数制的概念

合集下载

计算机导论第二章__数制

计算机导论第二章__数制

结果是 (001001001100)2.
23:34
43
二进制-八进制的转换 Binary-octal conversion
Figure 2.11 二进制与八进制的互换
23:34
44
Example 2.21
如何将二进制数(101110010)2转换为八进制数. 解: 每3位一组转换为1位八进制数码. 对照每3位一组等量转换得到八进制数. 101 110 010 结果是 (562)8.
数制字母。
23:34
6
进制 二进制 八进制 十进制 十六进制
符号 B (Binary) O (Octal) D (Decimal)
数码 0~1 0~7 0~9
H (Hexadecimal) 0~9,A~F
23:34
7
十进制系统The decimal system (以10为底)
十进制来源于拉丁词根decem (ten). 在该系统中,底b = 10 , 用10个符号来表示一个数
23:34
35
Example 2.14
将十进制数0.625转换为二进制数.
该例子显示小数部分如何计算.
23:34
36
Example 2.15
如何将0.634转换为八进制数且精确到小数四位.
结果是 0.634 = (0.5044)8. 注意,乘以8 (以8为底).
23:34
37
Example 2.16
相等的十进制数为N = 512 + 128 + 40 + 6 = 686.
23:34
22
四种位置化系统总结
表2.1是四种位置化系统小结.
23:34
23
表2.2显示了数字0到15在不同的系统中是如何表示的.

计算机中的数值和编码

计算机中的数值和编码

计算机中的数制和编码一、数制的概念:数制是用一组固定的数字和一套统一的规则来表示数目的科学方法。

按照进位方式计算的数制叫做进位数制。

例如:逢十进一即为十进制,逢二进一为二进制,逢八进一为八进制,逢十六进一为十六进制。

进位计数制有两个要素:基数和权值。

1、基数:它是指各种进位计数制中允许选用基本数码的个数。

例如:十进制的数码有0、1、2、3、4、5、6、7、8、9十个数码,所以十进制的基数为10;二进制的数码有0、1两个数码,所以二进制的基数为2;八进制的数码有0、1、2、3、4、5、6、7八个数码,所以八进制的基数为8;十六进制的数码有0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F十六个数码,所以十六进制的基数为16。

2、权值:每个数码所表示的数值等于该数码乘以一个与数码所在位置相关的常数,这个常数叫权值。

其大小是以基数为底,数码所在位置的序号为指数的整数次幂。

例如:十进制数356.4=3×100+5×10+6×1+0.4=3×102+5×101+6×100+4×10-1(3在百位上,所以3×100=3×102;5是在十位上,所以5×10=5×101;6是在个位上,所以6×1=6×100;0.4为小数,所以0.4=4×10-1)。

二、十进制(D ecimal notation)及其特点:1、两个特点:①、十个数码:0、1、2、3、4、5、6、7、8、9;②、进位方法:逢十进一,借一当十。

(满了10个就得进一位)2、基数:103、按权展开式:任意一个a位整数和b位小数的十进制数D可以表示为:D=D a-1×10a-1+D a-2×10a-2+…+D0×100+D-1×10-1+D-2×10-2+…+D-b×10-b4、十进制在书写中的三种表达方式:128或者128D或(128)10三、二进制(B inary notation)及其特点:1、两个特点:①、两个数码:0、1;②、进位方法:逢二进一,借一当二。

