电子电路课程实验

合集下载

电力电子实验内容

电力电子实验内容

实验一 单相桥式全控整流电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、阻—感性负载及反电势负载时的工作。

3.熟悉NMCL —05锯齿波触发电路的工作。

二.实验线路及原理1、参见图4-7。

2、晶闸管导通条件:承受正向电压、控制极有触发脉冲;3、电阻负载时,输出电压平均值为:21cos 0.9()2d U U θ+=,且0θπ≤≤; 阻感负载时,输出电压平均值为:20.9cos d U U θ=,且02πθ≤≤;4、阻感负载情况下,阻抗角==控制角的时候,负载电流临界连续;因此,调整负载R 的大小、控制角的大小,均可以改变负载电流的连续情况。

三.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

3.单相桥式全控整流电路供电给反电势负载。

四.实验设备及仪器1.NMCL 系列教学实验台主控制屏。

2.NMCL —18组件(适合NMCL —Ⅱ)或NMCL —31组件(适合NMCL —Ⅲ)。

3.NMCL —33组件或NMCL —53组件(适合NMCL —Ⅱ、Ⅲ、Ⅴ) 4.NMCL —05组件或NMCL —05A 组件5.NMEL —03三相可调电阻器或自配滑线变阻器。

6.NMCL-35三相变压器。

7.双踪示波器 (自备) 8.万用表 (自备)五.注意事项1.实验开始前,先将NMCL-33组件上脉冲开关关闭(按下去),以免引起误触发;2.调节电阻RP到最大值,以免电流过大烧坏晶闸管;3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变变压器采用NMCL-35三相变压器,原边线电压为220V,低压绕组为110V。

