生物技术概论之酶工程
生物工程中的酶工程技术使用方法

生物工程中的酶工程技术使用方法引言:生物工程是一门将生物学、化学、工程学等理论与技术相结合的学科,它与现代产业和生活密切相关,并在许多领域发挥了重要作用。
酶工程技术作为生物工程的核心之一,广泛应用于医药、食品、化工、能源等领域。
本文将介绍生物工程中酶工程技术的使用方法。
一、选取合适的酶在生物工程中,根据实际需要选择合适的酶对目标产物进行催化反应是至关重要的。
酶是一种生物催化剂,具有高效、选择性和环境友好等特点。
因此,在进行酶工程之前,需要调研目标产物及其催化反应的特点,以确定最适合的酶。
例如,对于酶可承载的底物种类、反应温度和酸碱度等因素进行综合考虑,选择适合的酶。
二、酶工程基因的选择与改造酶工程技术的应用离不开基因工程的手段。
通过DNA重组技术、启动子的选择、基因调控元件的设计等手段,可以将理想的酶基因导入到宿主生物中。
这需要将目标基因与宿主生物的基因组进行兼容,并确保其在宿主生物中的表达量和稳定性。
同时,对于目标酶本身的改造也是酶工程技术的重要步骤。
借助于分子生物学技术,可以对目标酶进行特定的突变,以改变其活性、稳定性或底物特异性。
例如,酶突变可以通过有针对性地改变酶的氨基酸序列,从而提高其活性或选择性。
三、酶工程系统的优化酶工程技术的应用通常需要建立一个完整的酶工程系统。
这个系统包括酶的产生(发酵)、分离纯化和催化反应等步骤。
在建立酶工程系统时,有几个关键环节需要进行优化。
首先,酶的产生通常利用大规模发酵技术。
要实现高效的产酶,需要确定优化发酵条件,包括培养基成分、温度、pH值、搅拌速度等。
此外,还需考虑基因表达的调控,如改变启动子和编码序列等,以提高目标酶基因的表达水平。
其次,分离纯化是酶工程中的关键步骤之一。
传统的分离纯化技术包括层析、电泳和过滤等方法。
近年来,随着膜分离技术和亲和层析技术的进步,分离纯化的效率得以提高。
选择合适的分离纯化方法可以实现高纯度的酶产物。
最后,催化反应是酶工程中的核心步骤。
酶工程名词解释

12、酶反应器(enzyme reactor):用于酶催化反应的容器及其附属设备
8、固定化酶(immobilized enzyme):固定在载体上并在一定的吸附法:利用各种固体吸附剂将酶或含酶菌体吸附在其表面,而使酶固定化的方法,称……
10、包埋法:将酶或含酶菌体包埋在各种多孔载体中,使酶固定化的方法
11、必需水:维持分子完整的空间构象所必须的最低水量称……
名词解释:
1。酶工程:酶的生产,改性,与应用的技术过程称为酶工程。主要内容包括:微生物发酵产酶、动植物细胞培养产酶、酶的提取与分离纯化、酶分子修饰、酶,细胞,原生质体固定化、酶非水相催化、酶定向进化、酶反应器和酶的应用等。
主要任务是经过预先设计,通过人工操作活的人们所需要的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
2、酶的提取:是指在一定的条件下,用适当的溶剂或溶液处理含酶原料,使酶充分溶解到溶剂或溶液中去的过程称为酶的提取。