数制转换

数制转换

位权展开概念:某进制数的值都可以表示为各位数码本身的值与 其权的乘积之和。
• 计算器
计数器是系统提供的工具,我 们可以借助它来帮助我们检验数 制转换的结果。从而帮助我们学 习数制转换。
信息存储单位
位:数据信息存储的最小单位。用bit或b表示。 字节:数据存储最常用的单位。用Byte或B表示。 1B=8b • 在实际应用中,字节单位太小,为了方便计算,引入了KB、MB、GB、 TB,它们的换算关系如下: • 1KB=210B=1024B • 1MB=210KB=1024KB • 1GB=210MB=1024MB • 1TB=210GB=1024GB • 习惯上1KB读作1千字节,但这里的“千”并不具有十进制数中“1000” 的含义,它与十进制数中的“1024”等价。
• 国标码基本集中收录了汉字和图像符号共7445个, 分为两级汉字。其中一级汉字3755个,属于常用 汉字,按照汉字拼音字母顺序排序;二级汉字 3008个,属于非常用汉字,按照部首顺序排序; 还收录了682个图形符号。 • 国标码采用两个字节表示一个汉字,每个字节只 使用了低7位。这样使得汉字与英文完全兼容。 但当英文字符与汉字字符混合存储时,容易发生 冲突。所以人们把国标码的两个字节的高位置1, 作为汉字的机内码使用。
p q r s t u v w x y z {
C
D E F
1100
1101 1110 1111
FF
CR SO SI
FS
GS RS US

. /
<
= > ?
L
M N O
\
] ↑ ←
l
m n o
|
}

DEL
3、汉字编码

04 数制定义和转换

04 数制定义和转换

39473.465D= 3*104+9*103+4*102+7*101+3*100 +4*10-1+6*10-2+5*10-3
1 0 1 1 1. 1 0 1B i = 4 3 2 1 0 -1 -2 -3 基数 按权展开 2
2-1 2-2 2-3 24 23 22 21 20 权
10111.101D=1*24+0*23+1*22+1*21+ 1*20+1*2-1+0*2-2+1*2-3 =16+4+2+1+0.5+0.125=23.625
举例
①35.625D转换为二进制。 ②428.254D转换为十六进制。
③453.654D转换为八进制。
①35.625D转换为二进制。
解:
(1)整数转换为二进制。
分三步: 2 3 5
余数
1 2 1 7 (1)整数转换为二进制。 1 2 8 0 2 4 (2)小数转换为二进制。 0 2 2 0 (3)写出结果。 2 1 1 0
解:
(2)小数转换为八进制。
0.654 8 × 5.232 8 × 1.856 8 × 6.848
结果:0.654D=0.516Q
③453.654D转换为八进制。
解:
(1)整数转换为八进制。
结果: 453D=105Q
(2)小数转换为八进制。
结果: 0.654D=0.516Q
(3)写出结果。
453.654D=105.516Q
(1)二进制转换为十六进制
2、几种常用的数制小结 (1)
综合上述几种记数制,可以把它们的特点概括为: 每一种记数制都有一个固定的基数R,它的每一位可能取 R个不同的数值; 它是逢R进位的 数制的两种表示方法: 数字后面加大写字母,十进制D,二进制B,八进制Q, 十六进制H 括号外面加下标,记作(N)R,但十进制可以不用下标 及大写字母。 三个概念: 基数:一个记数制所包含的数字符号的个数,用R表示; 权:由位置决定的值叫权,常用Ri表示, i为数所在的位置。 数值的按权展开:各位数码本身的值与其权的乘积之和。 上述三方面内容用表格综合如下

