,则,A,=λ1λ2…λn.e)克拉默法则:若Ax=b为线性方程组,其中A为n阶方阵,且,A,≠0,则方程组有唯一解x=A^-1b.总之,行列式作为一种数学工具,在线性代数中具有重要的地位和作用。
它不仅可以帮助我们判断矩阵的可逆性,还可以求解线性方程组、计算矩阵的秩、判断矩阵的相似性等。
行列式的性质和计算方法可以帮助我们更好地理解和应用线性代数的相关知识。
行列式的性质及应用知识点总结

行列式的性质及应用知识点总结行列式是线性代数中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。
下面我们来详细总结一下行列式的性质及应用方面的知识点。
一、行列式的定义首先,我们来了解一下行列式的定义。
对于一个 n 阶方阵 A =(aij ),其行列式记为|A| 或 det(A) ,它的值是一个确定的数。
对于二阶行列式,有|A| =|a 11 a 12 ; a 21 a 22 |= a 11 a 22 a 12 a 21 。
对于三阶行列式,有|A| =|a 11 a 12 a 13 ; a 21 a 22 a 23 ; a31 a 32 a 33 |= a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32 。
对于n 阶行列式,其定义相对复杂,但可以通过递归的方式来理解。
二、行列式的性质1、行列式转置值不变若将行列式 A 的行与列互换得到的行列式称为 A 的转置行列式,记为 A T ,则有|A| =|A T |。
2、两行(列)互换,行列式的值变号例如,交换行列式 A 中的第 i 行和第 j 行,行列式的值变为|A| ;交换第 i 列和第 j 列,行列式的值也变为|A| 。
3、某行(列)乘以 k,行列式的值乘以 k若行列式 A 的某一行(列)的元素都乘以同一个数 k ,则行列式的值等于原来的行列式的值乘以 k 。
4、若某行(列)是两组数之和,则行列式可拆成两个行列式之和例如,若 A 的第 i 行元素为 b i + c i ,则|A| =|B| +|C| ,其中 B 是将 A 的第 i 行换成 b i 得到的行列式,C 是将 A 的第 i 行换成 c i 得到的行列式。
5、某行(列)乘以 k 加到另一行(列),行列式的值不变例如,将行列式 A 的第 j 行乘以 k 加到第 i 行,行列式的值不变;将第 j 列乘以 k 加到第 i 列,行列式的值也不变。
利用行列式的性质求解线性方程组

利用行列式的性质求解线性方程组在线性代数中,线性方程组是一组关于未知数的线性方程的集合。
求解线性方程组的传统方法包括高斯消元法、克拉默法则等。
而利用行列式的性质求解线性方程组则是一种更为简便和高效的方法。
本文将介绍利用行列式的性质来求解线性方程组的方法及其应用。
1. 行列式的定义及性质行列式是一个矩阵所固有的一个数值,用于描述线性变换对于面积(或体积)的影响。
行列式的定义如下:设A为一个n阶矩阵,其行列式记为det(A)或|A|,定义为:det(A) = a11a22...ann - a12a21...an1 + a13a21...an2 - ... + (-1)^(n+1)a1na2n...an(n-1)行列式具有以下性质:(1)行列式与其转置矩阵的值相等:det(A) = det(A^T)(2)如果A的某两行(或两列)元素对应相等,则行列式的值为0。
(3)如果A的某行或某列的元素全为0,则行列式的值为0。
(4)若A的某行(或某列)的元素均乘以常数k,则行列式的值变为原来的k倍,即k * det(A)。
(5)若A的某行(或某列)的元素经过线性组合得到另一行(或另一列),则行列式的值不变。
2. 利用行列式求解线性方程组对于线性方程组Ax = b,其中A为系数矩阵,x为未知向量,b为常数向量,我们可以利用行列式的性质来求解。
设A为一个n阶方阵,b为n维向量。
当det(A)≠0时,方程组有唯一解,可以通过以下方法求解:x = A^(-1) * b其中A^(-1)为矩阵A的逆矩阵。
