地铁车站结构设计

合集下载

某地铁车站内部结构设计计算书

某地铁车站内部结构设计计算书

(18x3.3+8x17)x0.65=127 Kpa; 2、活载计算:
地面超载:20 Kpa; 中板活载:4Kpa(设备区 8Kpa) ;
3、水反力计算: 10x17.7=177 Kpa。 4、计算结果包络及配筋:
2
弯矩包络图(KN·M)
剪力包络图(KN)
3ቤተ መጻሕፍቲ ባይዱ
轴力包络图(KN) 根据计算结果进行截面配筋及裂缝验算如下表 (中板按照上下中板最不利进配 筋) 。
构件 顶板跨中 顶板中支座 顶板边支座 中板跨中 中板中支座 中板边支座 底板跨中 底板中支座 底板边支座 侧墙跨中 侧墙上支座 侧墙上中支座 侧墙下中支座 侧墙下支座 计算弯矩 M (KN·m/m) 337 340 457 66 123 209 1306 717 1693 653 457 228 788 1683 剪力 Q (KN/m) —— 217 283 —— 66 99 —— 209 793 —— 244 181 757 1110 板厚 h (mm) 600 600 600 400 400 400 1100 1100 1100 800 600 700 800 800 配筋方式 25@150 28@150 28@150+28@300 22@150 22@150 22@150 32@100 28@100 28@100+28@150 32@150 28@150+28@300 28@150 28@150+28@300 28@100+28@150 裂缝宽度 (mm) 0.238 0.178 0.129 0.04 0.08 0.235 0.214 0.08 0.123 0.229 0.129 0.06 0.143 0.123
构件 顶纵梁 下中纵梁 底纵梁 跨中 端部 跨中 端部 跨中 端部 截面 900 800 1000 1800 1000 2200 弯矩 (kN﹒m) 2465 4198 521 1014 2158 5945 支座剪力 (kN) 0 3332 0 768 0 4051 裂缝宽度 (mm) 0.114 0.174 0.16 0.141 0.08 0.161 配筋数量 13φ28 18φ28 9φ25 9φ28 12φ32 20φ32

地铁车站主体围护结构施工方案

地铁车站主体围护结构施工方案

围护构造施工方案目录1.概述............................................................................................................................... 错误!未定义书签。

1.1 设计概况........................................................................................................... 错误!未定义书签。

1.2 重要工程量....................................................................................................... 错误!未定义书签。

1.3 周围环境........................................................................................................... 错误!未定义书签。

1.4 地质概况........................................................................................................... 错误!未定义书签。

1.4.1工程地质................................................................................................. 错误!未定义书签。

1.4.2水文地质................................................................................................. 错误!未定义书签。

地铁车站结构设计基本参数

地铁车站结构设计基本参数

、结构拟定尺寸及基本参数
该项目结构覆土层为3m,结构形式为两层三跨闭合框架,框架柱距为8m,站台层建筑
净高4.5m,站厅层建筑净高4.8m。

结构构件截面尺寸及主要材料强度如表1所示。

车站典
型横断面如下图所示(图1):
图1车站典型横断面
、简化解析计算方法
取轴线方向1m长度闭合框架作为计算简图,柱作为只承受压力的二力杆,不考虑支护
结构影响,竖向地基反力按照竖向静力平衡条件计算确定,不考虑周围土层介质的抗力,按荷载一结构法进行计算;柱截面设计时按照柱距设计和计算轴力综合确定。

工程地质
岩土分层及特性
ur111
-- r
J
mu
ii
nim
111
|.h» L* \ [L 严Y| 1a
-
»
it
W 4 -- ■4■L 午■ !—
…丨LI
图2主体结构计算图式

岩土层分类及深度
土层物理、力学参数表
表3各岩土层力学、物理参数
表4荷载计算表
荷载及荷载效应组合
表5荷载组合参数表
荷戦种类纽合永久荷找可变荷St水土圧力人肪荷攪地匿荷iX
1 {基本)1135VL^0.7* 1.413500
\_2(甚本)_n12皆1.400
3 <标准) 1.0 1.0 1.000
4〔准永久) 1.0屮qX 1 -0 1.0Q0
5 <人防) 1.20 1.2 1.00
6 {地怎}L20.5x12「12013
注*甲q为准永久值系数匚YL为町变荷裁君虑投计便用年限的调整家敬。

