进制转换PPT课件
进制转换简介 ppt课件

汉字机内码、区位码、国标码
1.机内码与区位码 机内码高位字节=(区号)H+A0H 机内码低位字节=(位号)H+A0H 2.国标码与区位码 国标码高位字节=(区号)H+20H 国标码低位字节=(位号)H+20H 3、国标码与机内码 机内码=国标码+8080H
举例:以汉字“大”为例,“大”字的区内码为 2083 解:1、区号为20,位号为83 2、将区位号2083转换为十六进制表示为1453H 3、1453H+2020H=3473H,得到国标码3473H 4、3473H+8080H=B4F3H,得到机内码为B4F3H
位权 27 26 25 24 23 22 21 20 位权 128 64 32 16 8 4 2 1
01000000
2.二进制转换成八进制
二进制转换为八进制时,将二进制以小数点为中心, 分别向左右两边分组,每3位为一组,整数部分向左 分组,不足位数向左补0,小数部分向右分组,不足 位数向右边补0,然后将每组二制数转换成八进制数。
十进制小数:(基数乘法)把要转换数的小数
部分乘以新进制的基数,取整数部分。自上而下。
十进制转换为二进制
例:将(28.125)10转换成二进制数。 (28.125)10=(11100.001)2
十进制转换为二进制 101D=( 1100101 )B
2
101
进制转换(二八十六)课件PPT

按权相加法
2107
103 102 101 100
2×103 1×102 0×101 7×100 2107=2×103+1×102+0×101+7×100
按权相加法
1101
23 22 21 20
1×23 1×22 0×21 1×20 (1107)2=1×23+1×22+0×21+1×20=(13)10
十进制转二进制
• 2 53
1
• 2 26
0
逆
• 2 13
1
序
•2 6
0
排
(53)10=(110101)2
练习
• (128)10 • (192)10 • (224)10 • (240)10 • (248)10 • (252)10 • (254)10
作业
• (1010 1111)2 • (0110 0011)2 • (0001 0111)2 • (0001 0001)2 • (1110 1111)2 • (1100 1011)2 • (1011 1101)2
短除法
进制转换
• 二←→八: 用3位二进制数转换为1位八进制数
• 二←→十六:用4位二进制数转换为1位十六进制数
进制转换
• 二←→十:1024 512 256 128 64 32 16 8 4 2 1
• 八←→十六: • 八←→十: • 十六←→十:
进制转换
通过二进制
十进制的位权
1111
1000 100 10 1
十进 0 1 2 3 4 5 6 7 8 制数
9 10 11 12 13 14 15 16 ···
十六 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 ··· 进制
计算机进制之间的转换---ppt-PPT精品文档

十进制转为二进制数练习测试
A B C
十进制转为二进制数简单测试
1、(23)10=( 3、(12)10=(
10111 )2 1100
)2
欢迎进入简单测试
十进制转为二进制数中等测试
1、(0.125)10=( 2、(21.25)10=(
0.001
)2 )2
10101.01
欢迎进入中等测试
十进制转为二进制数高等测试
学习目标
1.了解进位计数的思想; 2.掌握二进制的概念; 3.掌握二进制数与十进制数的转换; 4.掌握二进制数与八进制数及十六进制数 的转换。
1、数制
数制也称计数制,是指用一组固定的符 号和统一的规则来表示数值的方法。按 进位的原则进行计数的方法,称为进位 计数制。
数值数据在计算机中表示
数值型数据在计算机中如何表示?
十进制数转为二进制数方法
十进制整数转为二 进制整数 十进制小数转为二 进制小数
方法:除2取余,
至商为0,余数倒 序排
方法:乘2取整,
至小数为0,整数 正序排
十进制数转为二进制数例题
十 进 制 规 则 小 数
十 进 制 整 数
十 进 制 不 规 则 小 数
十进制整数转为二进制数例题
二进制
进位记数制的概念
☞进位记数制
使用有限个数码来表示数据,按进位 的方法进行记数,称为进位记数制。
☞以十进制为例:
十进制中采用0,1,2,3,4,5,6,7,8,9这十个数字来表示数据, 逢十向相邻高位进一;每一位的位权都是以10为底的指数函数,由小数点 向左,各数位的位权依次是100,101,102,103 ……;由小数点向右,各 数位的位权依次为10-1 10-2 10-3
进制转换课件ppt