当det(A) = 0时,方程组可能有无穷多个解或无解。
我们可以进一步利用行列式的性质来判断具体的解的情况。
3. 判断线性方程组的解对于线性方程组Ax = b,当det(A) = 0时,可以通过计算方阵A的秩和增广矩阵[A|b]的秩来判断方程组的解的情况。
(1)当rank(A) = rank([A|b]) = n时,方程组无解。
行列式的性质及应用论文

行列式的性质及应用论文行列式是线性代数中的重要概念,它具有许多重要的性质和广泛的应用。
本文将从性质和应用两个方面来探讨行列式的相关内容。
首先,我们来讨论行列式的性质。
行列式是一个标量,它可以表示矩阵所围成的平行四边形的面积或者体积。
行列式的计算可以通过拉普拉斯展开定理、三角矩阵法和克拉默法则等方法来进行。
下面是行列式的一些重要性质:1. 行列式的性质一:行列式的值与行列式的转置值相等。
即,对于一个n阶方阵A,有det(A) = det(A^T)。
2. 行列式的性质二:行列式的值等于它的任意两行(或两列)互换后的值的相反数。
即,如果将矩阵A的第i行和第j行进行互换,那么有det(A) = -det(A'),其中A'是矩阵A进行行互换后的矩阵。
3. 行列式的性质三:如果矩阵A的某一行(或某一列)的元素全为零,则行列式的值为零。
即,如果A的某一行(或某一列)所有元素都为零,则有det(A) = 0。
4. 行列式的性质四:行列式的某一行(某一列)的元素都乘以一个常数k,等于用该行(该列)的元素乘以k的行列式的值。
即,如果将矩阵A的第i行的所有元素都乘以k,那么有det(A) = k * det(A'),其中A'是矩阵A进行行数乘k后的矩阵。
行列式的这些性质使得我们可以通过简单的操作来计算复杂矩阵的行列式,从而简化线性代数的运算。
接下来,我们来探讨行列式的应用。
行列式在数学和工程中有广泛的应用,下面举几个例子:1. 线性方程组的解:行列式可以用来求解线性方程组的解。
对于一个n阶方阵A和一个n维向量b,如果det(A)≠0,那么方程组有唯一解;如果det(A) = 0,那么方程组无解或有无穷多解。
2. 矩阵的逆:行列式可以用来判断一个矩阵是否可逆。
对于一个n阶方阵A,如果det(A)≠0,那么A是可逆的,且其逆矩阵的行列式为1/det(A)。
3. 平面和体积的计算:行列式可以用来计算平面和体积的面积或体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 1 1 2 0 1 1
2
1(1)( 2)( 2) 4
0 0 2 4 0 0 2 4
0 0 2 2 0 0 0 2
山东财经大学数学与数量经济学院
3 1 1 2
例3
计算
5 D
1
3 4 .
2 0 1 1
1 5 3 3
1 3 1 2
1 3 1 2
解 D c1 c2 1 5
3 4 r2 r1 0 8
a11 a12
a1n
ai1 ai2
ain
as1 as2
asn
as1 as2
asn
ai1 ai2
ain
an1 an2
ann
an1 an2
ann
山东财经大学数学与数量经济学院
性质1.2.3 如果行列式中有两行(列)对应元素相同,
则此行列式等于零. 性质1.2.4 将行列式的某一行(列)中所有元素同乘以k,
4 6
0 2 1 1 r4 5r1 0 2 1 1
5 1 3 3
0 16 2 7
1 3 1 2
1
r2 r3 0 2 1 1 r3 4r2 0
0 8 4 6 r4 8r2 0
0 16 2 7
0
40.
3 2
1 1
2 1
r4
5 4
r3
1 0
0 8 10
0
0 10 15
0
3 1 2 2 1 1
ai 2 kai2 a j2
ain kain a jn
an1 an2
ann
an1
an 2
ann
山东财经大学数学与数量经济学院
注 该性质是计算行列式一种常用方法,为此做如下约定:
1.交换i, j两行(列),表示为: i
j
2.第i行(列)乘以k,表示为: k i 3.第i行(列)乘k后加到第j行(列),表示为: k i j 4.对行(列)使用行列式性质写在等号上面(下面).
