三角形的初步认识复习
七下第一章三角形初步认识复习课课件(浙教版)

3、一个三角形的两边长分别是3和8,而第三边长为 奇数,那么第三边长是 _7_或__9__ 4、已知一个等腰三角形的一边是3cm,一边是7cm, 这个三角形的周长是 __1_7_c_m____
A
A
12
C 1E
D
B
D
C
B(第6题)
(第7题)
5、如上图,∠1=60°,∠D=20°,则∠A= 10度0
6、如上图,AD⊥BC,∠1=40°,∠2=30°,
A
D
E
FB
C
1、如图,在△ABC中,BD平分∠ABC,
CE是AB边上的高,BD,CE交于点P。
已知∠ABC=600,∠ACB=700, 求∠ACE,
∠BDC的度数。
400
800
A
E pD
B
C
2、如下图,已知AD是△ABC的中线,CE是
△ADC的中线,若△ABC的面积是8,求△DEC
的面积。 A
A
二、关于三角形分类
三角形
锐角三角形
直角三角形
钝角三角形
三个角都是 锐角
有一个角是 直角
有一个角是 钝角
请问:一个三角形最多有几个钝角?几个直角?几个锐 角?
三、全等三角形
知识结构
全 定义:能够 完全重合 的两个三角形
等 对应元素:对应_顶__点__、对应 边 、对应 角。
三 角 形
性质:全等三角形的对应边 相等 、对应角相等 。 判定: SSS 、 SAS 、 ASA 、AAS 。
3、如图,在△ABC中, AD是△BAC的角平分 线,DE是△ABD的高线, ∠C=90 度。若 DE=2,BD=3,求线段BC的长。
A E
第一章 三角形的初步认识总复习 讲义

龙文教育学科教师辅导讲义学员姓名:辅导课目:数学年级:七年级学科教师:汪老师授课日期及时段课题第一章三角形的初步认识总复习重点、难点、考点1、三角形的基本概念的应用2、三角形全等的证明学习目标1、理解三角形的相关概念2、会证明三角形的全等教学内容第一章三角形的初步认识总复习:1.1认识三角形①“△ABC”读作“三角形ABC”。
三角形任何两边的和大于第三边。
②三角形三个内角的和等于180°。
三角形的一个外角等于和它不相邻两个内角的和。
1.2三角形的平分线和中线在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段叫做三角形的三角形的平分线。
在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。
1.3三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。
锐角三角形的三条高在三角形的内部,垂足在相应顶点的对边上。
直角三角形的直角边上的高分别与另一条直角边重合,垂足都是直角的顶点。
而在钝角三角形中,夹钝角两边上的高都在三角形的外部,它们的垂足都在相应顶点的对边的延长线上。
1.4全等三角形能够重合的两个三角形称为全等三角形。
两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。
“全等”可用符号“≌”来表示。
全等三角形的性质:全等三角形对应边相等,对应角相等。
1.5三角形全等的条件①三边对应相等的两个三角形全等(简写成“边边边”或“SSS ”)。
当三角形三边长确定是,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。
②有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS ”)。
垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。
线段垂直平分线上的点到线段两端点的距离相等。
浙教版2021年八年级上册第1章《三角形的初步认识》单元复习题【含答案】

浙教版2021年八年级上册第1章《三角形的初步认识》单元复习题一.选择题1.下列各组长度的三条线段能组成三角形的是( )A.4cm,5cm,9cm B.4cm,4cm,8cmC.5cm,6cm,7cm D.3cm,5cm,10cm2.下列图形具有稳定性的是( )A.B.C.D.3.为使由五根木棒组成的架子不变形,至少还要在架子上钉上的木棒根数是( )A.0根B.1根C.2根D.5根4.下列命题是真命题的是( )A.五边形的内角和是720°B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点5.如图,在△ABC中,∠B=50°,∠C=70°,直线DE经过点A,∠DAB=50°,则∠EAC的度数是( )A.40°B.50°C.60°D.70°6.