示例和练习
示例
将二进制数1010转换为十进制数 ,即 0×2^3 + 1×2^2 + 0×2^1 + 1×2^0 = 8 + 0 + 0 + 1 = 9 。
练习
提供多个二进制数,要求学生将 其转换为十进制数。
注意事项和常见错误
注意事项
在进行二进制到十进制的转换时,需要注意权值的计算和进 位的处理。
进制转换的基本原则
确定基数
确定要转换的数所在的 基数,即要转换到的目
标进制。
权值计算
根据目标进制的权值, 从被转换数的最低位开
始逐位计算。
转换过程
按照权值计算结果,将 每一位上的数值转换为 对应的符号(0-9或0-9
、A-F)。
特殊情况处理
对于超过目标进制表示 范围的数,需要进行相 应的处理(如截断或四
示例和练习
示例
将十进制数23转换为二进制数。
练习
自己尝试将几个十进制数转换为二进制数,如15、31、63等。
注意事项和常见错误
注意项
在进行进制转换时,需要注意进制的 表示方法,以及不同进制之间的对应 关系。
常见错误
在进行进制转换时,容易出现余数忘 记加上的错误,以及进制表示不正确 的错误。
2023
练习
将八进制数5678转换为十进制数。
注意事项和常见错误
注意事项
注意八进制数的每一位对应的十进制数 乘以8的相应次方,不要混淆。
VS
常见错误
将八进制数的每一位直接转换为十进制数 ,未按照规则进行转换。
2023
PART 05
十进制到八进制的转换
REPORTING
规则和方法
进制及进制转换PPT课件

5
5
6
0110
6
6
7
0111
7
7
8
1000
10
8
十进制 二进制 八进制 十六进制
9
1001
11
10 1010 12
11 1011 13
12 1100 14
13 1101 15
14 1110
16
15 1111 17
16 10000 20
17 10001 21
.
9 A B C D E F 10 11
32
.
16i
23
4、十六进制
练习 将(9AD.3E)16按权展开。
权: 16i
i=(2,1,0,-1,-2)
答案:
(9AD.3E)16 =( 9×162+10×161+13×160+3×16 -1+14×16 -2 )10
对按权展开的多项式进行求和,会得到什么
.
24
R进制(R=2,8,16)转换成十进制
27第1题解答过程10011121951028第2题解答过程73255814746251029第3题解答过程3a2e1489410数制二进制八进制十进制十六进制基数1016基本数码0101234567进借位规则逢二进一借一当二逢八进一借一当八逢十进一借一当十逢十六进一借一当十六十进制二进制八进制十六进制100010十进制二进制八进制十六进制1001111010101211101113121100141311011514111016151111171610000201017100012111
十二进制 (12个月为1年)
.
4
进位计数制
.
《进制数之间的转换》课件

目录
CONTENTS
预备知识:进制的概念 其他进制转化为十进制 十进制转化为其他进制 重点回顾
预备知识:进制
数制
十进制
数码
0~9
(表示数的符号)
基
10
(数码的个数)
权 (每一位所具
有的值)
100,101,102 ... ...
特点
逢十进一
二进制 0~1
2
20,21,22 ... ...
THANKS
2 0 2 0 . 11 . 0 6
方法:数码乘以相应权之和
(101)2=1×22+0×21+1×20=(5)10
二进制转化为十进制
(10011.101)2=1×24+0×23+0×22+1×21+ 1×20+1×2-1+0×2-2+1×2-3 =(19.625)10
八进制转化为十进制
(136)8=1×82 +3×81+6×80 =(94)10
+5*10¹+6*10º
进制:也就是进位计数制,是人为定义的带进位的计数方法,对于任何一种进制---X进制,就表 示每一位置上的数运算时都是逢X进一位。 十进制是逢十进一,十六进制是逢十六进一,八进制 就是逢八进一,二进制就是逢二进一。
01 其 他 进 制 转 化 为 十 进 制 方法:数码乘以相应权之和
十六进制转化为十进制
(2AF5)16 = 2 ×163 +A× 162 +F × 161 +5 × 160 = (10997)10
02 十 进 制 转 化 为 其 他 进 制
方法:连续除以基,直至商为0,从低到高记录余数
十进制转化为二进制
进制转换课件