地铁车站结构设计基本思路

地铁车站结构设计基本思路

地铁车站结构设计基本思路地铁车站结构设计的基本思路1、以设计流程为主线,对每⼀个设计环节要掌握:(1)、需搜集的基础资料及如何应⽤这些资料(2)、需要掌握的主要设计规范条⽂以及相应的理论背景(3)、需要掌握的设计计算⼿段及结构分析的⼒学模型,同时要掌握其基本的受⼒特点(4)、与之相关的已有⼯程经验和⼯程实例(5)、需要完成相关设计⽂件,包括设计说明、设计图纸、计算书2、主要依据的规范及技术标准(1)、《地铁设计规范》(GB50157-2003)(2)、《混凝⼟结构设计规范》(GB50010-2002)(3)、《建筑结构荷载规范》(GB50009-2001)2008版(4)、《钢结构设计规范》(GB50017-2003)(5)、《建筑抗震设计规范》(GB50011-2001)2008修订版(6)、《⼈民防空地下室设计规范》(GB50038-2005)(7)、《建筑基坑⽀护技术规程》(JGJ120-99)(8)、《建筑地基基础设计规范》(GB50007-2002)(9)、《地下⼯程防⽔技术规范》(GB50108-2008)(10)⾏业及地⽅的其他相关规程规范、法规标准。

如国家或⾏业的地基处理规范、岩⼟⼯程勘察规范;冶⾦部的基坑规范;可靠度统⼀标准;⼯程建设所在地的地铁规范、基坑规范、地基处理规范、勘察规范、地基基础规范等;(11)、针对所设计⼯程,由总体设计院制定的技术标准、⽂件编制规定、设计⽂件深度与内容规定。

3、地铁车站结构设计的主要内容(1)、基坑⼯程设计(2)、主体结构设计(3)、其他:结构防⽔设计、监测、施⼯场地布置、管线迁改、施⼯中的辅助措施(如围堰、建构筑物的地基加固)等4、地铁车站结构设计的基本流程⼀个地铁车站设计的基本流程可描述如下:(1)、基础资料分析:车站周边环境、建筑、地质、盾构施⼯筹划、总体设计院制定的技术要求和原则、相关专业的提资资料(2)、制定总体结构⽅案:施⼯⽅法及⼯况设定、墙体形式(3)、基坑⼯程设计:环境保护等级及安全性等级、基坑⽅案设计、基坑详细设计、编制设计⽂件(说明、图纸、计算书)(4)、主体结构设计:拟定结构尺⼨、重要性等级、耐久性要求、缝的设置、确定分析模型及结构分析、结构配筋、编制设计⽂件(说明、图纸、计算书)(5)、防⽔设计:设计原则及防⽔等级、全包或半包、标准段、诱导缝处、施⼯缝处5、基础资料分析5.1、车站周边环境及交通组织要求(1)、建筑物(2)、管线(3)、既有轨道交通设施(4)、既有地⾯标⾼(5)、交通组织要求(6)、其他:如铁路、河道(不均匀受⼒)、架空线路(如⾼压线⾛廊等)⽬的:确定基坑的环境保护等级、基坑开挖深度以及基坑的施⼯筹划组织⽅案、施⼯场地布置等。

地铁车站结构设计

地铁车站结构设计

地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。

在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。

为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。

地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。

车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时, 必须详细调查研究, 作经济技术比较。

车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。

然后进行车站构造设计, 内力计算, 配筋计算等等。

一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长,宽度为,上层为站厅层,下层为站台层。

车站底板埋深16m采用明挖法施工,用地下连续墙围护。

二、设计依据:地铁设计规范( GB50157-2003);地铁施工技术规范。

三、地铁车站结构设计设计选用矩形框架结构。

设计为岛式车站,采用两层三跨结构。

地铁车站采用明挖法。

车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。

顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。

采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。

临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。

车站开挖围护结构r=L3.2k N/MC二0耳宁:7戸厂■鬥z3z4z5 £------r=27,0kN.mc=0u地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为二,其中基坑开挖深度H为16m,入土深度D为14m。