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD7.如图,△ABC≌△DEC,B、C、D在同一直线上,且CE=5,AC=7,则BD长( )A.12B.7C.2D.148.在△ABC中,∠A=x°,∠B=(2x+10)°,∠C的外角大小(x+40)°,则x的值等于( )A.15B.20C.30D.40二.填空题9.只用 的直尺和 进行的作图称为尺规作图.10.如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是 .11.如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)12.如图,△ABC≌△DEF,点B、F、C、E在同一条直线上,AC、DF交于点M,若BE=7,CF=3,则BF= .13.如图,若AB,CD相交于点E,若△ABC≌△ADE,且点B与点D对应,点C与点E对应,∠BAC=28°,则∠B的度数是 °.14.如图,AD平分∠EAC,∠B=70°,∠C=60°,求∠CAD= .三.解答题15.已知△ABC的三边长分别为3、5、a,化简|a+1|﹣|a﹣8|﹣2|a﹣2|.16.已知,△ABC的三边长为4,9,x.(1)求△ABC的周长的取值范围;(2)当△ABC的周长为偶数时,求x.17.在△ABC中,CD平分∠ACB交AB于点D,AH是△ABC边BC上的高,且∠ACB=70°,∠ADC=80°,求:(1)∠BAC的度数.(2)∠BAH的度数.18.如图,在△ABC中,点D是边BC的中点,过点C作直线CE,使CE∥AB,交AD的延长线于点E.试说明AD=ED的理由.解:因为CE∥AB(已知),所以∠BAD= ( ).因为点D是边BC的中点,所以 ,在△ABD和△ECD中,,所以△ABD≌△ECD( ),所以AD=ED( ).19.如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,若有BF=AC,FD=CD,试探究BE 与AC的位置关系.20.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.21.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.22.如图,直线MN与直线PQ相交于O,∠POM=30°,点A在射线OP上运动,点B在射线OM上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)若∠BAO=50°,试求出∠ACB的度数.(2)点A、B在运动的过程中,∠ACB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的度数.(3)在(2)的条件下,在△ABC中,如果有一个角是另一个角的2倍,请直接写出∠BAC的度数.23.△ABC中,三个内角的平分线交于点O,过点O作∠ODC=∠AOC,交边BC于点D.(1)如图1,若∠ABC=50°,求∠BOD的度数;(2)如图1,若∠ABC=n°,求∠BOD的度数;(3)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.求证:BF∥OD;(4)若∠F=∠ABC=40°,将△BOD绕点O顺时针旋转一定角度α后得△B'OD'(0°<α<360°),B'D'所在直线与FC平行,请直接写出所有符合条件的旋转角度α的值.答案一.选择题1.解:根据三角形的三边关系,A、4+5=9,不能组成三角形,不符合题意;B、4+4=8,不能够组成三角形,不符合题意;C、5+6>7,能组成三角形,符合题意;D、3+5=8<10,不能组成三角形,不符合题意.故选:C.2.解:选项中只有选项A是三角形,故具有稳定性的图形是三角形.故选:A.3.解:如图所示,根据三角形具有稳定性,所以至少还要在架子上钉上的木棒根数是2,故选:C.4.解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、三角形的重心是这个三角形的三条边上的中线的交点,故原命题错误,是假命题,不符合题意,故选:B.5.解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵∠DAB=50°,∠DAB+∠BAC+∠EAC=180°,∴∠EAC=180°﹣∠DAB﹣∠BAC=180°﹣50°﹣60°=70°,故选:D.6.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.7.