电子电路课程设计电子教案 7.1.5简易数字式频率计数器教案

电子电路课程设计电子教案 7.1.5简易数字式频率计数器教案

电子电路课程设计课程教案
P91 (1)整体功能要求
频率计数器(简称频率计)主要用于测量正弦波、脉冲波、三角波和其他周期信号的频率。

其扩展功能是可以测量信号的周期和脉冲宽度。

采用数字显示技术(如LED、LCD等)显示测量结果。

为了突出数字电路的应用,本课题被测量信号仅限于TTL脉冲波。

(2)系统结构
数字频率计的整体结构要求如图7-19所示。

外部“被测信号”送入“测量电路”进行处理和测量,“挡位转换”可以用于选择测试项目,包括频率、周期或脉宽,也可以进一步选择测量频率挡位。

(3)技术指标
①被测信号波形:正弦波、三角波和矩形波。

②测量频率范围:分三挡:
1Hz~999Hz;
0.01kHz~9.99kHz;
0.1kHz~99.9kHz。

③测量周期范围:1ms~1s。

④测量脉宽范围:1ms~1s。

⑤测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误差)。

⑥输入阻抗:大于100kΩ。

(4)扩展技术指标
①要求测量频率时,1Hz~99.9kHz的精度均为1%。

②测量占空比。

测量精度:1%分辨率。

测量范围:1%~99%
(5)设计条件
①电源:直流稳压电源提供+5V电压。

②可供选择的元器件见表7-10。

填表说明:1 每项页面大小可自行添减。

2 课次为授课次序,填1、2、3等。

数字电子电路》综合性设计性实验

数字电子电路》综合性设计性实验
强化实验操作
加强实验操作训练,提高学生的动 手能力和实验效率。
相关技术发展与展望
集成电路技术
随着集成电路技术的发展,数字电子电路的设计 和实现将更加高效和可靠。
人工智能技术
人工智能技术在数字电子电路中的应用将进一步 拓展,为电路设计带来更多可能性。
5G通信技术
5G通信技术的发展将促进数字电子电路在通信领 域的应用和发展。
实验总结与反思
总结实验成果
对整个实验过程进行总结,概括实验的主要成果和收获。
反思与展望
对实验中存在的问题和不足进行反思,并提出改进措施和展望,为后续实验提供借鉴和指导。
06
实验扩展与提高
实验优化建议
增加实验难度
通过增加实验的复杂性和难度, 提高学生的实验技能和解决问题
的能力。
引入新技术
将最新的数字电子技术引入实验中, 使学生能够掌握最新的知识和技术。
确定设计方案后,绘制电路原 理图和PCB版图。
根据电路图,搭建实验电路并 完成硬件调试。
进行软件编程和调试,实现所 需功能。
进行系统测试和性能评估,完 成实验报告。
04
实验操作与调试
实验操作流程
电路设计
根据实验要求,设计合适的电 路图,确保电路功能符合要求。
程序编写
根据电路功能,编写合适的程 序,实现电路的控制和数据处 理。
数据处理与分析
对实验数据进行处理和分析,包 括计算误差、对比理论值与实际 值等,以评估实验结果的准确性 和可靠性。
实验结果对比与讨论
对比不同方案结果
将采用不同方案得到的实验结果进行 对比,分析各种方案的优缺点,为后 续实验提供参考。
结果讨论
对实验结果进行深入讨论,探讨可能 影响实验结果的因素,以及如何改进 实验方法和技巧。

电子电路实验四 实验报告

电子电路实验四 实验报告

实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。

分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。

该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。

因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。

RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。

对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。

将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。

2.多谐振荡电路实验电路如图2所示。

深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。

再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。

该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。

根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。

设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。

矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。

3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。

设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。

电子电路设计与仿真实验

电子电路设计与仿真实验

07
课程总结与心得体会
课程重点内容回顾
电子电路基本概念和原理
包括电流、电压、电阻、电容、电 感等基本概念,以及欧姆定律、基 尔霍夫定律等基本原理。
电子电路元器件的识别与选用
介绍了各种电子元器件的性能参数 、封装形式及选用原则,包括电阻 器、电容器、电感器、二极管、三 极管等。
仿真实验软件的使用
介绍了Multisim等电子电路仿真 软件的基本操作、元件库使用、电 路搭建和仿真分析方法。
感谢观看
THANKS
解决策略
针对诊断出的问题,提出相应的解决策略,如修改电路参数、更 换器件等。
注意事项
在解决问题过程中,需要注意保持电路的整体性能和稳定性,避 免引入新的问题。
优化建议及未来展望
优化建议
根据仿真结果和分析,提出针对 性的优化建议,如优化电路布局 、提高电路能效等。
未来展望
展望电子电路设计与仿真实验的 未来发展趋势,如更高精度的仿 真算法、更丰富的器件模型等, 为未来的研究和发展提供方向。
电子电路
02
以电子元器件为主要构成的电路,实现对电信号的处理与控制

模拟电路与数字电路
03
模拟电路处理连续变化的模拟信号,数字电路处理离散的数字
信号。
电路元件及其特性
电阻
电容
阻碍电流通过的元件,用R表示,单位是欧 姆(Ω)。
存储电荷的元件,用C表示,单位是法拉( F)。
电感
二极管、三极管等半导体器件
学会了使用电子电路仿真软件,提高 了实验效率和电路设计能力。
对未来学习的规划和期望
深入学习电子电路相关课程, 如模拟电路、数字电路等,进 一步提升电子电路设计能力。

电子线路实验报告

电子线路实验报告

《电子线路》课程实验实验一 Ni Multisim软件的基本操作一、实验要求熟悉Ni Multisim软件的基本操作,学习应用Ni Multisim软件分析、设计电子电路的方法。

二、实验内容用Ni Multisim软件验证习题2.14,2.15;3.5,3.6,分析实验结果。

写出分析报告。

(1) 习题2.14电路图如下:分析:调节R2,使Ic电流为2mA,此时R2的电阻为10*0.46=4.6千欧。

后调节R1,使输出电压在5到7伏范围之内,当输出电压为7V左右时,R1为10*0.25=2.5千欧;当输出电压为5左右V时,R1为10*0.34=3.4千欧,故R1的阻范围为2.5—3.4千欧,R2为4.4千欧。