3、沉淀分离:通过改变某些条件或添加某种物质,使酶的溶解度降低,而从沉淀中析出,与其他溶质分离的技术过程
4、凝胶层析/凝胶过滤/分子排阻层析/分子筛层析等:是指以各种多孔凝胶为固定相,利用流动相中所含各种组分的相对分子质量不同而达到物质分离的一种层析技术。
5、酶分子修饰:通过各种方法使酶分子的结构发生某些改变,从而改变酶的催化特性的技术过程称……
6、结晶:是溶质以晶体形式从溶液中析出的过程。
7、固定华生物技术(immobilization biotechnoly);通过物理或化学手段将酶或游离细胞定位于限定的空间区域内,使其保持活性并可反复利用。
酶工程的应用

THANKS FOR WATCHING
感谢您的观看
酶的固定化技术
研究新型的酶固定化技术,提高酶的稳定性和可重复使用性,降低生产成本。
酶工程与其他生物技术的结合应用
酶工程与代谢工程
将酶工程与代谢工程技术相结合,优化微生物细胞工厂的生产过程,提高目标产物的产量和效率。
酶工程与合成生物学
利用合成生物学技术构建人工酶系统,实现新酶类的设计和合成,拓展酶的应用领域。
04 酶工程的未来展望
新酶的发现与开发
发现新酶
通过基因组学和蛋白质组学技术,发现新的酶类,探索其在不同生物体内的功能 和应用潜力。
酶的定向进化
利用进化工程和基因工程技术,对已知酶进行定向进化,提高其催化效率和特异 性,以满足工业生产的需求。
酶的生产与应用技术的改进
高效表达系统
开发高效表达酶的微生物或细胞培养系统,提高酶的生产效率和产量。
基因治疗
酶工程在基因治疗中发挥 关键作用,如用于基因编 辑的酶。
农业领域
生物农药
利用酶工程生产具有生物 活性的酶,可以开发出新 型生物农药,减少化学农 药的使用。
转基因作物
通过酶工程手段改良作物 的遗传性状,提高作物的 抗逆性、产量和品质。
有机肥料
利用酶工程促进有机物料 的分解,提高肥料的利用 率和土壤的可持续性。
酶工程的发展历程
酶的发现与分离提取
酶的固定化技术
自1833年以来,人们开始从动植物组织中 分离提取酶,开启了酶工程的历史。
1960年代,人们开始研究酶的固定化技术 ,使酶能够重复使用,大大提高了酶的工 业化应用价值。
酶的分子改造
酶工程的应用拓展
随着基因工程的不断发展,人们开始对酶 进行分子改造,以改变酶的催化性质和适 应特定反应条件。
生物技术概论_酶工程

理法、结合法、交联法和热处理法等。
适合细胞
1、 吸附法 多孔性固体吸附剂有吸附能力(为什么)?
常用物理吸附剂:活性炭、氧化铝、硅藻 土、多孔陶瓷、多孔玻璃、硅胶等。 特点:操作简便,条件温和,但结合力较 弱,使用受到限制。
2、结合法
指通过选择适宜的载体,使之与酶以共价键或 离子键的形式结合在一起而被固定化的方法。 根据成键的不同,分为离子结合法和共价结合 法。 特点:结合很牢固,酶不会脱落,较长时间使 用,但操作复杂,可能对酶活有影响。
如何使辅助因子不脱落?
(3) 产物的除去
如何解除酶反应中常存在的产物抑制作用?
(4) 相扩散的促进 如何提高酶对水不溶性底物作用机会和固定化 酶反应中的物质传递? (5) 多酶反应的实现 如何满足不同酶的不同条件要求?