四、侧压力计算:土分层及土的钻孔柱状图如图:图土分层及土的钻孔柱状图(单位,m )362其中 a ......................................................................................................... 主动土压力a .................................................................................. 主动土压力系数.......................................... 沙土的容重Z ....................................... 土层的深度c ........................................ 土的黏聚力各层土压力系数:计算主动土压力:2ctg 2 45 25 0.41 a tg 2 45 30 0.33 tg 2 45 32 0.31 a tg 2 45 34 2 0.26a tg 2 45 0.2236 20.26 xx2C a1= xx = kpa=kpax = kpaxx + x + x 9 + x = kpa各层土压力:kpakpaxx + x 9)= kpa0.26 x x + x 9) kpa23.42 xx + x + x + x + 27 x = kpa由于黏聚力C = 0 ,所以临界深度为0其主动土压力(水土和算)分布图如图所示:图土压力分布图(单位,m简化计算:沙土层 c 的平均直如下:= ______ ih L 13.2 6.5 19.8 2.0 26.7 9 26.5 1.2 27 11.330154.7kpckpa2p tg 45 刁 °31tg 2 45 3.25 a 1.80 也 13・2 25 19・8 30 26・7 32 26・5 34 27 36 32° h i 30五、车站结构分析计算: 车站框架设计车站站台建筑设计长度为134600mm ,车站宽度21800 mm 站台层净高4200 mm 站厅层净高5600 mm ,站台至轨道净高2000 mm 顶板厚800 mm 中板厚400 mm 车站基础厚1000 mm,车站总高 12000 mm车站框架设计图如图所示:0.55X 20 = KN/ m 2X 25 = 20 KN/ m受力分析:① 顶板荷载计算线荷载:20mm 厚水泥沙浆面层: 800mmi 钢筋混凝土板:图车站框架设计图(单位:mm20 mm 厚沙浆抹灰: X 17 = KN/ m2上部填土荷载(从地下4m开始开挖): 4 X = KN/ m2总荷载:KN/ m 线恒荷载设计值(取1m宽度): g = 1 XX :地面活荷载:q = 20 KN/ m 地面活荷载设计值(取1m宽度):q二20 X =28 m总的线荷载:g + q = + 28 = m②中板荷载计算恒载:20mm 厚水泥沙浆面层:X 20 = KN/ m400mm 钢筋混凝土板:X 25 = 10 KN/ m20 mm 厚沙浆抹灰:X17 = KN/ m总荷载:KN/ m线恒荷载设计值(取1m宽度):g = XX 1 = m楼面荷载:KN/ m2线活荷载设计值(取1m宽度):1XX 10 = 14 KN/ m 线活荷载总设计值:g + q = 27 m车站横向荷载为土压力,取1m宽度进行计算,受力分析如图所示:图车站框架受力简图(单位:m等效简化荷载:q 3s 46 221.7 33.85 m)图车站框架等效简化后受力图(单位: m六、横向框架内力计算:计算简图如图所示:q 443 69.1 2 69.1 m)等效简化荷载受力分析如图说示:ql = 110kN/n图竖向均布荷载作用下的横向框架计算简图①第一层杆件计算由于对称性,可取半结构进行计算,计算图如图所示:1 .2 241.5 / mCB _q 1l6 4AB AD 0.5 BA BE9 BC0.2BA图站厅层半结构受力简图—q1l2丄 110.248 7.262483.0KN/m12 12注:铰支座传递系数为;固定端传递系数为,滑动支座传递系数为,假定材料均匀,线刚度与杆件成反比, u为分配系数-61U55B 由力矩分配法计算结果如图:135,BS_ 合图站厅层半结构计算结果② 第二层杆件计算543,4 —4227 271-68 -1E0.7182,&同①取半结构进行分析计算如图:A BEDEHHE1 | 2'3q 211273 3.632 118.60?m/ m*12 659.30?m/mEBEDEG 4 13eh=1 13DA DF1.图站台层半结构受力计算简图—q 2l 2— 27 7.262 118.60 ?m/m12 12A B 计算结果如图所示□.7514.C 5图站台层半结构受力计算结果(单位:kN ?m )由站厅层和站台层受力图画弯矩图,竖向均布荷载作用下的横向3.757.43I-14,8513E ^L757.4360.1-o —d―4A B 框架弯矩图如图所示:图竖向均布荷载作用下的横向框架弯矩图(单位:kN?m )竖向均布荷载(土压力等效简化后)作用下的横向框架计算;同样的取半结构计算,计算简图如图所示:A BCA CEAC —— 1 2q a l1 2 70.5 ?m/m12 121 2 q41 1 69.1 6.842269.4 ?m/m12 121 2 q41538.8 ?m/m3 4AB 0.5BA 0.25 CD CA CE 1 3ECDC0.2DA0.25BD BG 0・5DBDH0.4计算结果如图所示1.1°图竖向荷载和横向荷载作用下的弯矩叠加的弯矩图(单位:kN ?m )S38.§图 横向均布荷载作用下的横向半框架计算结果 (单位:kN ?m ) 将竖向荷载和横向荷载作用下的弯矩叠加,弯矩图如图所示:543.478.8a,870,5-35,5517 Ji^269.iL21.04.6 -4,6158.01L J 6 -gO 3765mm ( 按单1483 ?m ,197.2 ?m ,七、车站配筋计算:站厅层顶板配筋计算f c 14.3 /mm 2 , 取 b=1000mm , h 0 800 35 排布筋考虑 ), 由图知:站厅层顶板的边跨跨中弯矩 中间跨支座弯 2 543.47 ?m , 中间跨跨中弯矩 3 站厅层顶板配筋计算如下表 7-1 示:表 7-1 站厅层顶板配筋计算:0迎200图站厅层顶板配筋图站台层中板配筋计算f c 14.3 /mm 2b=1000mm h 0400 35365mm , 由图知:中板的边跨跨中弯矩1 70.5 ?m,中间跨支座 2 121.0 ?m ,中间跨跨中弯矩 3 64.7 ?m ,站台层中板配筋计算表如表 7-2 所示:表7-2站台层中板配筋计算表截面位置边跨跨中中间跨支座中间跨跨中M1*25^2001厂■Sn2 '^20®2C r>©200025 @200「— i i11■2 1勺2?⑪200^22MC0sMf c bh 21s 21 J 12 sA sM656 1143 602s h 0f y实配钢筋 2 22 @ 200 4 22@200 2 22 @ 200( m m 2 ) 760 1520 760图站台层顶板配筋图^22 @200 ^2 2 ©200$2Eg2O站厅层顶板次、主梁配筋计算(1)站厅层次梁配筋计算:次梁截面尺寸b x h= 600 x 1200mr rnm2l=7260mm①荷载计算恒载由板传来:x = KN/m次梁自重:2x 25xx KN/m次梁抹灰:17xx x2= KN/m总恒荷载:g = m活荷载:q=28 x =70 KN/m 总荷载:g + q = KN/m②内力计算主梁尺寸:bx h=800mmx 1600计算跨度:边跨l01 7106mm 中间跨l02 7260 mm由跨度差7260 7160 1.37 % < 10 %7260故可按等跨连续梁计算。

