数制及进制转换ppt课件

合集下载

数制及进制转换 ppt课件

数制及进制转换  ppt课件
ppt课件 2
利用基数和“权”的概念,可以把一 个R进制数D用下列形式表示:
ppt课件
3
其中R——基数; n——整数部分的位数; M——小数部分的位数; ai——R进制中的一个数字符号;
ppt课件
4
1.1
二进制
所谓二进制(Binary): ,就是基数R 为2的进位计数制,它只有0和1两个数码 符号。 二进制按权展开式为: 如二进制数1011.101可表示为:
ppt课件 23
如:将十六进制数2A.816转换成十进制 数。 2A.816=2*161+A(10)*160+8*16-1 =32+10+0.5=42.510 (2)十进制转换为其他进制 整数转换:采用基数连除法,即除基取余 法。 纯小数转化:采用基数连乘法,即乘基取 整法。
ppt课件 24
整数转换
29
如:将十进制数17.2510转换为等价的二 进制数小数
结果:(17.25)10=(10001.01)2
ppt课件 30
四.计算机中的常用编码(BCD码)
BCD码是二进制形式的十进制码,也称为 二-十进制码。 压缩BCD码又称8421码,它是用四位二进 制编码来表示一位十进制符号。 如:十进制数124的压缩BCD码为0001 0010 0100 十进制数3.26的压缩BCD码为0011.0010 0110
ppt课件 31
十进制数与二、八、十六进制数对照表
ppt课件
32
ppt课件
5
1011.101=1*23(位权) +0*22+1*21+1*20+1*2-1+0*2-2+1*23=8+0+2+1+0.5+0+0.125=11.625 计算机采用二进制编码的好处 (1)运算操作方便,通用性强 (2)物理上容易实现,可靠性强

二进制、数制及其相互转换PPT课件

二进制、数制及其相互转换PPT课件

• ②加1,得100000000,进位1被丢弃(因为一个字节只
能容纳8位,28只能被存储为00000000),因此-0的补码
.
38

负数:最高位为1,其余各位为原码的相应位取反,然后对整
个数加1。例如:

-7 的原码:
10000111

-7 的补码:第①步
变,对其余各位取反。)
11111000(最高位不

第②步
+1

结果
11111001
• 即对+7各位取反加1。
• 数值原码反码补码
.
39
• 由负数的补码求其原码,只须按由负数的原码求其补码的
• N2 = B7B6B5 B4 B3B2B1B0 •
• N16 = H1
H0
.
23
• 例:(1111111000111.100101011)2
(
)16
• 解:
• 0001 1111 1100 0111.1001 0101 1000
• 1 F C 7. 9 5 8
• 答 : (1111111000111.100101011)2 = (1FC7.958)16
80 = 2560 + 384 + 56 + 5 = (3005)10
.
13
• (3)(3B)16 ( )10 • (3B)16 = 3 161 + 11 160 = 48 + 11
= (59)10 • (4)(1011.11)2 ( )10 • (1011.11)2 =1 24-1+0 23-1+ 1
• 因此,最好能做到将符号位和其它位统一 处理。对减法也按加法来处理。这就是 “补码”。

进制转换课件ppt

进制转换课件ppt

示例和练习
示例
将二进制数1010转换为十进制数 ,即 0×2^3 + 1×2^2 + 0×2^1 + 1×2^0 = 8 + 0 + 0 + 1 = 9 。
练习
提供多个二进制数,要求学生将 其转换为十进制数。
注意事项和常见错误
注意事项
在进行二进制到十进制的转换时,需要注意权值的计算和进 位的处理。
进制转换的基本原则
确定基数
确定要转换的数所在的 基数,即要转换到的目
标进制。
权值计算
根据目标进制的权值, 从被转换数的最低位开
始逐位计算。
转换过程
按照权值计算结果,将 每一位上的数值转换为 对应的符号(0-9或0-9
、A-F)。
特殊情况处理
对于超过目标进制表示 范围的数,需要进行相 应的处理(如截断或四
示例和练习
示例
将十进制数23转换为二进制数。
练习
自己尝试将几个十进制数转换为二进制数,如15、31、63等。
注意事项和常见错误
注意项
在进行进制转换时,需要注意进制的 表示方法,以及不同进制之间的对应 关系。
常见错误
在进行进制转换时,容易出现余数忘 记加上的错误,以及进制表示不正确 的错误。
2023
练习
将八进制数5678转换为十进制数。
注意事项和常见错误
注意事项
注意八进制数的每一位对应的十进制数 乘以8的相应次方,不要混淆。
VS
常见错误
将八进制数的每一位直接转换为十进制数 ,未按照规则进行转换。
2023
PART 05
十进制到八进制的转换
REPORTING
规则和方法