解:∵△ABC≌△DEC,∴AC=DC,CB=CE,∵CE=5,AC=7,∴CB=5,DC=7,∴BD=DC+CB=7+5=12.故选:A.8.解:∵∠C的外角=∠A+∠B,∴x+40=2x+10+x,解得x=15.故选:A.二.填空题9.解:只用没有刻度的直尺和圆规进行的作图称为尺规作图.故没有刻度的,圆规.10.解:∵∠A=30°,∠B=50°,∠A+∠B+∠ACB=180°,∴∠ACB=180°﹣30°﹣50°=100°,∵CD平分∠ACB,∴∠BCD=∠ACB=×100°=50°,∴∠ADC=∠BCD+∠B=50°+50°=100°,故100°.11.解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.12.解:∵△ABC≌△DEF,∴BC=EF,∴BC﹣FC=EF﹣FC,即BF=EC,∵BE=7,CF=3,∴BF+CE=BE﹣FC=7﹣3=4,∴BF=EC=2,故2.13.解:∵△ABC≌△ADE,且点B与点D对应,点C与点E对应,∴∠B=∠D,AC=AE,∠BAC=∠BAD,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠BAC=180°,∠BAC=28°,∴∠ACE=∠AEC=(180°﹣∠BAC)=76°,∠BAD=28°,∵∠D+∠CAD+∠ACE=180°,∴∠D=180°﹣∠CAD﹣∠ACE=48°,故答案为48.14.解:∵∠EAC=∠B+∠C,∠B=70°,∠C=60°,∴∠EAC=70°+60°=130°,∵AD是∠EAC的平分线,∴∠CAD=∠EAC=65°,故答案是:65°.三.解答题15.解:∵△ABC的三边长分别为3、5、a,∴5﹣3<a<3+5,解得:2<a<8,故|a+1|﹣|a﹣8|﹣2|a﹣2|=a+1﹣(8﹣a)﹣2(a﹣2)=a+1﹣8+a﹣2a+4=﹣3.16.解:(1)∵三角形的三边长分别为4,9,x,∴9﹣4<x<9+4,即5<x<13,∴9+4+5<△ABC的周长<9+4+13,即:18<△ABC的周长<26;(2)∵△ABC的周长是偶数,由(1)结果得△ABC的周长可以是20,22或24,∴x的值为7,9或11.17.解:(1)∵CD平分∠ACB,∠ACB=70°,∴∠ACD=∠ACB=35°,∵∠ADC=80°,∴∠BAC=180°﹣∠ACD﹣∠ADC=180°﹣35°﹣80°=65°;(2)由(1)知,∠BAC=65°,∵AH⊥BC,∴∠AHC=90°,∴∠HAC=90°﹣∠ACB=90°﹣70°=20°,∴∠BAH=∠BAC﹣∠HAC=65°﹣20°=45°.18.解:因为CE∥AB(已知),所以∠BAD=∠E(两直线平行,内错角相等).因为点D是边BC的中点,所以BD=CD,在△ABD和△ECD中,所以△ABD≌△ECD(AAS),所以AD=ED(全等三角形的对应边相等).故答案为∠E,两直线平行,内错角相等;∠BAD=∠E,对顶角相等,BD=CD;AAS;全等三角形的对应边相等.19.解:∵AD是△ABC的高,∴AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠CAD,∵∠BFD=∠AFE,∴∠AEF=∠ADB=90°,∴BE⊥AC.20.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.21.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.22.解:(1)如图1中,∵BC平分∠ABO,AC平分∠BAO,∴∠ABC=∠ABO,∠BAC=∠BAO,∵∠POM=30°,∴∠ABO+∠BAO=180°﹣30°=150°,∴∠CBA+∠CAB=(∠ABO+∠BAO)=×150°=75°,∴∠ACB=180°﹣(∠CBA+∠CAB)=180°﹣75°=105°;(2)∠ACB的大小不变,理由如下:由(1)知:点A、B在运动的过程中,∠ACB=105°;(3)由(2)可知,∠ACB=105°,∠BAC+∠ABC=75°,∵△ABC中有一个角是另一个角的2倍,∴∠ACB=2∠BAC或∠ACB=2∠ABC或∠ABC=2∠BAC或∠BAC=2∠ABC,∴∠BAC=52.5°或22.5°或25°或50°.23.(1)解:∵∠ABC=50°,∴∠BAC+∠BCA=130°,∵△ABC的三个内角的平分线交于点O,∴∠OBD=25°,∠OAC+∠OCA=65°,∴∠AOC=115°,∵∠ODC=∠AOC,∴∠ODC=115°,∵∠ODC是△OBD的一个外角,∴∠BOD=∠ODC﹣∠OBD=115°﹣25°=90°.