地铁车站压顶梁结构设计

地铁车站压顶梁结构设计

地铁车站压顶梁结构设计摘要:在地铁结构设计时,若车站抗浮不满足要求,会优先考虑设置压顶梁抗浮型式。

该型式利用围护结构参与抗浮、节省工程投资,且施工简便、抗浮性能可靠,在工程中广泛使用。

本文主要探讨压顶梁受力计算及相关设计。

关键词:压顶梁;抗浮;受力分析;计算一、压顶梁设置范围及连接节点压顶梁设置在顶板上,沿车站全长布置,与顶板间200高为混凝土填充,压顶梁与顶板、填充混凝土均采用C35混凝土。

压顶梁尺寸为800mmx800mm。

车站先施工地墙,地墙内预埋钢筋接驳器,随后施工顶板,再施工压顶梁及混凝土填充。

压顶梁与地墙采用钢筋接驳器连接。

图一压顶梁布置剖面图图二压顶梁与地墙连接剖面图图三压顶梁配筋断面图二、压顶梁受力分析本次计算采用某地铁车站断面进行抗浮计算,车站信息如下:车站覆土厚度:2.85m,顶板厚0.8m,顶板梁0.9x2m,中板厚0.4m,中板梁0.9x1m,底板厚0.9m,底板梁1.1x2.2m,柱子0.8x1.2m,柱跨为9m,侧墙宽0.7m,车站总高度13.85m,总宽度20.7m,地墙长度为32.5m。