0 8 10 5
0 02
山东财经大学数学与数量经济学院
0 ②3+③ 1 2 2
=
5 0
0
7 12
0 0 3 1
1201
0 ④(2)③ 1 2 2
=
5 0
0
1
14
0 0 3 1
120 1
0 ③(3)④ 1 2 2 51 (1)1 (43) 215
=
5 0
0
1
14
0 0 0 43
说明:计算行列式时,利用行列式的性质将行列式化为上(下)三
角形行列式,由三角形行列式等于主对角线上元素的乘积求出行列式的 值,是计算行列式的基本方法之一。
1 1 0 11
山东财经大学数学与数量经济学院
12 0 1
例1.2.3 计算行列式D 2
3
10
0 .
0 3 5 18
5 10 15 4
1201
= 解 D
2 5
3
20
③5 0 3 1 18
5 10 3 4
1201
①(- 2)+②
①(-5)+④ 0 1 2 2
=
5 0
3
1 18
0 0 3 1
1201
a31 a32 a33
522 3 1 5 26
山东财经大学数学与数量经济学院
性质1.2.6 若行列式的某一行(列)中所有元素都是两项和, 则该行列式可表为两个行列式相加,即
a11
a1n
a11
a1n a11
a1n
bi1 ci1
bin cin bi1
bin ci1
cin
an1
ann
an1
ann an1
ann
注 该性质可以推广到某行(列)每个元素为m项和的情形中.
山东财经大学数学与数量经济学院
性质1.2.7 将行列式中某一行(列)的所有元素都乘以数k后 加到另一行(列)的对应元素上,行列式值不变. 即
a11 a12
a1n
a11
a12
a1n
ai1 ai2 a j1 a j2
ain
ai1
a jn kai1 a j1
DT a12 a22
an 2
an1 an2
ann
a1n a2n
ann
行列式DT 称为D的转置行列式.
性质1.2.1 对任何行列式D,均有DT =D. 注 行列式的行具有的性质,它的列也具有相同性质.
山东财经大学数学与数量经济学院
性质1.2.2 行列式两行(列)互换,其值变号. 即
a11 a12
a1n
山东财经大学数学与数量经济学院
1 a1 例1.2.2 计算行列式 1 a2
1 a3
2 a1 2 a2 2 a3
3 a1 3 a2 . 3 a3
1 a1 2 a1 1
= 解 D
1 a2 2 a2 1
(1)②+③ 1 a3 2 a3 1
1 a1
= 1 a2
(1)①+② 1 a3
11
山东财经大学数学与数量经济学院
例2 计算行列式
0 1 1 2 1 1 0 2 1 1 0 2
1 D
1
1 2
0 1
2 0 0 1
1 2
1 1
20
0
0
1 1
1 1
2 2
2 1 1 0 2 1 1 0 0 3 1 4
交换第一行和第二行 第1行加到第3行 第1行乘以-2加到第4行
1 1 0 2 1 1 0 2
a13 2a11
2a21 5 2 2 a23
2 a12 3 2 a22
a11 a21
3
a33
2 a32
a31
a33
3 2
a32
a31
3 a33 2 a32 a31
5 2 2
3 2
a13 a23
a12 a22
a11 a21
5
2
2
3 2
(1)
a11 a21
a12 a22
a13 a23
a33 a32 a31
a11 例1.2.1 设 a21
a12 a22
a13 a23
1 6
,求
10a13 2a23
15a12 3a22
10a11 2a21 .
a31 a32 a33
3
a33
2 a32
a31
山东财经大学数学与数量经济学院
3
10a13 15a12 2a23 3a22
10a11
2a13
2a21 5 2a23
3a12 3a22
等于用这个数k乘该行列式.即
a11 a12
a1n
a11 a12
a1n
kai1 kai2
kain k ai1 ai2
ainΒιβλιοθήκη an1 an2ann
an1 an2
ann
山东财经大学数学与数量经济学院
性质1.2.5 若行列式中有两行(列)的对应元素成比例, 则此行列式等于零.
推论1.2.1 若行列式中某一行(列)所有元素全是零, 则此行列式等于零.
第二节 行列式的性质
直接用定义计算行列式是很麻烦的事,本节要导出行列 式运算的一些性质,利用这些性质,将使行列式的计算大为 简化。
要求:证明不重要,但必须记住性质并用它们来计算行列式。
山东财经大学数学与数量经济学院
§1.2 行列式的性质
a11 a12
a1n
D a21 a22
a2n
a11 a21
an1