进制转换课件进制转换课件在计算机科学和信息技术领域,进制转换是一个基础而重要的概念。
它涉及将数字从一种进制表示转换为另一种进制表示的过程。
进制转换不仅在计算机编程中广泛应用,而且在日常生活中也有一定的实际应用。
本文将探讨进制转换的原理、方法和应用。
一、进制的概念进制是一种表示数字的方法,它定义了一组数字和符号的规则。
常见的进制有十进制、二进制、八进制和十六进制。
十进制是我们日常生活中最常用的进制,它使用0-9这10个数字来表示。
而二进制则只使用0和1这两个数字来表示,是计算机中最基础的进制。
八进制使用0-7这8个数字,十六进制使用0-9和A-F这16个数字来表示。
二、进制转换的原理进制转换的原理基于权重的概念。
在十进制中,每个数字的权重是10的幂次方,从右到左依次递增。
例如,数字123的权重分别是1、10和100。
而在二进制中,每个数字的权重是2的幂次方,从右到左依次递增。
例如,数字101的权重分别是1、0和4。
通过理解这种权重的概念,我们可以更好地进行进制转换。
三、十进制转换为其他进制将十进制转换为其他进制的方法是不断地进行除法和取余运算。
以将十进制数123转换为二进制为例,我们先将123除以2,得到商61和余数1。
然后将61再次除以2,得到商30和余数1。
重复这个过程,直到商为0为止。
最后,将得到的余数按照从下到上的顺序排列,就得到了二进制数1111011。
同样的方法可以用于将十进制转换为八进制或十六进制。
四、其他进制转换为十进制将其他进制转换为十进制的方法是将每个数字乘以对应的权重,然后将它们相加。
以将二进制数101转换为十进制为例,我们将1乘以2的0次方,再将0乘以2的1次方,最后将1乘以2的2次方。
然后将它们相加,得到十进制数5。
同样的方法可以用于将八进制或十六进制转换为十进制。
五、进制转换的应用进制转换在计算机编程中有广泛的应用。
在计算机内部,所有的数据都是以二进制的形式存储和处理的。
《进制转换教程》课件