抗浮计算过程如下:K1=(2.85*20*20.7+25*19.3*(0.8+0.4+0.9)+20*19.3*0.15*2+25*(0.9*(2-0.8)+0.9*(1-0.4)+1.1*(2.2-0.9)+0.8*1.2*(13.85-0.8-0.4-0.9)/9+0.7*13.85*2+0.8*0.8*2)+15*32.5*0.8*2+0.3*0.9/2*6)/(10*20.3*(2.8 5+13.85-0.5))=1.13>1.1,满足要求。

每侧单位长度压顶梁所受剪力V=(单位长度水反力X1.1-单位长度结构自重-单位长度覆土重)/2=327.7KN。

压顶梁受地墙参与抗浮传来的剪力及由剪力引起的弯矩。

剪力设计值V1=1.1X1.25V=450.6KN弯矩设计值M1=1.1X1.25(VH)=1.1X1.25X(327.7X0.4)=180.3KN.M三、压顶梁结构设计3.1 正截面承载力验算1)构件编号:压顶梁2)设计依据《混凝土结构设计规范》 GB50010-20103)计算信息1. 几何参数截面类型: 矩形截面宽度: b=1000mm截面高度: h=800mm2. 材料信息混凝土等级:C35fc=16.7N/mm2ft=1.57N/mm2钢筋种类:HRB400fy=360N/mm2最小配筋率:ρmin=0.200%纵筋合力点至近边距离: as=50mm3. 受力信息M=180.300kN*m4. 设计参数结构重要性系数: γo=1.14)计算过程1. 计算截面有效高度ho=h-as=800-50=750mm2. 计算相对界限受压区高度ξb=β1/(1+fy/(Es*εcu))=0.80/(1+360/(2.0*105*0.0033))=0.5183. 确定计算系数αs=γo*M/(α1*fc*b*ho*ho)=1.1*180.300*106/(1.0*16.7*1000*750*750)= 0.0214. 计算相对受压区高度ξ=1-sqrt(1-2αs)=1-sqrt(1-2*0.021)=0.021≤ξb=0.518满足要求。

地铁车站和区间隧道的设计和选型(推荐5篇)

地铁车站和区间隧道的设计和选型(推荐5篇)

地铁车站和区间隧道的设计和选型(推荐5篇)第一篇:地铁车站和区间隧道的设计和选型一、地铁车站的建筑设计地铁车站的分类1.1 按照车站埋深分:浅埋车站、深埋车站1.2 按照车站运营性质分:中间站、区域站、换乘站、枢纽站、联运站、终点站1.3 按照车站结构断面形式分:矩形断面、拱形断面、圆形断面、其他1.4 按车站站台形式分:岛式、侧式、岛侧混合式地铁车站建筑及平面布局2.1 地铁车站的组成地铁车站由车站主体(站台、站厅、生产、生活用房)、出入口及通道、通风道及地面通风厅等三大部分组成。

车站建筑又可概括为以下部分组成:乘客使用空间、运营管理用房、技术设备用房、辅助用房。

2.2 车站总体平面布置按照以下流程确定:前期工作(设计资料的收集、现场调查、构思),确定车站中心位置及方向,选定车站类型,合理布置车站出入口、通道、通风道与地面通风厅。