二、常见酶反应器的特点与类型
1、 酶反应器的类型概述
按几何形状和结构来分,可分为罐型、管型、膜 或片型几种。
(一)细胞破碎 1、机械破碎法
机械捣碎法:旋转剪切力
研磨法:研磨剪切力(常加助磨剂)
匀浆法:相对运动剪切力
2、物理破碎法
(1) 温度差破碎法:
适合于处理脆壁细胞如G—的破碎。 适合于膜结合酶的细胞。
其能量质点作用于膜上某点而产生空穴。效果 与多因素有关。
(2) 压力差破碎法:
(3) 超声波破碎法:
(三) 酶的保存
保护要有利于维护酶的天然构象的稳定。 (尤其时在使用过程中) 保存要注意: 温度 缓冲液 酶浓度及纯度
第三节 酶分子的改造
一、酶分子修饰
二、酶的蛋白质工程
三、生物酶的人工模拟
酶工程复习要点

1、酶的催化作用特点:具有专一性,催化效率高和反应条件温和等显著特点。
2、酶研究的两个方向:理论研究方向和应用研究方向。
理论研究方向:酶的理化性质、催化性质、催化机制等。
应用研究:促进了酶工程的形成。
3、酶工程的定义:利用酶或者微生物细胞,动植物细胞,细胞器,借助于酶的催化作用,通过工程学手段生产产品或提供社会服务的科学体系。
4、酶工程的应用范围:①对生物资源中天然酶的开发和生产②自然酶的分离纯化与鉴定技术③酶的固定化技术④酶反应器的研制与应用⑤与其它生物技术领域的交叉与渗透。
5、酶工程的组成:①酶的发酵生产②酶的分离纯化③酶分子修饰④酶和细胞固定化⑤酶反应器和酶的应用等方面。
6、酶工程的主要任务:通过预先设计,经过人工操作控制而获得大量所需的酶,并通过各种方法使酶发挥其最大的催化功能。
8、酶的分类:第1类,氧化还原酶;第2类,转移酶;第3类,水解酶;第4类,裂合酶;第5类,异构酶;第6类,合成酶;第7类,核酸类酶。
9、酶的作用机制:酶的催化机理可能与几种因素有关:酶与底物结合时,两者构象的改变使它们互相契合,底物分子适当地向酶分子活性中心靠近,并且趋向于酶的催化部位,使活性中心这一局部地区额底物浓度大大增高,并使底物分子发生扭曲,易于断裂。
在另一些情况中,可能还有一些其他的因素使酶反应速度稍有一些提高,如酶与底物形成有一定稳定度的过渡态中间物——共价的ES中间物,这种ES中间物又可迅速地分解成产物,又如酶活性中心的质子供体和质子受体对底物分子进行了广义的酸碱催化等。
10、酶的催化能力:酶仅能改变化学反应的速度,并不不能改变化学反应的平衡点。
酶本身在反应前后也不发生变化例如肽键遇水自发地进行水解的反应极为缓慢,当有蛋白酶存在时,这个反应则进行得十分迅速,可降低反应的活化能。
在一个化学反应体系中,反应开始时,反应物(S)分子的平均能量水平较低为“初态”,在反应的任何一瞬间反应物中都有一部分分子具有了比初态更高一些的能量,高出的这一部分能量称为活化能,使这些分子进入“过渡态”,这时就能形成或打破一些化学键,形成新的物质——产物(P)。
酶工程 总结

第一章酶学概论1.酶:具有生物催化功能的生物大分子。
2.酶工程:酶的生产、改性与应用的技术过程。
3.酶活力(enzyme activity):指在一定条件下,酶所催化的反应初速度。
4.酶活力单位(IU):在特定条件下(温度可采用25℃,pH值等条件均采用最适条件),每1min催化1µmol的底物转化为产物的酶量定义为一个酶活力单位,这个单位称为国际单位(IU)5.酶转换数Kp:又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。
即每摩尔酶每分钟催化底物转化为产物的摩尔数,是酶催化效率的一个指标。
6.酶的催化周期:转换数的倒数,即催化周期是指酶进行一次催化所需的时间,单位为毫秒(ms)或微秒(µs)。
