曲线运动知识点总结

合集下载

高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_高中物理曲线运动这一章节主要包括:曲线运动特点、曲线运动中矢量的分解、平抛运动、圆周运动、生活中的应用等,下面是有关这一章节内容的知识点总结。

第一节曲线运动1、曲线运动的速度方向(1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向.(2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动2.物体做曲线运动的条件(1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动.(2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上(3)物体的运动状态是由其受力条件及初始运动状态共同确定的.物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。

两个互成角度的直线运动的合运动是直线运动还是曲线运动?决定于它们的合速度和合加速度方向是否共线(如图所示)。

常见的类型有:⑴a=0:匀速直线运动或静止。

⑵a恒定:性质为匀变速运动,分为:① v、a同向,匀加速直线运动;②v、a反向,匀减速直线运动;③v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。

)⑶a变化:性质为变加速运动。

如简谐运动,加速度大小、方向都随时间变化。

物体运动形式与其受力条件及初始运动状态的关系受力条件力与初速度方向在一直线(或初速度为零)力与初速度方向不在一直线恒力匀变速直线运动匀变速曲线运动匀加速直线运动特例:自由落体运动匀减速直线运动特例:竖直上抛运动平抛运动斜抛运动变力加速度改变的直线运动加速度改变的曲线运动简谐运动匀速圆周运动合力为零静止或匀速直线运动二、运动的合成和分解1、合运动和分运动当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者实际发生的运动称作合运动,后者则称作物体实际运动的分运动.2、运动的合成和分解的概念已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法.3.运动的合成和分解的应用(1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差.运动的合成与分解遵循如下原理:①独立性原理:构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律进行,不会因有其他分运动的存在而发生改变.②等时性原理:合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.③矢量性原理:描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量的运算.(2)合运动的性质可由分运动的性质决定:两个匀速直线运动的合成仍是匀速直线运动;匀速直线运动与匀变速直线运动的合运动为匀变速运动;两个匀变速直线运动的合运动是匀变速运动.(3).过河问题如右图所示,若用v1表示水速,v2表示船速,则:①过河时间仅由v2的垂直于岸的分量v 决定,即,与v1无关,所以当v2 岸时,过河所用时间最短,最短时间为也与v1无关。

曲线运动知识点总结

曲线运动知识点总结

例、如图为平抛运动轨迹的一部分,
已知条件如图所示。 求: v0 和 vb
S=VoT h2-h1=gT2 Vby=( h2+h1)/2T
a
h1
b
h2 c
Vb ?
v2 0
?
v2 by
ss
四、匀速圆周运动
1、概念: 相等的时间内通过的圆弧长度相等
2、快慢的描述
1)线速度v
v? ??
?t
2)角速度 ? 3) 周 期 T
? 刚好等于即零,小球m的g重力? 提m供v其0 2做圆周运动的向心力。 r
式中的v0小球通过最高点的最小速度,通常叫临界速度 ? ②能过最高点的条件:v>v0,此时绳对球产生拉力F ? ③不能过最高点的条件:v<v0,实际上球还没有到最高
点就脱离了轨道。
(2)有物体支撑的小球在竖直平面内做圆周 运动的情况:
4.做曲线运动的物体所受合外力的方向指 向曲线弯曲的一侧。物体做曲线运动的轨 迹一定夹在合外力的方向与速度方向之间。
5.速率变化情况判断: ①当合外力方向与速度方向的夹角为 锐角时,物体的速率增大; ②当合外力方向与速度方向的夹角为 钝角时,物体的速度减小; ③当合外力方向与速度方向垂直时,物 体的速率不变。
(2)等时性:合运动与各分运动 时发生,同时进行,同时结束,经历相 等时间。
(3)等效性:各分运动叠加起来与合运 动有相同的效果
(4)同一性:合运动与各分运动,是指 同一物体参与的分运动和实际发生的运 动。
3、运动的合成与分解,都遵守平行四边 形法则。
船过河模型
? 处理方法:
小船在有一定流速的水中过河时, 实际上参与了两个方向的分运动, 即随水流的运动 (水冲船的运动 )和 船相对水的运动,即在静水中的船 的运动(就是船头指向的方向), 船的实际运动是合运动。