车站建筑设计 3.1 车站设计 3.1.1 设计原则(1)根据车站规模、类型及平面布置,合理组织人流路线,划分功能分区。

(2)车站一般宜设在直线上。

(3)车站公用区间划分为付费区和非付费区。

(4)隔、吸声措施。

(5)无障碍通行。

3.1.2平剖面设计(1)车站规模确定。

确定车站外形尺寸大小、层数和站房面积,确定车站规模大小。

(2)车站功能分析。

确定车站乘客流线、工作人员流线、设备工艺流线等,以便于合理进行车站平剖面布置。

1(3)站厅设计。

主要解决客流出入的通道口、售票、进出站检票、付费区与非付费区的分隔、站厅与站台的上下楼梯与自动楼梯的位置等。

(4)站台设计。

确定站台形式、站台层的有效长度、宽度和站台高度,然后进行站台层公共区(上、下车与候车区及疏散通路)的设计。

(5)主要房间布置。

包括变电所、环控用房、主副值班室、车站控制室、站长室等,一般设置在站厅和站台层的两端。

(6)车站主要设施布置。

包括楼梯、自动扶梯、电梯、售检票设施等的布置和各部位通过能力的设计,按照有关规范执行。

地铁车站结构设计

地铁车站结构设计

主体结构:行车功能、建筑功能、设备功能
1、主体结构使用年限100年—混凝土掺料、承载力、裂缝、变形、构件构造 (保护层厚度,构件尺寸)、防水等级、防迷流(杂散电流)等。 2、限界要求:结构梁、柱截面与柱网布置(尤其在道岔区,曲线地段) 3、使用要求:孔洞布置、设备基础、结构沉降及防水、防火等
经济性:结构施工过程中,现场情况时刻都在变化,很可能产生很多变更。应 在技术和合同方面控制好变更。
水浮力
>1.05
结构自重+覆土+侧壁摩阻力
K=
>1.15~1.2
水浮力
2、矿山法结构
1) 工法拟定 台阶法、中隔壁法(CD、CRD法)、侧壁导坑法(眼镜法)、中洞法等
五、工作中需要关注的事项
1.前期工程的落实对一个项目的进展非常重要! 2.基坑开挖施工过程中,基坑的安全及周边建构筑物的安全为重中之重! 3.主体结构施工过程中,注意各预留孔洞及预埋件的预留。施工单位要将 建筑图与结构图核对后施工。
车站施工方法比较表
优点Biblioteka 缺点1.施工简单、技术成熟。
明 挖
2.工程进度快,根据需要可以分段同时作业。 3.防水效果好。 4.造价及运营费用低。
5.对地质条件要求不高。
1.施工方法比较成熟。 盖 2.与明挖比较对交通影响较小。 挖 3.地质条件要求不高
4.防水效果较好。
1.施工对城市地面交通和居民的正常生活有一定影 响。 2.车站影响范围的地下管线需拆迁。 3.需较大的施工场地。
通风空调 给排水及消防
中低压供电 屏蔽门
电梯、自动扶梯
通信 信号 自动售检票/门禁 综合监控/自动化控制 控制中心工艺
二、地铁车站结构设计基本原则
前期工程: 1、房屋拆迁; 2、施工场地; 3、交通疏解; 4、管线改迁(110KV及以上电力,埋深较深的雨、污水管); 5、周边地块结合-站位选择、施工工法是否相适应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地铁车站结构设计车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。