数制的定义

数制的定义

=(?)8
(11 011 111. 011 100)2 100) 3 3 7 .3 4 为八进制的337.34 为八进制的337.34
4. 八进制数转化为二进制数 思想:一位拆三位。 思想:一位拆三位。 方法: 方法:把一位八进制数写成对应的三位二进 制数,然后按权连接即可。 制数,然后按权连接即可。 例5: ( 5
4 2 7 0 )8 = ( ?)2 ( 二进制数转化为十六进制数 思想:四位合一。 思想:四位合一。 方法:以小数点为基准, 方法:以小数点为基准,整数部分从 右至左,小数部分从左至右, 右至左,小数部分从左至右,每四位 一组,不足四位时, 一组,不足四位时,整数部分在高端 补0,小数部分在低端补 。然后,把 ,小数部分在低端补0。然后, 每一组二进制数用一位相应的十六进 制数表示,小数点位置不变,即可。 制数表示,小数点位置不变,即可。
逻辑否定的真值表
逻辑变量 A 0 1 “非”运算结果 非 Y= A 1 0
电 源
A Y
“非”运算 非
4)“异或”运算 ) 异或” 用“⊕”表示“异或”关系 表示“异或” Y=A⊕B= AB+AB ⊕ 运算规则 ① Y=0⊕0=0 ⊕ ② Y=0⊕1=1 ⊕ ③ Y=1⊕0=1 ⊕ ④ Y=1⊕1=0 ⊕
② Y=0 × 1=0, 0∧1=0, 0 1=0 ∧ ③ Y=1 × 0=0, 1∧0=0, 1 0=0 ∧ ④ Y=1 × 1=1, 1∧1=1, 1 1=1 ∧
两个逻辑变量“ 两个逻辑变量“与”运算真值表
逻 辑 变 量 “与”运算结 与 果 A B Y=A × B 0 0 0 0 1 0 1 0 0 1 1 1
? )2
(185)10 =(10111001)2 ) ( )

什么是数制

什么是数制

001100001011.0110111 00 1 4 1 3 3 3 4
.
1413.334Q
把二进制数转换为十六进制时,从小数点所在 位置分别向左向右对每四位二进制位进行分组,不 足时补若干个0,然后从左到右把每组的十六进制 码依次写出,即得转换结果。
001100001011.0110111 0 B 6 E 3 0
• 在计算机中,数是存放在由寄存单元组成 的寄存器中,二进制数码1和0是由寄存器 单元的两种不同的状态来表示的。 • 为了运算的方便,在计算机中常用三种表 示法: 原码 补码 反码
原码表示法
原码表示法在数值前面增加了一位符号位(即最 高位为符号位),该位为0表示正数,该位为1表 示负数,其余位表示数值的大小。 • 例:X= +1011 X= -1011 • 缺点: [X]原=00001011 真值为+11 [X]原=10001011 真值为-11
后存储在计算机内,构成汉字字模库。目的是为了能 显示和打印汉字。
是汉字字形的数字化信息。 汉字的内码是用数字代码来表 示汉字,但是为了在输出时让人们看到汉字,就必须输出汉字 的字形。 在汉字系统中,一般采用点阵 来表示字形。16 * 16点阵字形的字 要使用32个字节(16 * 16/8= 32)存储, 24 * 24点阵字形的字要使用72个字 节(24 * 24/8=72)存储。 一般来说,表现汉字时使用的点 阵越大,则汉字字形的质量也越好, 当然每个汉字点阵所需的存储量也越 大。
1Byte=8Bit
1KB=1024Byte
01001110
1MB=1024KB=220 Byte
1GB=1024MB=230 Byte
1TB=1024GB=240 Byte

数制

数制
返回 关系表
商丘科技职业学院
6. 数制转换 非十进制数之间的转换 数制转换---非十进制数之间的转换 八进制数转换成二进制数
规则:将每位八进制数用三位二进制数表示即可
例十一:将(617.34)8转换成二进制数为: (617.34)8=(110001111.011100)2 思考: 53.1O=(?)B
商丘科技职业学院
2.2 二进制或运算
⑵或运算(OR) “或”运算又称逻辑加,用符号“∨”表示。运算规 则如下。 0∨0 = 0 0∨1 = 1 1∨0 = 1 1∨1 = 1。 即当两个参与运算数的相应码位只要有一个数为1, 1 则运算结果为1,只有两码位对应的数均为0,结果才为0。 例十九:分别求10111001∨11110011与 100010101∨101111100的结果。
例:将十进制数94转换成十六进制数。
十进制数94转换成十六进制数是5E。
返回
商丘科技职业学院
5 . 数制转换 十进制数转换成非十进制数 数制转换---十进制数转换成非十进制数 整数部分(除基取余)
例四:将(25)10转换成二进制数。 例五:将(125)10转换成八进制数。
返回
商丘科技职业学院
5 . 数制转换 十进制数转换成非十进制数 数制转换---十进制数转换成非十进制数 小数部分(乘基取整)
返回
商丘科技职业学院
1. 二进制算术运算
⑴加法运算规则 0+0=0 0+1=1 1+0=1 1 + 1 = 0 (产生进位)
⑵减法运算规则 0 - 0 = 0 0 - 1 = 1 (产生借位)1 - 0 = 1 ⑶乘法运算规则 0×0=0 0×1=0 1×1=1
1-1=0