曲线运动知识点总结

曲线运动知识点总结


抛物线切线方向时,物体可能飞离抛物
线轨迹
曲线运动的混沌现象
与预测
• 曲线运动的混沌现象:物体在曲线运动中,由于受到复杂的合外
力作用,物体的运动状态难以预测
• 如三体运动,由于受到太阳、地球、月球之间的复杂引力作
用,三体运动呈现出混沌现象
• 如大气层中的气流运动,由于受到地球引力和大气压强的复杂
作用,气流运动呈现出混沌现象
在变化
曲线运动的最大速度与最小速度
曲线运动的最小速度:物体在曲线运动中,速度达到最小值时的速度
• 如圆周运动,最小速度为v<sub>min</sub> = v,其中v为物体沿圆周切线方向的速度
• 如抛物线运动,最小速度出现在抛物线顶点,速度大小为v<sub>min</sub> = v - gt
曲线运动的最大速度:物体在曲线运动中,速度达到最大值时的速度
曲线运动的向量表示:用向量表示物体的位置、速
度、加速度等物理量
曲线运动的向量表示方法:
• 如位置向量:r = (x, y)
• 可以用向量表示物体的运动状态,如
• 如速度向量:v =
速度、加速度等
(v<sub>x</sub>,
• 可以用向量运算表示物体受到的合外
v<sub>y</sub>)
力、合力矩等
• 曲线运动的研究有助于我们更好地解决工程技术中的实际问题,
提高工程质量和效率
曲线运动在生物学中的应用
• 曲线运动在生物学中的应用广泛,如动物迁徙、植物生长等
• 如鸟类迁徙,研究鸟类的迁徙路线,揭示鸟类迁徙的规律和原

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结一、曲线运动的基本规律1. 曲线运动的概念曲线运动是指物体在一定时间内沿着曲线路径运动的现象。