7.酶结合效率:又称为酶的固定化效率,是指酶与载体结合的百分率。
酶结合效率的计算一般由固定化的总活力减去未结合的酶活力所得到的差值,再除以用于固定化的总酶活力而得到。
8.酶活力回收率:指固定化酶的总活力与用于固定化的总酶活力的百分率。
9.相对酶活力:具有相同酶蛋白(或酶RNA)量的固定化酶活力与游离酶活力的比值。
10.核酸酶(ribozyme):具有催化活性的RNA。
抗体酶(Abzyme):具有催化活力的抗体。
11.组成型酶:有的酶在细胞中的量比较恒定,环境因素对这些酶的合成速度影响不大,如DNA/RNA聚合酶。
12.适应型酶/调节性酶:有的酶在细胞内的含量变化很大,其合成速度明显受到环境因素的影响,如β-半乳糖苷酶13.模拟酶:又称人工合成酶或酶模型,是指根据酶的作用原理,用人工合成的具有活性中心和催化作用的非蛋白质结构的化合物。
14.酶催化作用的特点:1.酶催化作用的专一性强(相对/绝对专一性) 2.酶催化作用的效率高3.酶催化作用的条件温和 4.酶活性受到调节和控制15.影响酶催化作用的因素:1.底物浓度的影响2.酶浓度的影响3.产物浓度的影响4.温度的影响5.pH值的影响6.抑制剂的影响7.激活剂的影响16.酶生物合成的调节:1、分解代谢物阻遏作用2、酶生物合成的诱导作用3、酶生物合成的反馈阻遏作用17. 从如下实验方法和结果分析酶生物合成的调节作用。
酶工程第一章绪论

第一节 酶的基本概念与发展历史
酶的存在及作用的认识: 1833年:发现淀粉酶 19世纪中叶:糖发酵产酒与活酵母有关 1878年:给酶一个统一的名词,叫Enzyme,这个
字来自希腊文,其意思是“在酵母中”。 1897年,德国巴克纳Buchner兄弟发现不含细胞的
酵母提取液也能使糖发酵,说明发酵与细胞的活 动无关,从而说明了发酵是酶作用的化学本质, 为此Buchner获得了1907年诺贝尔化学奖。
体异构专一性。如:蔗糖酶、麦芽糖酶。 立体异构专一性: 当作用的底物含有不对称碳原子时,酶只能作用
于异构体的一种。如:乳酸脱氢酶。 核酸类酶也具有绝对专一性。
酶工程第一章绪论
1、绝对专一性
酶工程第一章绪论
2、相对专一性
相对专一性概念: 一种酶能够催化一类结构相似物质进行某种相同
类型的反应。 (1)基团专一性 要求底物含有某一相同的基团。
命名。 两类酶的命名差别: 蛋白类酶只能催化其他分子进行反应,而核酸类
酶既可以催化酶分子本身也可以催化其他分子进 行反应。
酶工程第一章绪论
第四节 酶的分类与命名 注意:顺序
蛋白类酶的种类:
不要搞错!
氧化还原酶类 Oxidoreductases
转移酶类
Transgerases
水解酶类
Hydrolases
五、抑制剂的影响 可逆抑制剂 不可逆抑制剂
竞争性抑制剂 非竞争性抑制剂 反竞争性抑制剂
六、激活剂的影响 激活剂:金属离子、无机负离子、蛋白酶等。
酶工程第一章绪论
第四节 酶的分类与命名
按照分子中起催化作用的主要组分的不同,酶可 以分为蛋白类酶(P酶)和核酸类酶(R酶)。
命名总原则: 根据酶作用的底物和催化反应的类型进行分类和
酶工程的应用及其发展趋势

酶工程的应用及其发展趋势
酶工程是利用生物技术方法对酶进行改造和优化,以满足工业生产的需求。
它在各个领域都有广泛的应用,包括医药、食品、化学等。
以下是几个酶工程的应用及其发展趋势:
1. 医药领域:酶被广泛应用于药物合成和制药过程中。
例如,通过酶工程可以改进药物合成的效率和产量,减少副产物的生成,提高纯度和质量。
此外,酶还可以用于制造生物药物,包括蛋白质药物、抗体药物等。
未来的发展趋势是开发更多的酶药物,并提高制药过程的效率和环保性。