在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。

为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。

地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。

车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。

车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。

然后进行车站构造设计, 内力计算, 配筋计算等等。

一、工程概况:长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。

车站底板埋深16m,采用明挖法施工,用地下连续墙围护。

二、设计依据:地铁设计规范(GB50157-2003);地铁施工技术规范。

三、地铁车站结构设计3.1 设计选用矩形框架结构。

设计为岛式车站,采用两层三跨结构。

地铁车站采用明挖法。

车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。

顶板和楼板采用单向板,底板按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。

采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。

临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。

3.2 车站开挖围护结构地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。

四、侧压力计算:土分层及土的钻孔柱状图如图4.1:图4.1土分层及土的钻孔柱状图(单位,m)计算主动土压力: a a a c K -Z K =P 2γ其中 a P ………………………主动土压力a K ………………………主动土压力系数γ………………………沙土的容重Z ………………………土层的深度c ………………………土的黏聚力各层土压力系数:1Z : 41.0225452=⎪⎭⎫ ⎝⎛-=K tg a 2Z : 33.0230452=⎪⎭⎫ ⎝⎛-=K tg a 3Z :31.0232452=⎪⎭⎫ ⎝⎛-=K tg a 4Z :26.0234452=⎪⎭⎫ ⎝⎛-=K tg a5Z :22.0236452=⎪⎭⎫ ⎝⎛-=K tg a各层土压力:a : 02=K -Z K =P a a a c γb : 1Z K =P γa b 上=0.41×13.2×6.5=35.2 kpa=Z K =P 2γa b 下0.33×13.2×6.5=28.3 kpac : =Z K =P 2γa c 上0.33×(13.2×6.5 + 19.8×2.0)=41.4 kpa=Z K =P 3γa c 下0.31×(13.2×6.5 + 19.8×2.0)=38.9 kpad :=Z K =P 3γa d 上0.31×(13.2×6.5 + 19.8×2.0 + 26.7×9)=113.4 kpa 26.04=BZ K =P γa d 下×(13.2×6.5 + 19.8×2.0 + 26.7×9)=95.1 kpae :26.04=Z K =P γ上e ×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=103.5 kpa=Z K =P 5γa e 下0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9 + 26.5×1.2)=87.6 kpaf :=P f 0.22×(13.2×6.5 + 19.8×2.0 + 26.7×9.0 + 26.5×1.2 + 27×11.3)=154.7 kpa由于黏聚力C = 0 ,所以临界深度为0 。

其主动土压力(水土和算)分布图如图4.2所示:图4.2土压力分布图(单位,m )简化计算:沙土层ϕγ⋅⋅c 的平均直如下:γ =42.23303.11272.15.2697.260.28.195.62.13=⨯+⨯+⨯+⨯+⨯=∑∑i i i h h γ kpa C = 0032303627345.26327.26308.19252.13=⨯+⨯+⨯+⨯+⨯==∑∑i i i h h ϕϕ 31.02452=⎪⎪⎭⎫ ⎝⎛-=K ϕtg p 55.0=K p25.32452=⎪⎪⎭⎫ ⎝⎛+=K ϕtg a 80.1=K a五、车站结构分析计算:5.1 车站框架设计车站站台建筑设计长度为134600mm , 车站宽度21800 mm ,站台层净高4200 mm , 站厅层净高5600 mm , 站台至轨道净高2000 mm ,顶板厚800 mm ,中板厚400 mm 车站基础厚1000 mm, 车站总高12000 mm 。

车站框架设计图如图5.1所示:图5.1车站框架设计图(单位:mm)5.2受力分析:①顶板荷载计算线荷载:20mm厚水泥沙浆面层: 0.02×20 = 0.4 KN/㎡800mm钢筋混凝土板: 0.8×25 = 20 KN/㎡20 mm厚沙浆抹灰: 0.02×17 = 0.34 KN/㎡上部填土荷载(从地下4m开始开挖): 4×13.2 = 52.8 KN/㎡总荷载: 73.54 KN/㎡线恒荷载设计值(取1m宽度): g = 1×1.2×73.54 =88.248 KN.m/m地面活荷载: q = 20 KN/㎡地面活荷载设计值(取1m宽度): q = 20×1.4 =28 KN.m/m总的线荷载: g + q = 110.248 + 28 =110.248 KN.m/m②中板荷载计算恒载:20mm厚水泥沙浆面层: 0.02×20 = 0.4 KN/㎡400mm钢筋混凝土板: 0.4×25 = 10 KN/㎡20 mm厚沙浆抹灰: 0.02×17 = 0.34 KN/㎡总荷载: 10.74 KN/㎡线恒荷载设计值(取1m宽度): g = 1.2× 10.74×1 = 13.0 KN.m/m楼面荷载: 10.0 KN/㎡线活荷载设计值(取1m宽度):1×1.4×10 = 14 KN/㎡线活荷载总设计值: g + q = 27 KN.m/m车站横向荷载为土压力 , 取1m 宽度进行计算 ,受力分析如图5.2所示:图5.2 车站框架受力简图(单位:m)等效简化荷载:85.3327.21463+=s q (KN.m/m) 1.6921.69434=+=q (KN.m/m) 等效简化荷载受力分析如图5.3说示:图5.3车站框架等效简化后受力图(单位:m )六、横向框架内力计算:计算简图如图6.1所示:图6.1竖向均布荷载作用下的横向框架计算简图① 第一层杆件计算由于对称性, 可取半结构进行计算, 计算图如图6.2所示:图6.2 站厅层半结构受力简图m KN l q AB BA /0.48326.7248.110121121221=⨯⨯==M -=M 22163.3248.1103131⨯⨯-=-=M l q BC =-483.0 m /KN m l q CB /5.2416121KN -=-=M 5.0==AD AB μμ 94==BE BA μμ 2.0=BC μ注:铰支座传递系数为1.0;固定端传递系数为0.5,滑动支座传递系数为-1.0,假定材料均匀,线刚度与杆件成反比,u 为分配系数。