在这种运动过程中,物体的速度和加速度都是随时间变化的。

因此,曲线运动是一种复杂的运动形式,需要通过物理学知识进行分析和研究。

2. 曲线运动的基本特征曲线运动有许多与之相关的基本特征,例如曲线的凹凸性、切线与速度、速度与加速度的关系等。

通过对这些基本特征的分析,可以更好地理解和解释曲线运动的规律和特点。

3. 曲线运动的描述方法曲线运动的描述主要有两种方法,一种是参数方程法,另一种是运动学方程法。

这两种方法可以通过不同的数学和物理模型对曲线运动进行描述和分析,从而得到更准确的运动规律和轨迹。

二、曲线运动的数学模型1. 参数方程参数方程是一种描述曲线运动的数学方法。

它将物体的运动状态描述为时间t的函数,并通过参数化的形式来描述曲线轨迹。

参数方程可以更直观地展现出曲线运动的规律,对于复杂的曲线路径来说,参数方程更容易进行运动规律的分析。

2. 运动学方程运动学方程是描述曲线运动的另一种数学模型。

它是根据牛顿运动定律和匀变速直线运动的知识推导出来的。

通过运动学方程可以得出物体在曲线轨迹上的速度和加速度的关系,从而对曲线运动进行定量的分析和计算。

三、曲线运动的速度和加速度1. 曲线运动的速度在曲线运动中,物体的速度是随着时间和位置的变化而变化的。

通常情况下,物体的速度可以分解为切向速度和法向速度两个分量。

切向速度是描述物体在曲线路径上的速度,而法向速度则是描述物体在曲线路径上的加速度。

这两个分量结合起来可以更全面地描述曲线运动中的速度规律。

2. 曲线运动的加速度曲线运动的加速度也是随着时间和位置的变化而变化的。

在曲线路径上,物体的加速度可以分解为切向加速度和法向加速度两个分量。

切向加速度是描述物体在曲线路径上的加速度,而法向加速度则是描述物体在曲线路径上的加速度。

这两个分量结合起来可以更全面地描述曲线运动中的加速度规律。

物理曲线运动知识总结

物理曲线运动知识总结

物理曲线运动知识总结曲线运动是物理学中的一个重要概念,它描述了物体沿着曲线路径运动的规律。

在曲线运动中,物体的速度和加速度的方向都会随着时间的推移而改变,因此需要使用向量的概念来进行描述。

下面是对物理曲线运动知识的详细总结。

一、基本概念1. 曲线运动:物体在空间中沿着曲线路径运动,而不是直线运动。

2. 位移:物体从起始位置到终止位置的位置变化量。

位移是一个向量,具有大小和方向。

3. 速度:物体的位置随时间变化的快慢。

平均速度等于位移与时间的比值,即v = Δx / Δt。

瞬时速度是在某一时刻的速度。

4. 加速度:物体速度随时间变化的快慢。

平均加速度等于速度变化量与时间的比值,即a = Δv / Δt。

瞬时加速度是在某一时刻的加速度。

5. 弧长:沿曲线所测得的长度,通常用S表示。

二、曲线运动的描述1. 参数方程:曲线运动可以通过使用参数方程来进行描述,其中物体的横坐标和纵坐标都是时间的函数。

例如,对于平面上的曲线运动,参数方程可以写为x = f(t)和y = g(t),其中f(t)和g(t)是时间的函数。

2. 切线:曲线上某一点的切线是通过该点并与曲线相切的一条直线。

切线的斜率等于该点的瞬时速度,切线的方向与速度的方向相同。

3. 法线:曲线上某一点的法线是与该点的切线垂直的一条直线。

法线的斜率等于该点的瞬时加速度,法线的方向与加速度的方向相同。

4. 曲率:曲线运动中,曲线的曲率表示了曲线弯曲程度的大小。

曲线的曲率等于单位切线矢量相对于弧长的导数。

三、常见的曲线运动1. 直线运动:当物体在曲线运动中的加速度为零时,物体沿着直线运动。

在直线运动中,物体的速度和位移的方向保持不变。

2. 圆周运动:物体沿着一个确定的圆形路径运动。

在圆周运动中,物体的速度的大小保持不变,但方向不断改变,所以速度是一个向量。

3. 抛体运动:物体受到水平速度和竖直加速度的双重影响,运动轨迹是一个抛物线。

在抛体运动中,物体的速度在水平方向上保持不变,在垂直方向上受到重力加速度的影响。

高中物理必修二曲线运动知识点归纳

高中物理必修二曲线运动知识点归纳

必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。

曲线运动知识归纳