2. 食品工业:酶在食品工业中有广泛的应用,包括面包、啤酒、酸奶等食品的制作过程中。
通过酶工程可以改善食品的质地、口感和保鲜性。
此外,酶还可以用于食品添加剂的开发,用于改善食品的营养价值和功能性。
未来的发展趋势是开发更多的专用酶用于食品加工,提高食品的品质和安全性。
3. 环境保护:酶工程在环境保护领域有重要的应用。
例如,酶可以用于处理工业废水和污染物,降解有机废弃物和重金属污染物。
此外,酶还可以用于制备生物柴油和生物降解塑料等可再生能源和环保材料。
未来的发展趋势是开发更多具有高效降解性和低成本的酶用于环境治理和再生资源的利用。
4. 新型酶的发现和优化:酶工程的发展趋势是发现和利用新型酶及其应用。
随着生物技术的不断发展,越来越多的新酶被发现和鉴定,可以应用于各种工业过
程。
此外,通过基因工程和代谢工程的方法,可以对酶进行定向进化和改造,提高其催化活性、稳定性和特异性。
未来的发展趋势是开发更多的新型酶和创新技术,提高工业生产的效率和可持续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH 3
H C OH
乳酸脱氢酶
CH 3
CO
COOH
L-乳酸
COOH
② 几何异构专一性 反丁烯二酸
延胡索酸酶
L-苹果酸
酶的专一性在实践中很有意义。在科研和 生产中得到广泛的应用。
利用这一特性,可以从原料得到单一的产 物,防止副产物生成。
如:某些药物只有某一种构型才有生理作用, 而有机合成的药物只能是消旋产物,利用酶进 行不对称合成
酶工程已成为一门新兴学科
(一)酶的概述
1、酶的化学本质
一般情况下,酶的化学本质是蛋白质,是具有特殊催化功能的蛋 白质
酶一般不能通过半透膜,酶是两性电解质,酶能够被
蛋白酶水解,失活条件与蛋白质相同,结构分析与蛋白质
相同。
组成:单 双
成 成
分 分
酶 酶
(
全
酶
) 酶
蛋
白
辅
酶
单成分酶的组成成分只有酶蛋白,而全酶含有酶蛋白
3.乳品工业
乳糖酶,降解乳糖为半乳糖,增加可消化性 凝乳酶,制造奶酪,溶菌酶用于婴儿奶粉消毒。
4.酿酒工业 填加糖化酶,降解淀粉,缩短酿造时间,提高出酒率。 中性蛋白酶可分解麦芽汁中的蛋白质,提高氨基酸含量, 促进酵母发酵 木瓜蛋白酶、菠萝蛋白酶等可用于啤酒澄清,延长保质期 5.果蔬加工工业 常用的有果胶酶、纤维素酶、半纤维素酶、淀粉酶和阿拉 伯糖酶 6.面粉烘烤工业 改善面粉质量、改善面团性质、改变颜色、漂白面粉
(2)酶的催化效率高。酶比一般化学催化剂要高得多。
2H2O2
2H2O + O2
Fe作催化剂,0℃时1克分子铁10-5mol H2O2 /秒
H2O2酶作催化剂,0℃时1克分子酶105 H2O2 /秒,高1010倍 (3)酶的催化具有专一性。
酶的专一性 (1)结构专一性
①相对专一性:一种酶能催化一类具有相同化学键或基 团
1、由于酶的化学结构已弄清楚的为数不多,不能按化 学结构命名。目前有习惯命名法和系统命名法。
A. 习惯命名法:主要根据酶作用的底物和催化反应类 型来命名。如:葡萄糖氧化酶;乙酰胆碱酶表示水解乙 酰胆碱(水解酶可省水解两字); B. 系统命名法:1961年,国际酶学会提出了一个命名 原则
1、氧化还原酶 AH2+B
二.酶在饲料工业中的应用 利于饲料的吸收、消除抗营养因子、补充内源酶
不足、提高饲料利用率、增加产量、减少污染。目前 我国饲料用酶产量超过13500吨,添加饲料超过1350万 吨。农业部批准的酶有12种。 1.复合酶制剂
2种或几种酶制剂混合而成,提高饲料的利用价值 2.植酸酶
能使得饲料中的有机磷得到有效利用。