(2)解:∵∠ABC=n°,∴∠BAC+∠BCA=180°﹣n°,∵△ABC的三个内角的平分线交于点O,∴∠OBD=n°,∠OAC+∠OCA=90°﹣n°,∴∠AOC=180°﹣(90°﹣n°)=90°+n°,∵∠ODC=∠AOC,∴∠ODC=90°+n°,∵∠ODC是△OBD的一个外角,∴∠BOD=∠ODC﹣∠OBD=90°+n°﹣n°=90°.(3)证明:由(2)得,∠BOD=90°,∵BO平分∠ABC,BF平分∠ABE,∴∠ABF=∠ABE,∠ABO=∠ABC,∴∠FBO=∠ABE+∠ABC=90°,由(2)得,∠BOD=90°,∴∠FBO=∠BOD,∴BF∥OD.(4)∵∠F=∠ABC=40°,∠FBO=∠BOD=90°,∴∠OBD=∠OB'D'=20°,∠FOB=50°,∴∠ODB=∠OD'B'=70°,∠DOC=180°50°﹣90°=40°,、如图(1),∵D'B'∥FC,∴∠OD'B'=∠D'OC=70°,∴∠DOD'=∠D'OC﹣∠DOC=70°﹣40°=30°,即α=30°,如图(2),∵D'B'∥FC,∴∠OD'B'=∠D'OF=70°,∴α=∠FOD'+∠FOB+∠DOB=70°+50°+90°=210°,∴旋转角α为30°或210°时,B'D'所在直线与FC平行.。
精品2014年八年级数学上册-三角形初步认识同步讲义+练习

精品2014年⼋年级数学上册-三⾓形初步认识同步讲义+练习三⾓形初步认识第01课与三⾓形有关的线段知识点:三⾓形定义:组成的图形叫做三⾓形。
⽤符号“△”表⽰。
注意:三条线段必须①;②组成三⾓形的线段叫做三⾓形的,相邻两边所组成的⾓叫做三⾓形的,简称⾓,相邻两边的公共端点是三⾓形的。
注意:三⾓形ABC 的顶点C 所对的边AB 可⽤c 表⽰,顶点B 所对的边AC 可⽤b 表⽰,顶点A 所对的边BC 可⽤a 表⽰.三⾓形三要素:、、。
三⾓形三边的不等关系:。
附加:公式:三⾓形的分类:(1)按⾓分类: 三⾓形、三⾓形、三⾓形。
(2)按边分类:三⾓形的⾼线:从三⾓形的⼀个向它的对边所在直线作,顶点和垂⾜之间的叫做三⾓形的⾼线,简称三⾓形的⾼.注意:⾼与垂线不同,⾼是线段,垂线是直线。
三⾓形的三条⾼,简称三⾓形的⼼。
三⾓形的中线:如图,我们把连结△ABC 的顶点A 和它的对边BC 的中点D ,所得线段AD 叫做△ABC 的钝⾓三⾓形直⾓三⾓形锐⾓三⾓形位置边BC 上的中线,表⽰为BD=DC 或BD=DC=21BC 或2BD=2DC=BC. 三⾓的三条中线,简称三⾓形的⼼。
注意:三⾓形的中线是线段。
三⾓形的⾓平分线:如图,画∠A 的平分线AD ,交∠A 所对的边BC 于点D ,所得线段AD 叫做△ABC 的⾓平分线,表⽰为∠BAD=∠CAD 或∠BAD=∠CAD =1/2∠BAC 或2∠BAD=2∠CAD =∠BAC 。
三⾓形三个⾓的平分线,简称三⾓形的⼼。
注意:三⾓形的⾓平分线是线段,⽽⾓的平分线是射线,是不⼀样的。
三⾓形稳定性(1)把三根⽊条⽤钉⼦钉成⼀个三⾓形⽊架,然后扭动它,它的形状会改变吗? (2)把四根⽊条⽤钉⼦钉成⼀个四边形⽊架,然后扭动它,它的形状会改变吗? (3)在四边形的⽊架上再钉⼀根⽊条,将它的⼀对顶点连接起来,然后扭动它,它的形状会改变吗?例1.⽤⼀条长为18cm 的细绳围成⼀个等腰三⾓形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有⼀边长为4㎝的等腰三⾓形吗?为什么?例2.已知△ABC 的周长是24cm ,三边a 、b 、c 满⾜c+a=2b ,c-a=4cm ,求a 、b 、c 的长.三⾓形中线的性质:例3.⼀个等腰三⾓形的周长为32 cm,腰长的3倍⽐底边长的2倍多6 cm.求各边长.例4.如图,在直⾓三⾓形ABC中,∠ACB=900,CD是AB边上的⾼,AB=13cm,BC=12cm,AC=5cm,求:(1)△ABC的⾯积;(2)CD的长;(3)作出△ABC的边AC上的中线BE,并求出△ABE的⾯积;(4)作出△BCD的边BC边上的⾼DF,当BD=11cm 时,试求出DF的长。
第一章三角形初步认识综合复习(2)