曲线运动要点归纳要点一曲线运动的特点1.轨迹是一条曲线.2.曲线运动的速度方向(1)质点在某一点(或某一时刻)的速度方向沿曲线在该点的切线方向.(2)曲线运动的速度方向时刻改变.速度是描述运动的一个重要的物理量,它既有大小,又有方向.如果物体在运动过程中只有速度大小的改变,而速度方向不变,那么物体只能做直线运动.因此,假设物体做曲线运动,说明物体的速度方向时刻变化.3.运动性质是变速运动(1)无论物体做怎样的曲线运动,由于轨迹上各点的切线方向不同,物体的速度时刻发生变化,因此,曲线运动一定是变速运动.(2)曲线运动是否为匀变速运动决定于物体是否受到恒力作用,如抛体运动中,由于物体只受重力作用,其加速度不变,故物体做匀变速运动,这与物体的运动轨迹无关.要点二物体做曲线运动的条件1.曲线运动是变速运动,凡物体做变速运动必有加速度,而加速度是由于力的作用产生的,因而做曲线运动的物体在任何时刻所受合外力皆不为零,不受力的物体不可能做曲线运动.2.当物体受到的合外力的方向与运动方向在一条直线上时,运动方向(速度方向)只能沿该直线(或正或反),其运动依然是直线运动.3.当物体受到合外力的方向跟物体的速度方向不在一条直线上,而是成一定角度时,合外力产生的加速度方向跟速度方向也成一定角度.一般情况下,这时的加速度不仅反映了速度大小的变化快慢,还包含了速度方向的变化快慢.其运动必然是曲线运动.4.当合外力为恒力(F与v不共线)时,加速度也恒定,物体的速度均匀变化,物体做匀变速曲线运动;当合外力变化时,物体做非匀变速曲线运动(变加速度的曲线运动).应该注意的是,曲线运动不一定要求合外力变化.因此,一个物体是否做曲线运动,与力的大小及力是否变化无关,关键是看合外力的方向与速度方向是否在同一直线上.在比拟中可知:(1)在变速直线运动(加速直线运动或减速直线运动)中,加速度方向(即合外力方向)与速度方向在同一直线上,加速度只改变速度的大小,不改变速度的方向.(2)在曲线运动中,加速度方向(合外力方向)与速度方向不在同一条直线上,加速度可以改变速度的大小,也可以改变速度的方向.1.运动轨迹和外力、速度的关系(1)把加速度和合力F都分解到沿曲线切线和法线(与曲线切线垂直)方向上,沿切线方向的分力F1使质点产生切线方向的加速度a1,当a1和v同向时,速度增大,如图5-1-3甲所示,此时的合力方向一定与速度方向成锐角;当a1和v反向时,速度减小,如图乙所示,此时的合力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明a1=0,即F1=0,此时的合力方向一定与速度方向垂直.沿法线方向的分力F2产生法线方向上的加速度a2,它使质点改变了速度的方向.由于曲线运动的速度方向时刻在改变,合力的这一作用效果对任何曲线运动总是存在的.可见,在曲线运动中合力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因.假设a1=0,那么物体的运动为匀速率曲线运动;而假设a2=0,那么物体的运动为直线运动.(2)运动轨迹确实定①物体的轨迹与初速度和合外力有关,物体的运动轨迹一定夹在合外力与速度方向之间.②运动轨迹与速度相切,并偏向合外力一侧,因此轨迹是平滑的曲线.(3)合外力方向确实定物体所受合外力的方向指向轨迹的弯曲方向的内侧.即运动轨迹必夹在速度方向与合力方向之间.2.力与运动的关系(1)认识这个问题,应分清物体做曲线运动的条件和做匀变速运动的条件,物体做曲线运动的条件是加速度与初速度不在同一直线上,而做匀变速运动的条件是加速度的大小和方向恒定不变,二者之间没有必然联系.(2)物体运动的形式,按速度分类有匀速和变速;按径迹分类,有直线和曲线,其原因取决于物体的初速度v0和合外力F,具体分类如下:①F=0,静止或匀速运动.②F≠0,变速运动.③F为恒量,匀变速运动.④F为变量,非匀变速运动.⑤F和v0方向在同一直线上,直线运动.⑥F和v0方向不在同一直线上,曲线运动.归纳总结1.物体做曲线运动时,其速度方向是沿曲线上该点的切线方向.2.速度方向时刻改变,即速度一定时刻改变,所以曲线运动一定是变速运动.3.速度变化包括大小和方向的变化,故变速运动包括曲线运动与直线运动.平抛运动的特点及规律1.平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动〔运动的合成〕2. 运动的规律 ⎪⎩⎪⎨⎧==2021)1(at y t v x⎪⎪⎩⎪⎪⎨⎧+===220)2(y x y x v v v gt v v v平抛特点总结:1.运动时间只由高度决定设想在高度H 处以水平速度v o 将物体抛出,假设不计空气阻力,那么物体在竖直方向的运动是自由落体,由公式可得:,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。