数制及其转换PPT课件

数制及其转换PPT课件
.
1
1
数制的基本概念
2
数制转换
2
进位计数制
使用有限个基本数码来表示数据,按进位的方法进行 计数,称为进位计数制,简称数制。
• 数码:用不同的数字符号来表示一种数制的数值。 • 基数:某种进位计数制所使用数码个数n,当大于n
时必须进位。 • 位权:一个数字符号处在某个位上所代表的数值是其
本身的数值乘以所数位的一个固定的常数,这个不同 位数的固定常数称为位权。
整数部分为从下往上写:
6 110101
不同进制数之间的转换
1. 十进制转换成二、八、十六进制
小数转换法 “乘基取整”:用转换机制的基数乘以小数部分,直至小数为0或达到转换精 度要求的位数,每乘一次取一次整数,从最高位排到最低位。
如:(0.625)10=( 0.101 )2=( 0.5 )8 = ( 0.A )16
方法:
按权展开,然后按照十进制运算法则求和。
例:(100101) 2=1*25+0*24+0*23+1*22+0*21+1*20 =32+4+1 =(37)10
(123)8=1*82+2*81+3*80=64+16+3=(83) 10
(123)16=1*162+2*161+3*160 =256+32+3 =(291) 10
9
.
10
3.八进制O
• 数码:0~7 基数:8 位权:8i-1、8-i 规则:逢八进一
例:(123.456)8=1*82+2*81+3*80+4*8-1+5*8-2+6*8-3
4.十六进制H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
4
新授
一、数制的概念
按进位的原则进 行计数,称为进位计 数制,简称数制
a
5
二、十进制
1、数码 为了表示十进制中的数,我们
只需用小数点和“0、1、2、3、 4、5、6、7、8、9”这10个符 号,每一个符号称为一个数码, 十进制有十个数码
a
6
2、基数、权、按权展开式
问题1: 332.75中第一个3和第 二个3代表什么? 问题2:332.75中7和5代表什么? 问题3:332.75可表示为什么?
1
2.1.1 数制的 概念 a
2 a
导入
3
生活中我们经常用数字进行计数, 例如:1、23、13.1、等都是逢十 进一,像计时的时间是六十分钟一 个小时是逢六十进一,每天有24小 时,是逢24进一,每周有7天是逢 七进一,一年是12个月是逢12进一, 我们经常见到的逢十进一的数就叫 十进制数,逢六进一就是六十进制。
a
7
a
8
a
练一练
9
分别写出下列十进制数的 按权展开式
3456.7 21.357
900,12
503.4
a
三、二进制
10
a
11
a
练一练
12
a
三、八进制
13
a
14
四、十六进制
a
15
a
练一练
16
a
17
总结
数制 数、4、5、6、7、8、9” 制
逢十进一
10
二进 0和1 制
逢二进一
2
八进 0、1、2、3、4、5、6、7 制
逢八进一
8
十六 0、1、2、3、4、5、6、7、8、
9、A、逢十六进一 16
进制 (10)B(11)、C(12)、D(13)、E
(14)、F(15)
a
18
作业
习题 第1题
a
相关文档
最新文档