第一单元 三角形的初步认识复习(2)1.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( ) A .1个 B .2个 C .3个 D .4个2.如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数为……………( )A. 150B. 200C .250 D. 300第2题 第3题 第5题 第6题 3.如图,AC ⊥BC ,CD ⊥AB ,能表示点到直线(或线段)的距离的线段( ) A .1条 B .2条 C . 3条 D .5条4、a 、b 、c 为三角形的三边长,化简c b a c b a c b a c b a -+-+-----++,结果是 ( ) A 、0 B 、c b a 222++ C 、a 4 D 、c b 22-5. 如图所示,把一个三角形纸片ABC 顶角向内折叠3次之后,3个顶点不重合,那么图∠1+∠2+∠3+∠4+∠5+∠6的度数和是( )A 、 180°B 、 270°C 、 360°D 、 无法确定6、点P 是△ABC 内一点,连结BP 并延长交AC 于D ,连结PC ,则图中 ∠1、∠2、∠A 的大小关系是( )A 、∠A >∠2>∠1B 、∠A >∠2>∠1C 、∠2>∠1>∠AD 、∠1>∠2>∠A7、下列图形中,不具有稳定性的是( ).8.如图,一块三角形绿化园地,三个角都做有半径为R 的圆形喷水池,则这三个喷水池占去的绿化园地(即阴影部分)的面积为( )A 、22R π B 、221R π2 D 不能确定第8题 第9题 第10题9.如图,以三角形三个顶点为圆心画半径为2的圆,则阴影部分面积为( )。
(A) π (B) 2π (C) 3π (D) 4π10、如图,一块四边形绿化园地,四角都做有半径为R 的圆形喷水池,则这四个喷水池占去的绿化园地的面积为( )A 、22R π B 、24R π C 、2R π D 、不能确定 11. 如图 所示,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,并且CD 、BE 交于,点P ,若∠A=500 ,则 ∠BPC 等于( )A 、90°B 、130°C 、270°D 、315°第11题 第12题 第13题A BCDP 12第7题A B C D E D C B A P 3P 2P 1C B A P 2P 1C B A P 1C BA12.如右图,△ABC 中,∠C=90°,AC=BC ,AD 是∠CAB 的平分线,DE ⊥AB 于E 。
三角形的初步认识复习教案

三角形的初步认识复习教案一、教学目标:1. 复习并巩固学生对三角形的基本概念、性质和分类的理解。
2. 提高学生运用三角形知识解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队协作精神。
二、教学内容:1. 三角形的基本概念:三角形的定义、三角形的组成。
2. 三角形的性质:三角形的内角和、三角形的边长关系。
3. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
4. 三角形的画法:如何准确地画出一个三角形。
5. 三角形在实际生活中的应用:举例说明三角形在现实生活中的应用。
三、教学重点与难点:1. 教学重点:三角形的基本概念、性质和分类,以及三角形在实际生活中的应用。
2. 教学难点:三角形内角和、边长关系的理解和运用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过思考和讨论来复习三角形的相关知识。
2. 利用实物模型、图片等教学资源,帮助学生直观地理解三角形的性质和分类。
3. 设计具有挑战性的练习题,激发学生的学习兴趣,提高学生解决问题的能力。
五、教学过程:1. 导入:通过提问方式引导学生回顾三角形的基本概念,激发学生的学习兴趣。
2. 讲解:详细讲解三角形的基本概念、性质和分类,并通过实物模型、图片等进行展示。
3. 练习:设计一些具有针对性的练习题,让学生独立完成,巩固所学知识。
4. 讨论:组织学生进行小组讨论,分享彼此的学习心得和解决问题的方法。
5. 总结:对本节课的主要内容进行总结,强调三角形的内角和、边长关系等关键知识点。
6. 作业布置:布置一些有关三角形应用的问题,让学生在课后思考和解决。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组讨论表现,评估学生的学习积极性。
2. 练习题评价:对学生的练习题进行批改,评估学生对三角形基本概念、性质和分类的掌握程度。
3. 课后作业评价:对学生的课后作业进行批改,了解学生对三角形在实际生活中应用的理解和运用能力。
八年级上册数学第一章《三角形的初步认识》复习课件(浙教版)

要判定一个命题是否是真命题,往往需要从命题的条 件出发,根据已知的定义、基本事实、定理(包括推论), 一步一步推得结论成立.这样的推理过程叫做证明.