曲线运动知识点详细归纳

第四章曲线运动第一模块:曲线运动、运动的合成和分解『夯实基础知识』■考点一、曲线运动1、定义:运动轨迹为曲线的运动。

2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。

3、曲线运动的性质由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。

4、物体做曲线运动的条件(1)物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。

(2)物体做平抛运动的条件物体只受重力,初速度方向为水平方向。

可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。

(3)物体做圆周运动的条件物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。

5、分类⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。

⑴非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。

■考点二、运动的合成与分解1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。

运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。

2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。

3、合运动与分运动的关系:■运动的等效性(合运动和分运动是等效替代关系,不能并存);■等时性:合运动所需时间和对应的每个分运动时间相等■独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。

曲线运动知识点总结最全版

曲线运动知识点总结一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。

2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。

4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。

若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。

5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。

6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。

那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。

二、运动的合成与分解的方法1.运动的合成与分解:包括位移、速度、加速度的合成和分解.它们和力的合成与分解一样都遵守平行四边形定则,由已知的分运动求跟它们等效的合运动叫做运动的合成,由已知的合运动求跟它等效的分运动叫做运动的分解.2.运动分解的基本方法根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解.★两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定.(1).根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变速运动;若合加速度变化(包括大小或方向)则为非匀变速运动.(2).根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速度的方向在同一直线上则为直线运动,否则为曲线运动.①两个匀速直线运动的合运动仍然是匀速直线运动.②一个匀速直线运动与一个匀变速直线运动的合运动仍然是匀变速运动,当二者共线时为匀变速直线运动,不共线时为匀变速曲线运动.③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动.④两个匀变速直线运动的合运动仍然是匀变速运动;若合初速度与合加速度在同一直线上,则合运动为匀变速直线运动,如图甲所示;不共线时为匀变速曲线运动,如图乙所示.三、小船过河问题1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间mindtv=船,合速度方向沿v合的方向。

曲线运动知识点总结

曲线运动知识点总结曲线运动是物体在运动过程中沿曲线轨迹进行的运动。

它是力学的一个重要分支,研究物体在曲线路径下的加速度、速度、位移等运动特征。

1. 引言曲线运动涉及的知识点较多,包括曲线运动的基本概念、相关公式以及常见的曲线运动类型。

理解并掌握这些知识点,有助于我们更好地分析和解决与曲线运动相关的问题。

2. 基本概念曲线运动涉及的基本概念包括位移、速度和加速度。

- 位移:物体从起始位置到终止位置的位移量,通常用Δx表示。

- 速度:物体单位时间内位移的变化量,即位移的导数。

平均速度是位移与所用时间的比值,即Vav=Δx/Δt。

而瞬时速度是指某一瞬间的速度。

曲线运动中的速度通常指瞬时速度。

- 加速度:速度单位时间内的变化量,即速度的导数。

平均加速度是速度的变化量与所用时间的比值,即Aav=Δv/Δt。

而瞬时加速度是指某一瞬间的加速度。

3. 相关公式曲线运动中,我们常用到的相关公式有:- 位移与速度之间的关系:Δx=Vav * Δt- 速度与加速度之间的关系:Δv=Aav * Δt- 位移与加速度之间的关系:Δx=(Vav + V'av) * Δt / 2(其中V'av表示速度变化)- 速度与加速度之间的关系:Δv=(Aav + A'av) * Δt / 2(其中A'av表示加速度变化)- 位移与加速度之间的关系:Vav^2=V^2+2Aav * Δx(其中V表示初始速度)- 运动时间与加速度之间的关系:Δt=(V - V0) / Aav(其中V表示结束速度,V0表示起始速度)4. 常见的曲线运动类型曲线运动可以分为直线运动和曲线运动两类。