而通过计算可得R2理论值为5.65千欧,R1电阻范围为2.5—3.5千欧,理论值与测量值相差比较小。

误差原因:造成这种误差主要原因是题中晶体管所示参数跟试验中并不完全一样,因为题中晶体管是一种理想情况,实际中并不一定存在。

将器件改成PNP管,电路图如下分析:首先调节R2,使Ic电流为2.105mA,此时R2的电阻为10*0.46=4.6千欧,然后调节R1,使输出电压在5到7伏范围之内,当输出电压为7V时,R1为10*0.26=2.6千欧,当输出电压为5V时,R1为10*0.36=3.6千欧,故R1的阻范围为2.6—3.6千欧,R2为4.3千欧。

而理论值为R2为5.65千欧,R1电阻范围为2.5—3.5千欧,理论值与测量值相差比较小。

早成试验与理论误差的原因通上面一样,也是由于晶体管特性并不是完全理想。

习题2.15由以上测试可知,Ic=18mA,Ib=304mA,Vce=2.845V。

当Re=0,Rb2开路时,电路如下,习题3.6分析:漏极电流Id=-0.907mA,漏栅电压Vds=-2.917V,栅源电压Vgs=-0.021V,gm=0.34mS,Rds为2.058Mohm趋于无穷大。

实验二单管共发射极放大电路1.要求(1)建立单管共发射极放大电路。

电子课程实验报告总结(3篇)

电子课程实验报告总结(3篇)

第1篇一、实验背景随着现代教育技术的发展,电子课程作为一种新型的教学模式,在我国得到了广泛的应用。

本实验旨在通过电子课程的学习,使学生掌握电子技术的基本原理和实践技能,提高学生的动手能力和创新意识。

本次实验课程主要包括数字电路、模拟电路、单片机应用技术等内容。

二、实验目的1. 理解电子技术的基本概念和原理;2. 掌握电子电路的组成和基本分析方法;3. 熟悉常用电子元器件的性能和选用方法;4. 提高动手能力和创新意识,培养团队协作精神。

三、实验内容1. 数字电路实验- 逻辑门电路实验:验证逻辑门电路的功能和特性;- 组合逻辑电路实验:设计简单的组合逻辑电路,如编码器、译码器、加法器等;- 时序逻辑电路实验:设计简单的时序逻辑电路,如计数器、寄存器等。

2. 模拟电路实验- 基本放大电路实验:研究放大电路的性能和特性;- 运算放大器电路实验:设计运算放大器电路,实现放大、滤波、整流等功能;- 模拟信号处理实验:研究模拟信号的处理方法,如放大、滤波、调制等。

3. 单片机应用技术实验- 单片机基本原理实验:了解单片机的结构、工作原理和编程方法;- 单片机接口技术实验:学习单片机与外围设备(如键盘、显示器、传感器等)的接口技术;- 单片机控制实验:设计简单的控制系统,如温度控制、光照控制等。

四、实验过程1. 准备阶段- 熟悉实验设备、工具和元器件;- 理解实验原理和步骤;- 制定实验方案。

2. 实施阶段- 按照实验步骤进行操作,观察实验现象;- 记录实验数据,分析实验结果;- 对实验中出现的问题进行讨论和解决。

3. 总结阶段- 分析实验数据,得出实验结论;- 总结实验过程中的经验教训;- 撰写实验报告。

五、实验结果与分析1. 数字电路实验- 通过实验验证了逻辑门电路的功能和特性;- 设计的简单组合逻辑电路能够实现预期的功能;- 时序逻辑电路设计合理,能够满足实际应用需求。