contents
目录
• 进制转换概述 • 二进制转换 • 八进制转换 • 十六进制转换 • 进制的混合使用与注意事项
01 进制转换概述
进制转换的定义
进制转换
进制转换是指将一个数从一个进制转换为另一个进制 的过程。
常见进制
常见的进制包括二进制、八进制、十进制和十六进制 。
转换方法
进制转换的方法包括除法定理、乘法定理和表格法等 。
的八进制表示为123。
八进制的其他转换
要点一
总结词
除了转换为十进制和十六进制外,八进制还可以转换为二 进制和其他进制形式。
要点二
详细描述
除了转换为十进制和十六进制外,八进制还可以转换为二 进制和其他进制形式。具体的转换方法和步骤与上述转换 类似,需要根据不同进制的转换规则进行计算和转换。在 计算机科学中,八进制、二进制和十六进制之间的转换是 非常常见的操作,因此掌握这些转换方法对于计算机专业 人员来说非常重要。
03 八进制转换
八进制转换为十进制
总结词
将八进制数转换为十进制数需要使用相应的 数学公式,并按照一定的计算规则进行。
详细描述
首先,将八进制数表示为十进制数的形式, 需要使用数学公式进行转换。具体来说,将 八进制数的每一位分别乘以对应的权值(从 右往左分别为1, 8, 64, ...),然后将得到的 数值相加即可得到十进制数。例如,八进制 数123可以转换为十进制数为1 * 8^2 + 2 * 8^1 + 3 * 8^0 = 64 + 16 + 3 = 83。
在数学和工程领域,经常需要进行不同进制的转换,以满足计算、建模和设计的需要。
进制转换的基本原则
01Байду номын сангаас
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.非十进制数转换成十进制数
练习:(1)将二进制数10110.11转换成十进制数
(2)将八进制数35.7转换成十进制数
(3)将十六进制数A7D.E转换成十进制数 答ቤተ መጻሕፍቲ ባይዱ:
(1)(10110.11)2 =(1×24+0×23+1×22+1×21+0×20+1×2-1+1×2-2)10 =(22.75)10
进位计数制的概念 计算机中常用的几种进制 不同进位制之间的转换
总结 布置作业
一、进位计数制的概念
☞进位计数制 1. Introduction
进位计数制也称数制,就是人们利用数字符号按 进位原则进行数据大小计算的方法。通常人们在日常生 活中是以十进制来表达数值并进行计算的。另外还有二 进制、3八. 进Ch制al和len十ge六rs进F制or等wa。d
3)十六进制数转换成十进制数 说明:十六进制数共有16个不同的符号:0、1、2、3 、4、5、6、7、8、9、A、B、C、D、E、F,其中A表 示10,B表示11,C表示12,D表示13,E表示14,F表 示15,转换方法同前,仅仅基数为16。
例:将转换成(4C.A)16十进制 (4C.A)16
=(4×161+12×160+10×16-1)10 =(76.625)10
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/
1.2计算机中信息的表示
4. Conclusion
一、进位计数制的概念
在数制中,有三个基本概念:数码、基数和位权
1、数码:指一个数制中表示基本数值大小不同的数字符 号。例如,在十进制中有十个数码:0,1,2,3,4,5 ,6,7,8,9;在二进制中有两个数码:0,1。
2、基数:指一个数值所使用数码的个数。例如,十进制 的基数为10,二进制的基数为2。
二、计算机中常用的几种进制
十六进制
十六进制的特点
(1)有十六个数码:0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F
(2)基数为16 (3)逢十六进一(加法运算),借一当十六(减法运算 ) (4)按权展开式。
三、不同进位制数之间的转换
在数制的转换中,通常在数值后面加字母D、 B、O、H分别表示该数是十、二、八、十六进制 数,D、B、O、H的含义分别是Decimal、Binary 、Octal、Hexadecimal。
0.75×2=1.5
整数部分=1
0.5×2=1
整数部分=1 (低位)
所以,(0.875)10=(0.111)2
1、十进制转非十进制
说明:对一个既有整数又有小数部分的十进制数 ,只要分别把整数部分和小数部分转换成二进制,然 后用小数点连接起来即可。
练习:将(215.25)10转换成二进制数
答案: (215)10=(11010111)2 (0.25)10=(0.01)2
所以, (215.25)10=( 11010111.01)2
三、不同进位制数之间的转换 2、非十进制转十进制
方法:乘权求和
二进制
八进制
十六进制
SUCCESS
THANK YOU
2020/3/3
2.非十进制数转换成十进制数
1)二进制数转换成十进制数 例:(1101.01)2
=(1×23+1×22+0×21+1×20+0×2-1+1×2-2 )10 =(13.25)10
二、计算机中常用的几种进制
二进制
二进制的特点
(1)有两个数码:0,1 (2)基数为2 (3)逢二进一(加法运算),借一当二(减法运算 ) (4)按权展开式。
二、计算机中常用的几种进制
八进制
八进制的特点
(1)有八个数码:0,1,2,3,4,5,6,7 (2)基数为8 (3)逢八进一(加法运算),借一当八(减法运算 ) (4)按权展开式。
1、十进制转非十进制
2)十进制小数转换成二进制小数
说明:采用“乘以2顺向取整法”。即把给定 的十进制小数不断乘以2,取乘积的整数部分作为二 进制小数的最高位,然后把乘积小数部分再乘以2, 取乘积的整数部分,得到二进制小数的第二位,如 此不断重复,得到二进制小数的其他位。
例:将(0.875)10转换成二进制小数: 0.875×2=1.75 整数部分=1 (高位)
这里,“2”是基数,“2i”(i=3,2,1,0,-1,-2)为位 权
2.非十进制数转换成十进制数
2)八进制数转换成十进制数 方法同二进制转换成十进制完全一样,仅仅 基数有所不同。
例:将(24.6)8转换成十进制 (24.6)8=(2×81+4×80+6×8-1)10 =(20.75)10
2.非十进制数转换成十进制数
3、位权:指一个数值中某一位上的1所示数值的大小。例 如,十进制的123,1的位权是102=100,2是位权101=10,3的 位权是100=1。
二、计算机中常用的几种进制
数制
二进制 八进制 十六进制 十进制
非十进制
二、计算机中常用的几种进制
十进制
十进制的特点
(1)有十个数码:0,1,2,3,4,5,6,7,8,9 (2)基数为10 (3)逢十进一(加法运算),借一当十(减法运算 ) (4)按权展开式。
说明:通常采用按位展开、按权相乘法
三、不同进位制数之间的转换 1、十进制转非十进制
二进制
八进制
十六进制
1、十进制转非十进制
方法: 整数部分除基取余 小数部分乘基取整
1、十进制转非十进制
1)十进制整数转换成二进制整数
说明:通常采用“除2取余法,商为零止,倒排列” 例:将(57)10转换成二进制
数
LOGO
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ PPT课件下载:/kejian/ 范文下载:/fanwen/