- 直线运动:物体沿直线运动,例如自由落体运动、匀速直线运动、加速度直线运动等。

- 曲线运动:物体沿曲线运动,例如圆周运动、抛体运动、行星运动等。

曲线运动需要特殊的分析方法,例如极坐标法、正交坐标法等。

5. 圆周运动圆周运动是物体在半径相等的圆周上运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线运动知识点总结
一、曲线运动
1 •曲线运动的特征
(1) 曲线运动的轨迹是曲线。

(2) 由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所
以说:曲线运动一定是变速运动。

(3) 由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)
曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2 •物体做曲线运动的条件
(1) 从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2) 从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3•匀变速运动:加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4. 质点运动性质的判断方法:根据加速度是否变化判断质点是做匀变速运动还是非匀变速运动;由加速度(合外力)的方向与速度的方向是否在同一直线上判断是直线运动还是曲线运动.质点做曲线运动时,加速度的效果是:在切线方向的分加速度改变速度的大小;在垂直于切线方向的分加速度改变速度的方向.
(1) a(或F)跟v在同一直线上—直线运动:a恒定—匀变速直线运动;a变化—变加速直线运动.
(2) a(或F)跟v不在同一直线上—曲线运动:a恒定—匀变速曲线运动;a变化—变加速曲线运动.
5•曲线运动的合力、轨迹、速度之间的关系
(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度
的方向
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)
二、抛体运动
1. 抛体运动的定义:将物体以一定的初速度向空中抛出,仅在重力的作用下物体所做的运动叫做抛体运动.
2. 抛体运动的条件:
(1)有一定的初速度(v0工0);
(2)仅受重力的作用(F合二G,不受其他力的作用).
3. 常见的抛体运动:
(1)竖直上抛运动:初速度vO与重力G方向相反.
(2)竖直下抛运动:初速度vO与重力G方向相同.
⑶平抛运动:初速度vO与重力G方向垂直.
(4) 斜抛运动:初速度vO与重力G方向既不平行也不垂直,有一定的夹角.
4 •抛体运动属于理想化运动模型,实际上物体总要受到空气阻力的作用;抛体运动的初速度方向可以是任意的,所以抛体运动既可以是直线运动也可以是曲线运动.
三、运动的合成与分解
1 •分运动和合运动:一个物体同时参与几个运动,参与的这几个运动都是分运动,物体的实际运动就是合运动•
2 •运动的合成:已知分运动求合运动,叫做运动的合成.
(1) 同一条直线上的两个分运动的合成:同向相加,反向相减。

(2) 不在同一条直线上的两个分运动合成时,遵循平行四边形。

3 •运动的分解:已知合运动求分运动,叫做运动的分解.
(1) 运动的分解是运动的合成的逆运算•
(2) 分解方法:根据运动的实际效果分解或正交分解。

4 •合运动与分运动的关系:
(1)运动的独立性:一个物体同时参与两个(或多个)运动,其中的任何一个运动并不会受其他分运动的干扰,而保持其运动性质不变,这就是运动的独立性原理•虽然各分运动互不干扰,但是它们共同决定合运动的性质和轨迹.
(2)运动的等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).
(3) 运动的等效性:各分运动叠加起来与合运动有相同的效果.
(4) 运动的同一性:各分运动与合运动,是指同一物体参与的分运动和实际发生的运动

不是几个不同物体发生的不同运动.
四、竖直方向的抛体运动
(一)、竖直下抛运动
1. 概念:把物体以一定初速度vO沿着竖直方向向下抛出,仅在重力作用下物体所做的运动叫做竖直下抛运动.
2. 条件:①V O M 0且方向竖直向下;②F合=G( a=g)
3. 运动性质:匀加速直线运动.
4. 运动规律:取初速度V。