2. 模拟电路实验- 基本放大电路性能稳定,能够实现预期的放大效果;- 运算放大器电路设计合理,能够实现多种功能;- 模拟信号处理实验效果良好,达到了预期目标。

电子电路课程设计实验报告

电子电路课程设计实验报告

目录第1章技术指标 21.1系统功能要求 21.2 系统结构要求21.3电气指标 21.4设计条件 21.5 元器件介绍 31.5.1 数码管 31.5.2 发光二极管 31.5.3 排阻 41.5.4 4511译码器 41.5.5 八位拨号开关 41.5.6 74174芯片 51.5.7 74283芯片 5 第2章整体方案设计 62.1 算法设计 62.2 整体方案72.2.1 预期效果72.2.2 设计内容72.2.3 整体布局92.3整体方案图及原理10 第3章单元电路设计113.1 十进制显示电路设计113.2 8421BCD码控制电路设计113.3 二进制显示电路设计123.4 整体电路图143.5 实验实物图143.6 整机元件清单15 第4章测试与调整164.1十进制显示电路调测164.2 8421BCD码控制电路调测164.3二进制显示电路调测174.4 整体指标测试174.5 测试数据18 第5章设计小结195.1 设计任务完成情况195.2 问题及解决195.3 心得体会20 附录1:参考文献22 附录2:预习报告附录3:设计图第1章 技术指标1.1 系统功能要求人们在向计算机输送数据时,首先把十进制数变成二—十进制码,即 BCD 码, 运算器将接收到的二一十进制码转换成二进制数后才能进行运算。

这种把十进制数转换成二进制数的过程称为“十翻二”运算。

1.2 系统结构要求系统结构方框图如下:系统复位 十进制数输入(0-9共10个数)1.3 电气指标(1)具有十翻二功能。

(2)实现三位十进制数到二进制数的转换。

(3)能自动显示十进制数及对应的二进制数。

(4)具有手动清零功能。

1.4 设计条件(1)电源条件:直流稳压电源提供+5V 电压。

(2)实验仪器:十翻二运算电路RESET二进制数显示十进制数显示名称备注稳压电源实验室配备万用表一个面包板1块剪刀一把镊子一把导线若干1.5 元器件介绍1.5.1 数码管规定用1 表示数码管a—g线段中的点亮状态,用0表示a—g线段中的熄灭状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验八实验报告 直流稳压电源
8.2 实验仪器设备与元器件
(1) 模拟电路实验箱。

(2) 双踪示波器,数字万用表,直流电压表,交流毫伏表。

(3) 整流二极管, 电阻器,电容器若干,三端稳压器7805 8.3 实验概述
1. 预习
了解直流稳压电源的组成及其工作原理,技术指标及其测量方法。

熟悉由三端集成稳压器组成的串联型直流稳压电源的特点;根据实验内容的要求,列出实验步骤、测试原理图、需测试的数据及其表格;在Multisim 软件平台上设计由三端集成稳压器组成的直流稳压电源并进行仿真分析,观测波形和电压,测试技术指标。

2. 直流稳压电源的组成及其工作原理
直流电源是将电网的交流电压经过整流、滤波、稳压后获得的。

图8.1所示为把电网交流电源变成直流稳压电源的组成框图。

图8.1 直流稳压电源组成方框图 (1) 变压器的作用是把电网交流电压变换成符合电路需要的交流电压。

(2) 整流电路的作用是利用二极管的单相导电性将交流电压变为单向的脉动
的直流电压。

半波整流电路输出电压的平均值V3=0.45V2。

R L
整 流 电 路
滤 波 电 路
稳 压 电 路
V 1 V 2 V 3 V 4 V o
桥式整流电路输出电压的平均值V3=0.9V2。

测量值:
(3)滤波电路的作用是利用电容能够存储能量和释放能量的特性将脉动的直流电压变为平滑的直流电。

桥式整流电容滤波电路输出电压的平均值,即直流输出电压V4=(1.1~1.4)V2, 此直流输出电压受电网电压波动影响较大,带负载能力差,具体数值要视负载RL、滤波电容C的大小而定。