《进制及进制转换》课件

《进制及进制转换》课件

数字信号处理
数字信号可以用二进制数表示,便于 计算机处理和传输。
网络通信
网络传输的数据也是以二进制形式进 行的。
加密算法
二进制数的运算规则简单且易于实现 ,因此很多加密算法都是基于二进制 数的运算规则设计的。
2023
PART 03
十进制
REPORTING
十进制数的表示方法
十进制数由0-9的数 字组成,表示时按照 权值递增的顺序排列 。
2023
REPORTING
《进制及进制转换》 ppt课件
2023
目录
• 进制的基本概念 • 二进制 • 十进制 • 十六进制 • 进制的转换
2பைடு நூலகம்23
PART 01
进制的基本概念
REPORTING
什么是进制
01
02
03
进制
一种计数系统,使用固定 数目的数字来表示数值。
常见进制
二进制、八进制、十进制 、十六进制。
详细描述
二进制转十进制的方法是将二进制数中的每一位分别乘以对应的权值(从右往左 分别为2的0次方、2的1次方、2的2次方等),然后将各位的乘积相加,得到十 进制数。
十进制转二进制
总结词
通过不断除以2取余数,直到商为 0,将余数倒序排列得到二进制数 。
详细描述
将十进制数不断除以2,记录余数 ,直到商为0为止。然后将余数倒 序排列,即可得到该十进制数的 二进制表示。
详细描述
将十六进制数的每一位分别转换为4位的 二进制数的方法是将每一位十六进制数乘 以对应的权值(从右往左分别为16的0次 方、16的1次方、16的2次方等),然后 将各位的乘积相加,得到二进制数。
2023
REPORTING

进位制之间的转换PPT演示课件

进位制之间的转换PPT演示课件
12
十六进制数制系统(Hexadecimal,用H表示)
数码:0、1、2、3、4、5、6、7、8、9、A、 B、 C、D、 E、 F 十进制:0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15
基数: 16 运算规则:逢十六进一 位权:16i
13
14
一、 十进制与二进制之间的转换
15
16
试一试
例: (0.65)10 =( ? )2 要求精度为小数五位。
由此得:(0.65)10=(0.10100)2 综合得:(81.65)10=(1010001.10100)2
17
18
19
例:(81)10=(?)2
得:(81)10 =(1010001)2
20
上面介绍的方法是十进制转换为二进制的方法,需要大家注 意的是:
25
例:(11010111.0100111)2 = (327.234)8
26
2) 将八进制转换为二进制
方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位 八进制数,小数点位置照旧。 接着,将每位上转换成二进制数按顺序排列 最后,就得到了八进制转换成二进制的数字。
27
36
十进制转换为八进制
整数 除8取余法 部分
即每次将整数部分除以8, 余数为该位权上的数,而商 继续除以8,余数又为上一 个位权上的数,这个步骤一 直持续下去,直到商为0为 止,最后读数时候,从最后 一个余数起,一直到最前面 的一个余数。
小数 乘8取整法 部分
即将小数部分乘以8,然后取 整数部分,剩下的小数部分继续 乘以8,然后取整数部分,剩下的 小数部分又乘以8,一直取到小数 部分为零为止。如果永远不能为 零,就同十进制数的四舍五入一 样,暂取个名字叫3舍4入。

进制及进制转换PPT课件

进制及进制转换PPT课件

5
5
6
0110
6
6
7
0111
7
7
8
1000
10
8
十进制 二进制 八进制 十六进制
9
1001
11
10 1010 12
11 1011 13
12 1100 14
13 1101 15
14 1110
16
15 1111 17
16 10000 20
17 10001 21
.
9 A B C D E F 10 11
32
.
16i
23
4、十六进制
练习 将(9AD.3E)16按权展开。
权: 16i
i=(2,1,0,-1,-2)
答案:
(9AD.3E)16 =( 9×162+10×161+13×160+3×16 -1+14×16 -2 )10
对按权展开的多项式进行求和,会得到什么
.
24
R进制(R=2,8,16)转换成十进制
27第1题解答过程10011121951028第2题解答过程73255814746251029第3题解答过程3a2e1489410数制二进制八进制十进制十六进制基数1016基本数码0101234567进借位规则逢二进一借一当二逢八进一借一当八逢十进一借一当十逢十六进一借一当十六十进制二进制八进制十六进制100010十进制二进制八进制十六进制1001111010101211101113121100141311011514111016151111171610000201017100012111
十二进制 (12个月为1年)
.
4
进位计数制
.