的方向(竖直向下)为正方向
速度公式:v t= v°+ gt;
位移公式:h= v o t+ 2gt2;
2 2
v t —v°= 2g h .
5. 竖直下抛运动可以看作是在同一直线上
动.
6. 竖直下抛运动的v —t图象:
V O为抛出时的初速度,
斜率为重力加速度g,
直线与坐标轴所围面积为物体下抛位移的大小
(二)、竖直上抛运动
1.概念:把物体以一定初速度V O沿着竖直方向向上抛出,仅在重力作用下物体所做的
运动叫做竖直上抛运动. 2•条件:①初速度:V °M 0且方向竖直向上; ②F 合=G ( a=g )
3.运动性质:初速度v o M 0、加速度a 二—g 的匀变速直线运动(通常规定初速度V 。

的 方向为正方向)
4 .竖直上抛运动的特殊规律(对称性): ⑴时间对称:(t ±=t 下)
上升过程和下落过程经过同一段高度所用时间相等 • ⑵速度对称:(V 上=-V 下)
上升过程和下落过程经过同一位置时速度大小相等、方向相反 • 5. 竖直上抛运动的几个特征量: ① 上升时间:t 上=V o / g ② 下落时间:t 下=V o / g
③ 空中运动时间:t 总=t 上+t 下=2v o / g
2
④最大高度:h m = v o /2g
6. 研究方法:
(1)分段分析法:将竖直上抛运动分为 上升过程和下降过
程。

①上升过程是匀减速直线运动, 取竖直向上为正方向,a=- g.
②下降过程是自由落体运动, 取竖直向下
为正方向,a=g .
(2)整体分析法:将全过程看成是初速度为 重力加速度g 匀变速直线运动,取V o 为正方向
注意:①S 为正,表示质点在抛出点的上方, s 为负表示在抛出点的下方•
②V 为正,表示质点向上运动, V 为负表示质点向下运动。

7. 竖直上抛运动的v-t 图象: ① 斜率:k=-g
② 上升时间:t ±=V o / g ③ 最大高度:h m = V o /2g ④ 落地时间:t =2t 1=2v o /g ⑤ 落地速度:V t = - V 0 ⑥ 落地位移:h 总=0 8. 竖直上抛的h-t 图象:
P =
擇= 占-
=f
片# —言乌产 -b = —2k
Z 二
=
N
=N 宕齐
加速度是
a=-g 。

1 2

严:一W = —2驴
V 、 (取竖直向上为正方

五、平抛运动
1、定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动, 叫平抛运动。

2 •平抛运动的条件: (1)物体具有水平方向的初速度; ⑵ 仅受重力的作用(F 合二G).
3 .平抛运动的性质: 匀变速曲线运动,a=g. 4.研究平抛运动可以从水平方向和竖直方向研究:
(1) 水平方向:初速度为V 。

,物体不受力,即Fx 二0,物体由于惯性而做匀速直线运动. (2) 竖直方向:初速度为零,物体受重力的作用, a = g ,物体做自由落体运动. 5.平抛运动的运动规律:
(1) 平抛运动中,某一时刻速度方向与水平方向 的夹角为a ,位移方向与水平方向夹角为B ,则 有 tan a= 2tan 0 .
(2) 做平抛运动的物体,任意时刻合速度方向的 反向延长线与x 轴的交点为此时刻水平方向位 移的中点•
7 — -
6.结论:
(1)平抛运动飞行时间:
Vx
仅由高度决定,与初速度无关。

(2)水平射程: X — 一

由初速度和高度共同决定。

⑶落地速度:
匕—Q 代+ 2助
由初速度和高度共同决定。

(4)轨迹方程: 平抛运动的轨迹为抛物线,其轨迹方程为
3 •两个推论:
如图所示,物体从O 点以水平初速度V 0 经过时间t 后轨迹上的一点,位移为 B 分别为s 、 s ,
V 与水平方向的夹角.
速度:
V x V y
V o gt
合速度:V .「V x 1 2
方向:
ta n
V y V x
gt V o
位移
V o t
1 .
2 2gt
合位移:
x 2
y
方向:
ta n
1 gt
2 V o
2 V
y。

相关文档
最新文档