当RL开路时,V4≈1.4V2,在工程上,一般在有负载的情况下,选取电容C,使V4≈1.2V2。

测量值:
(4)稳压电路的作用是使输出直流电压基本不受电网电压波动和负载电阻变化的影响,使输出电压稳定,其基本原理是利用稳压二极管的稳压特性来达到稳定输出电压的目的,其组成部分一盘包含调整管、基准电压、取样电路、误差放大和保护电路。

集成稳压器采用集成工艺将稳压电路和保护电路集成在一块芯片上,使用简单可靠。

稳压器按工作方式可分为并联型、串联型和开关型;按输出
电压可分为固定式和可调式两种。

1 三端集成稳压器组成的直流稳压电源
三端固定输出集成稳压器有三个引出端:输入端、输出端和公共端。

78系列三端稳压器输出正极性电压,79系列三端稳压器输出负极性电压。

输出电流的大小最大可达3A (78H××型电流为3A 、78××型电流为1.5A, 78M××型电流为0.5A, 78L××型电流为0.1A 型,后面两位数字××表示输出电压的数值),输出电压一般有5V 、6V 、9V 、12V 、15V 、18V 、24V 。

利用固定输出集成稳压器可组成各种应用电路,78系列集成稳压器的基本应用电路如图8.2所示。

图8.2 三端集成稳压器构成的串联型直流稳压电

3. 直流稳压电源的主要性能指标
直流稳压电源的技术指标主要有:输入电压、输出电压、输出电流等特性指标,稳压系数、输出电阻、纹波电压等质量指标。

输出电压VO :稳压电源能够正常工作的输出电压。

可调稳压电源的输出电压在一定的范围内可改变设定。

输出电流Iomax :稳压电源正常工作时能输出的最大电流,要求工作电流IO 小于Iomax 。

稳压系数SV :负载电流和环境温度不变时,输入电压的相对变化与由它所引起的输出电压相对变化的比值。

§ 输出电阻:输入电压和环境温度不变时,负载电流的变化所
引起的输出电压变化的比值。

RO=△VO/△IO
纹波电压:稳压电源输出电压VO 上所叠加的交流分量,常测量其峰峰值△VOPP 。

本实验选用的三端集成稳压器LM7805、开关稳压集成电路LM2575的封装及其引脚说明如图8.4。

1:VIN 输入端 1: VIN 未稳压电压
输入端
2:GND 公共端 2: OUTPUT 开关电
S V =ΔV O V O /
ΔV i V i
LM7805
LM2575
压输出,接电感
3:OUTPUT输出端及快恢复二极管
3:GND公共端
4:FEEDBACK反馈输入端
5:ON/OFF控制输入
端,接公共端时,
稳压电路工作;接
高电平时,稳压电
路停止
(a) LM7805的封装及引脚说明(b)封装形式为TO-200的LM2575T-5.0§及引脚说明
图8.4 集成稳压器LM7805,LM2575T-5.0§
8.4 实验内容
1.直流稳压电源
按图8.2所示电路,连接整流、滤波、稳压电路,三端集成稳压器型号为7805,负载电阻RL为50Ω。

(1)断开RL,电路不带负载时,用示波器观测7805输入端V4、输出端VO的波形,用直流电压表测量电压。

接上RL负载时,用示波器观测7805输入端V4、输出端VO的波形,用直流电压表测量电压。

输出电压VO 下降应不大。

(2) 当接上RL 负载时,用示波器观测输出端的的纹波电压。

(3) 在仿真平台上,将电源的交流输入调整为198V 和242V ,分别测出输出电压,计算稳压系 数su 。

8.5 思考题
(1) 根据实验数据分析桥式整流电路和电容滤波电路中,输出电压与输入电
压间的关系,并与理论值相比较。

(2) 改变滤波电路的电容,负载上的直流电压怎样变化?
电容越大,放电时间峰值电压越慢,负载的直流电压越大,随着电容增加,可无限接近交流电的
/=/o o
v i i
V V S V V ÑÑ=o i V R V Ñ
Ñ。

相关文档
最新文档