香农三大定理

合集下载

现代通信与香农的三大定理

现代通信与香农的三大定理

现代通信与香农的三大定理LT至此,香农开创性地引入了“信息量”的概念,从而把传送信息所需要的比特数与信号源本身的统计特性联系起来。

这个工作的意义甚至超越了通信领域,而成为信息储存,数据压缩等技术的基础。

解决了信号源的数据量问题后,我们就可以来看信道了。

信道(channel)的作用是把信号从一地传到另一地。

在香农以前,那奎斯特已经证明了:信道每秒能传送的符号数是其频宽的一半。

但问题是,即使这些符号,也不是总能正确地到达目的地的。

在有噪声的情况下,信道传送的信号会发生畸变,而使得接收者不能正确地判断是哪个符号被发送了。

对付噪声的办法是减少每个符号所带的比特数:“而每个波特所含的比特数,则是受噪声环境的限制。

这是因为当每个波特所含的比特数增加时,它的可能值的数目也增加。

这样代表不同数据的信号就会比较接近。

例如,假定信号允许的电压值在正负1伏之间。

如果每个波特含一个比特,那么可能的值是0或1。

这样我们可以用-1伏代表0,用1伏代表1。

而假如每波特含两个比特,那么可能的值就是0,1,2,3。

我们需要用-1伏,-0.33伏,0.33伏,1伏来代表着四个可能值。

这样,如果噪声造成的误差是0.5伏的话,那么在前一种情况不会造成解读的错误(例如把-1V 错成了-0.5伏,它仍然代表0)。

而在后一种情况则会造成错误(例如把-1V错成了-0.5伏,它就不代表0,而代表1了)。

所以,每个波特所含的比特数也是不能随便增加的。

以上两个因素合起来,就构成了对于数据传输速率的限制。

”其实,除此之外,还有一个对付噪声的办法,就是在所有可能的符号序列中只选用一些来代表信息。

例如,如果符号值是0和1,那么三个符号组成的序列就有8个:000,001,010,011,100,101,110,111。

我们现在只用其中两个来代表信息:000和111。

这样,如果噪声造成了一个符号的错误,比如000变成了010,那我们还是知道发送的是000而不是111。

香农定理

香农定理

谈香农定理克劳德.香农,1916年4月30日出生于美国密歇根州的加洛德,他是信息时代的奠基人。

他这一生的两大贡献之一便就是信息论,信息熵的概念提出和香农公式。

信息传输给出基本数学模型的核心人物是香农。

1948年香农长达数十页的论文“通信的数学理论”成了信息论正式诞生的里程碑。

在他的通信数学模型中,清楚地提出信息的度量问题,他把哈特利的公式扩大到概率pi不同的情况,得到了著名的计算信息熵H的公式:H=∑-pi log pi如果计算中的对数log是以2为底的,那么计算出来的信息熵就以比特(bit)为单位。

今天在计算机和通信中广泛使用的字节 (Byte)、KB、MB、GB等词都是从比特演化而来。

“比特”的出现标志着人类知道了如何计量信息量。

香农的信息论为明确什么是信息量概念作出决定性的贡献。

香农在进行信息的定量计算的时候,明确地把信息量定义为随机不定性程度的减少。

这就表明了他对信息的理解:信息是用来减少随机不定性的东西。

或香农逆定义:信息是确定性的增加。

事实上,香农最初的动机是把电话中的噪音除掉,他给出通信速率的上限,这个结论首先用在电话上,后来用到光纤,现在又用在无线通信上。

我们今天能够清晰地打越洋电话或卫星电话,都与通信信道质量的改善密切相关。

香农定理:香农定理描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信号噪声功率比之间的关系.在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为: Rmax=B*Log2(1+S/N)。

在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。

它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。

因此我们可以用香农定理来检测电话线的数据速率。

香农定理由如下的公式给出: C=B*log2(1+S/N) 其中C是可得到的链路速度也就是信道容量,B是链路的带宽,S是平均信号功率,N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。

香农三大定理

香农三大定理

香农第一、二、三定理
第一定理:
将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息
第二定理:
当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。