全等三角形
• 能够重合的两个三角形称为全等三角形。 • 两个全等三角形重合时,能互相重合的顶点叫做全等三
角形的对应顶点,互相重合的边叫做全等三角形的对应 边,互相重合的角叫做全等三角形的对应角。 • “全等”可用符号“≌”来表示。 全等三角形的性质:全等三 角形对应边相等,对应角相等。
四、三角形的三线
五、定义和命题
• 一般地,能清楚地规定某一名称或术语的意义的句 子叫做该名称或术语的定义.
•
• 例: “两点之间 线段的长度,叫做这两点之间的距离” 是
“
”的定义;
•
命题: 两直线平行,同位角相等.
条件 (题设)
结论 (结论)
现阶段命题可看作由题设(条件)和结论 两部分组成,题设是已知事项,结论是由已知 事项推出的事项.
三角形全等的条件
• ① 三边对应相等的两个三角形全等(简写成“边边边”或 “SSS”)。
• ② 有一个角和夹这个角的两边对应相等的两个三角形 全等(简写成“边角边”或“SAS”)。
• ③ 有两个角和这两个角的夹边对应相等的两个三角形 全等(简写成“角边角”或“ASA”)。
• 有两个角和其中一个角的对边对应相等的两个三角形全 等(简写成“角角边”或“AAS”)。
三角形的稳定性:当三角形三边长确定是,三角形的形状、 大小完全被确定,这个性质叫做三角形的稳定性,这是三角 形特有的性质。
垂直平分线: 垂直于一条线段,并且平分这条线段的直线 叫做这条线段的垂直平分线,简称中垂线。
线段垂直平分线上的点到线段两端点的距离相等。
三角形的初步认识教案

三角形的初步认识教案【篇一:三角形的初步认识复习教案】龙文教育学科老师个性化教案【篇二:《认识三角形》教学设计】《三角形的认识》教学设计【教学目标】1.联系实际和利用生活经验,通过观察、操作、测量等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形底和高相互依存的关系。
2.在认识三角形有关特征的活动中,体会认识多边形特征的基本方法,发展观察、比较、抽象、概括等思维能力。
3.体会三角形是日常生活中常见的图形,并在学习活动中进一步产生学习图形的兴趣和积极性。
【教学重难点】重点:认识三角形的一些最基本的特征,认识三角形的底和高。
难点:懂得底和高的对应关系,会画三角形指定边上的高。
【教学准备】方格纸、三角尺、小棒、练习纸等【教学过程】一、走进生活,导出课题谈话:出示三角板,老师手里拿的是什么?(三角尺)它是什么形状的呢?出示书上图:你能从这幅图中找到三角形吗?提问:生活中,你在哪些地方看到过三角形?(结合举例出示自行车图等)揭示:三角形在生活中的运用非常广泛。
今天这节课我们进一步研究三角形。
(板书课题:认识三角形)【设计意图:数学来源于生活。
三角形的稳定性决定了它在生活中的广泛应用。
结合身边熟悉的物品、结合生活中常见的例子,导入新课的学习,激发学生的兴趣,让学生产生进一步探究的欲望。
】二、动手操作,了解特征1.激趣:想动手做一个三角形吗?首先,我们要明确活动要求。
出示要求:(1)用你手中的工具,想办法做出一个三角形。
(2)小组成员比较所做的不同的三角形,看看有什么共同点。
2.操作:学生分组活动,教师巡视。
3.交流:指名某组代表上台利用实物投影介绍,别的小组补充。
(材料:小棒、三角尺、方格纸、点子图、白纸)4.感受围成提问:刚才有同学是用小棒摆三角形的,那么摆一个三角形至少要用几根小棒?出示开口和出头的两种摆法:这样行吗?不管是摆还是画三角形,都要注意三条边首尾相连。