A+BH
2、转移酶
AX+B
A+BX
3、水解酶 4、裂合酶
AB+H2O AB
AH+BOH A+B
连接(合成)酶
A+B
AB
裂解酶催化一个化合物分解成几个化合物或其逆过程,如脱羧酶 催化分子中的C-C键裂解,脱水酶催化C-O键裂,产物为H2O;脱氨酶催化 C-N键裂解。
合成酶一般是指在ATP参加的合成反应,这类酶关系着许多重要生 命物质的合成,如蛋白质、核酸等。
的物质进行某种类型的反应
O
R C O R' + H2O
脂肪酶
R COOH + R' OH
脂类
脂肪酸
醇
② 绝对专一性 一种酶只能催化一种化合物进行一种反应
O
H2N C NH2 + H2O
脲酶
CO2 + 2NH3
几乎不催化尿素以外的任何物质发生水解
(2)立体异构专一性
①旋光异构专一性:
当底物中含有不对称碳原子时,酶只能作用于异构体的 一种,而对另一种则全无作用。
H
O
C
CH 3
NADH2
NAD
乙醇脱氢酶
CH2OH
CH3
NAD(P)...........氧化型 NAD(P)H........还原型
CHO O
HO
CH2O P OH
OH
H3C
N
(PLP)
2、酶的结构与催化功能 1.酶的催化功能是由酶蛋白的分子结构,特别是由酶的特 殊的空间构象决定的。
⒉酶的活性部位: 酶的活性部位(活性中心)是酶蛋白分子中直接与底物结 合,进行催化反应的部位,是由相关酶对底物结合和催化 的氨基酸残基在空间上组成一个与酶显示活性直接相关的 区域。
酶的活性部位只有在酶蛋白保持一定的空间构象时才 能存在并发挥其催化功能。
酶的其它部分分为: A. 有些去除一段肽链,酶活性不受影响 B. 有些对维持酶的空间构象、保护酶的活性部位、保护 酶的催化能力方面非常重要。
3.酶的催化特性 酶是一种催化剂,可以加快反应速度但不改变平衡点
具有以下催化特性:
(1)酶的催化反应条件温和。一般在常压和较低的温度下即可发生 酶催化反应。
4、酶作用专一性机制的假说
㈠ 锁钥学说:酶与底物在表 面结构的特定部位其形状是互 补的,一定的酶只能与一定的 底物结合。
㈡诱导契合学说:酶的活性部位 在结构上是柔性的,当底物与酶 的这个部位接触时,可使酶蛋白 发生构象变化,这样就使反应所 需基团正确排列、定向,从而易 与底物结合反应。
5、酶的命名、分类
和辅助因子,两者必须结合组成复合物才能有催化活性
辅助因子有的是金属离子;有的是有机小分子,其中与酶 蛋白结合紧密的称为辅基,与酶蛋白可分开的称为辅酶
但是,20世纪80年代发现了核酶,其本身属于一种RNA,并非蛋白质, 但也能特异性地催化某个反应。
例如:许多脱氢酶需要NAD或NADP为辅酶(烟酰胺核苷酸)
第八讲 生物技术概论 之酶工程
王丽娟 生物与制药工程学院
第二节 酶工程
酶(ENZYME)是一种生物催化剂,酶的功能特异
与生物的生命活动密切相关,如执行具体生理活动,
参与外来物质的转化与解毒,协同激素发挥效应、催
化代谢反应等等,没有酶,就没有生物体的一切生命
活动。
古代人类就开始利用酶,如酿酒、制酱。 在近代开始逐渐工业化生产酶,1894年日本利用米曲霉生产淀粉 酶用于促进消化。 1914年法国生产出细菌α-淀粉酶用于纺织工业 50年代,日本第一个用深层液体发酵法生产α-淀粉酶开创了现 代酶制剂工业。
(三) 酶工程的应用
一. 酶在食品工业中的应用 1.淀粉加工工业
用于水解淀粉,生产功能性低聚糖、葡萄糖、果糖、麦芽糖浆, 年产1000万t,大多数低聚糖由酶水解或酶转移生产。
2.蛋白质加工工业
在蛋白酶作用下生产多肽、氨基酸、蛋白水解物 如生产玉米蛋白多肽、肽系调味品、肉类加工改善品质、增加面制
品弹力