第三讲进制介绍及转换-PPT

第三讲进制介绍及转换-PPT

(12、46)=1×101+2×100 +4×10-1+6×10-2
二进制 (Binary) 0,1
逢2进1, 借1当2
(1101、 01)=1×23+1×22+0×21+1
×20+0×2-1+1×2-2
八进制 (Octal) 0,1,2,3,4,5,6,7
逢8进1, 借1当8
(25、67)=2×81+5×80+6 ×8-1+7×8-2
计算机基础系
十六进制 (H)
杨成群
2 进制得特点
有N个计数符号
计数符号
逢N进1,借1当N
计数规则
以N为基数,按权值展开 多项式形式
计算机基础系
杨成群
2 进制得特点 常用进制特点
进制
计数符号
计数规则
多项式形式
十进制 (Decimal) 0,1,2,3,4,5,6,7,8,9
逢10进1, 借1当10
十六进制 0,1,2,3,4,5,6,7,8,9 逢16进1, (2C、A1)=2×161+C×160
(Hex) ,A,B,C,D,E,F
借1当16
+A×16-1+1×16-2
计算机基础系
杨成群
3 进制得转换
非十进制
按权展开求与
十进制
例1:将 1011、01B 转换为十进制数 1011、01B = 1×23 + 0×22 + 1×21 + 1×20 + 0×2-1 + 1×2-2
计算机基础系
杨成群
3 进制得转换
三位
二进制
二进制数转换成八进制数规则: 以小数点为中心,分别向左、向 右每三位为一组,首尾组不足三 位时,首尾用“0”补足,再将每组 二进制数转换成一位八进制数 码,此方法平常也被称为三位分 组法。