由力矩分配法计算结果如图6.3:图6.3 站厅层半结构计算结果②第二层杆件计算同①取半结构进行分析计算如图6.4:图6.4站台层半结构受力计算简图m m l q DE ED /60.11826.727121121222•KN =⨯⨯==M -=M m m l q EH /60.11863.3273131222'•KM -=⨯⨯-=-=Mm m l q HE /30.596122•KN -=-=M134===EG ED EB μμμ eh μ=131 31==DF DA μμ计算结果如图6.5所示:图6.5站台层半结构受力计算结果 (单位:m kN •)由站厅层和站台层受力图画弯矩图,竖向均布荷载作用下的横向框架弯矩图如图6.6所示:kN•)图6.6竖向均布荷载作用下的横向框架弯矩图6.6 (单位:m竖向均布荷载(土压力等效简化后)作用下的横向框架计算;同样的取半结构计算, 计算简图如图6.7所示:m m l q AC CA /5.70585.33121121223•KN -=⨯⨯==M -=M m m l q CE /4.26984.61.69121121224•KN -=⨯⨯-=⨯-=Mm m l q EC /8.5383124•KN -=-=M5.0==AB AC μμ 25.0=BA μ 31===CE CA CD μμμ 2.0===DA DC DB μμμ 25.0=BD μ 5.0=BG μ 4.0=DH μ计算结果如图6.8所示:图6.8 横向均布荷载作用下的横向半框架计算结果 (单位:m kN •)将竖向荷载和横向荷载作用下的弯矩叠加,弯矩图如图 6.9所示:kN•)图6.9竖向荷载和横向荷载作用下的弯矩叠加的弯矩图(单位:m七、车站配筋计算: 7.1 站厅层顶板配筋计算2/3.14mm f c N = , 取b=1000mm , mm h 765358000=-=(按单排布筋考虑), 由图6.9 知:站厅层顶板的边跨跨中弯矩m •KN =M 4831, 中间跨支座弯m •KN =M 47.5432, 中间跨跨中弯矩m •KN =M 2.1973, 站厅层顶板配筋计算如下表7-1示:表7-1站厅层顶板配筋计算:图7.1站厅层顶板配筋图7.2站台层中板配筋计算2/3.14mm f c N = b=1000mm mm h 365354000=-= , 由图6.9知:中板的边跨跨中弯矩m •KN =M 5.701 , 中间跨支座m •KN =M 0.1212, 中间跨跨中弯矩m •KN =M 7.643 , 站台层中板配筋计算表如表7-2所示:表7-2站台层中板配筋计算表截面位置边跨跨中 中间跨支座 中间跨跨中M70.5 121.0 64.7 2c s bh f M=α 0.0370.064 0.034 ()s s 21121α-+=γ 0.982 0.967 0.983 y0s s f h MA γ=6561143602实配钢筋 (2mm )222Φ@200760 224Φ@2001520 222Φ@200760图7.2站台层顶板配筋图7.3站厅层顶板次、主梁配筋计算 (1) 站厅层次梁配筋计算:次梁截面尺寸 b ×h= 600×1200mm 2mm l=7260mm① 荷载计算 恒载由板传来: 88.248×2.5 = 220.6 KN/m 次梁自重:2×25×0.6×(1.2-0.8)=12 KN/m 次梁抹灰: 17×0.02×(1.2-0.8) ×2= 0.027 KN/m 总恒荷载: g = 232.627KN/m活荷载: q=28×2.5=70 KN/m 总荷载: g + q =302.7 KN/m② 内力计算主梁尺寸:b ×h=800mm ×1600 计算跨度:边跨 mm l 710601中间跨 mm l 726002= 由跨度差37.1726071607260=-﹪ < 10﹪故可按等跨连续梁计算。

相关文档
最新文档