数制及其转换PPT课件

数制及其转换PPT课件
.
1
1
数制的基本概念
2
数制转换
2
进位计数制
使用有限个基本数码来表示数据,按进位的方法进行 计数,称为进位计数制,简称数制。
• 数码:用不同的数字符号来表示一种数制的数值。 • 基数:某种进位计数制所使用数码个数n,当大于n
时必须进位。 • 位权:一个数字符号处在某个位上所代表的数值是其
本身的数值乘以所数位的一个固定的常数,这个不同 位数的固定常数称为位权。
整数部分为从下往上写:
6 110101
不同进制数之间的转换
1. 十进制转换成二、八、十六进制
小数转换法 “乘基取整”:用转换机制的基数乘以小数部分,直至小数为0或达到转换精 度要求的位数,每乘一次取一次整数,从最高位排到最低位。
如:(0.625)10=( 0.101 )2=( 0.5 )8 = ( 0.A )16
方法:
按权展开,然后按照十进制运算法则求和。
例:(100101) 2=1*25+0*24+0*23+1*22+0*21+1*20 =32+4+1 =(37)10
(123)8=1*82+2*81+3*80=64+16+3=(83) 10
(123)16=1*162+2*161+3*160 =256+32+3 =(291) 10
9
.
10
3.八进制O
• 数码:0~7 基数:8 位权:8i-1、8-i 规则:逢八进一
例:(123.456)8=1*82+2*81+3*80+4*8-1+5*8-2+6*8-3
4.十六进制H
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
如:将二进制数111010111101.1012转 换为十六进制数
20
3.4 十六进制转换位二进制
对每位十六进制数,只需将其展开成4位二 进制数即可 如:将十六进制数1C9.2F16转换位二进制 数 对每个十六进制位,写出对应的4位二进制 数。
21
3.5 非十进制数转化为十进制数
(1)非十进制数转换为十进制数 采用按权展开相加法:首先把非十进制 数写成按权展开的多项式,然后按十进 制数的计数规则求和。 如:将二进制数101011.1012转化成十 进制数
如1011.1012+10.012=?
14
2.2 二进制减法 二进制的减法运算油以下规则:
0-0=0 0-1=1 1-0=1 1-1=0(借一当二) 如1101.1112+10.012=?
15
三. 数制之间的转换
3.1 二进制转换位八进制
将整数部分自右往向左开始,每3位分 成一组,最后剩余不足3位时在左边补0 :小数部分自左向右,每3位一组,最后 剩余不足3位时在右边补0:然后用等价 的八进制替换每组数据
表1 八进制及其对应的二进制数
8
1.3 十进制
十进制 (Decimal)的基数R为10,采用 十个数码符号0、1、2、3、4、5、6、7、 8、9 二进制按权展开式为:
如十进制数2745.214可表示为:
9
2745.21410=2*103(位权) +7*102+4*101+5*100+2*101+1*10-2+4*10-3
10
1.4 十六进制
十六进制(Hexadecimal)的基数R为16, 采用十六个数码符号0、1、2、3、4、5、 6、7、8、9、A、B、C、D、E、F共十六 个有效数码。 十六进制按权展开式为: 十六进制数的计数规则:是低位向相邻高 位“逢十六进一”,“借一为十六”。
11
如十六进制数2DB.13可表示为: 2DB.13=2*162+13*161+11*160+1*16 -1+3*16-2
22
101011.1012 =1*25+0*24+1*23+0*22+1*21+1*20+1*21+0*2-2+1*2-3 =32+0++0+2+1+0.5+0.125 =43.62610 如:将八进制数165.28转换为十进制数。 165.28 =1*82+6*81+5*80+2*8-1=117.2510
BCD码是二进制形式的十进制码,也称为 二-十进制码。 压缩BCD码又称8421码,它是用四位二进 制编码来表示一位十进制符号。 如:十进制数124的压缩BCD码为0001 0010 0100 十进制数3.26的压缩BCD码为0011.0010 0110
4
1.1 二进制
所谓二进制(Binary): ,就是基数R 为2的进位计数制,它只有0和1两个数码 符号。 二进制按权展开式为:
如二进制数1011.101可表示为:
5
1011.101=1*23(位权) +0*22+1*21+1*20+1*2-1+0*2-2+1*23=8+0+2+1+0.5+0+0.125=11.625 计算机采用二进制编码的好处 (1)运算操作方便,通用性强 (2)物理上容易实现,可靠性强
16
如:将二进制数10111011.10112转换位 八进制
17
3.2 八进制转换位二进制
对每位八进制数,只需将其展开成3位二 进制数即可 如:将八进制数67.7218转换位二进制数 对每个八进制位,写出对应的3位二进制 数。
18
3.3 二进制转换位十六进制
将整数部分自右往向左开始,每4位分成一 组,最后剩余不足4位时在左边补0:小数 部分自左向右,每4位一组,最后剩余不足 4位时在右边补0:然后用等价的十六进制 替换每组数据。
一. 数制
主要内容:
1.进位计数制、基数和权值的概念 2.二进制计数法及构成方式 3.二进制的加、减运算 4.八进制和十六进制的计数方法
1
1.表示数码中每一位的构成及进位 的规则称为进位计数制,简称为数 制;进位计数制也叫位置计数制,在 这种计数制中,同一个数码在不同 的数位上所表示的数值是不同的。
表2 十六进制数及其对应的十进制数
十六进制的优点 (1)与二进制之间的转换容易 (2)书写简洁
12
二 二进制的加减运算
二进制数的计数规则:是低位向相邻高 位“逢二进一”,“借一为二”。 2.1 二进制加法 二进制的加法运算有以下规则:
0+0=0 0+1=1 1+0=1 1+1=10(逢二进一)
13
结果:(0.35)10=(0.2631…)8
28
整数转化
如:将42710转换为等值十六进制数。 采用除16取余法:
结果:(427)10=(1AB)16
29
如:将十进制数17.2510转换为等价的二 进制数小数
结果:(17.25)10=(10001.01)2
30
四.计算机中的常用编码(BCD码)
结果:(37)10=(100101)2ห้องสมุดไป่ตู้
25
小数转化
如:将十进制小数0.562510转换为等值的 二进制数小数。 采用乘2取整法
结果:(0.5625)10=(0.1001)2
26
整数转换
如:将26610转换为等值八进制数。 采用除8取余法:
结果:(266)10=(412)8
27
小数转化
如:将十进制小数0.3510转换为等价的八 进制数小数 采用乘8取整法:
2.一种数制中允许使用的数码符号 的个数称为该数制的基数,记做R
3.某个数位上数码为1时所表征的 数值,称为该数位的权值,简称“ 权”
2
利用基数和“权”的概念,可以把一 个R进制数D用下列形式表示:
3
其中R——基数; n——整数部分的位数; M——小数部分的位数; ai——R进制中的一个数字符号;
23
如:将十六进制数2A.816转换成十进制 数。 2A.816=2*161+A(10)*160+8*16-1 =32+10+0.5=42.510 (2)十进制转换为其他进制 整数转换:采用基数连除法,即除基取余 法。 纯小数转化:采用基数连乘法,即乘基取 整法。
24
整数转换
如:将十进制数(37)10转换为等值二进制数 采用除2取余法
6
1.2 八进制
八进制(Octal)的基数R为8,采用八个 数码符号0、1、2、3、4、5、6、7共 八个有效数码。
二进制按权展开式为:
八进制数的计数规则是低位向相邻高位 “逢八进一”,“借一为八”。
7
如八进制数612.75可表示为: 612.75=6*82+1*81+2*80+7*8-1+5*8-2
相关文档
最新文档