第三定理:
只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D。

香农三大定理简答

香农三大定理简答

香农三大定理简答香农三大定理是指由数学家克劳德·香农提出的三个基本通信定理,分别是香农第一定理、香农第二定理和香农第三定理。

这三个定理是现代通信理论的基石,对于信息论和通信工程有重要的指导意义。

下面将对这三个定理进行详细的阐述。

1. 香农第一定理:香农第一定理是信息论的基石,提出了信息传输的最大速率。

根据香农第一定理,信息的传输速率受到带宽的限制。

具体而言,对于一个给定的通信信道,其最大的传输速率(即信息的最大传输率)是由信道的带宽和信噪比决定的。

信道的带宽是指能够有效传输信号的频率范围,而信噪比则是信号与噪声的比值。

这两个因素共同决定了信道的容量。

香农提出的公式表示了信道的容量:C = B * log2(1 + S/N)其中,C表示信道容量,B表示信道的带宽,S表示信号的平均功率,N表示噪声的平均功率。

2. 香农第二定理:香农第二定理是关于信源编码的定理。

根据香农第二定理,对于一个离散的信源,存在一种最优的编码方式,可以将信源的信息压缩到接近于香农熵的水平。

香农熵是对信源的输出进行概率分布描述的一个指标,表示了信源的不确定性。

具体而言,香农熵是信源输出所有可能码字的平均码长。

对于给定的离散信源,香农熵能够提供一个理论上的下限,表示信源的信息量。

通过对信源进行编码,可以有效地减少信源输出的冗余度,从而实现信息的高效传输。

香农第二定理指出,对于一个离散信源,其信源编码的最优平均码长与香农熵之间存在一个非常接近的关系。

3. 香农第三定理:香农第三定理是关于信道编码的定理。

根据香农第三定理,对于一个给定的信道,存在一种最优的编码方式,可以通过使用纠错码来抵消由信道噪声引起的错误。

信道编码的目标是在保持信息传输速率不变的情况下,通过增加冗余信息的方式,提高错误纠正能力。

纠错码可以在数据传输过程中检测和纠正一定数量的错误,从而保证数据的可靠性。

香农第三定理指出,对于一个给定的信道,其信道编码可以将信息传输的错误率减少到任意低的水平。

香农公式

香农公式
X L x1 ,x 2 ,...,x M L = L p( ) p( X ) px1, px 2 ,..., px M L
给定有D个元素的码符号集,对扩展信源编码,总可以找 到一种唯一可译码,使码长 n L 满足:
X
Y
联 合 熵
交 互 熵
X
Y
X
Y
将定理3.3推广到L次扩展信源---
香农第一定理:变长编码定理
X x1 ,x2 ,...,xM 定理3.4 给定熵为H(X)的离散无记忆信源 p x , p x ,..., p x p( X ) M 1 2 其L次扩展信源的熵记为H(X)
nL n L
信源符号对应 的平均码字数
HX H U L ,limn RD logD L logD n
信息传输速率
这是信息传输速率 RD 能达到的极限值,对应于等概分布。
Shannon第一定理的物理意义:
信源编码时,应使编码后的码集中各码字尽可能等概 分布,若将该码集看成一个新的信源,此时新信源所含信 息量最大。
限定理都有其共性,也有个性。所给出的指导作用也各
不相同,但其证明方式都采用随机编码方式证明。 所谓存在性,是指定理仅给出是否存在着一种(至少
一种)编码方式可以满足要求;但如何编码则无可奉告。
它们的逆定理则给出了不存在性,这是它们的共性。 所谓构造性,是指定理不仅指出了存在性,而且还 给出了最佳码字的结构特性,如码长、代码形式等。
有噪信道编码逆定理
离散、无记忆、平稳信道,信道容 量为C,如果信息率R>C,则肯定找不 到一种信道编码方法,使得码长N足够 大时,平均差错率任意接近于零。
信道编码的指导意义

香农定理通俗解释

香农定理通俗解释

香农定理通俗解释
香农定理是由信息论的创始人克劳德·香农提出的,它包括三个部分:信息熵定理、信道容量定理和数据压缩定理。

通俗地讲,这三个定理主要研究信息的量化、存储和传播。

1. 信息熵定理:这是用来衡量信息量的一个概念。

香农提出了一个数学公式,可以计算出一个信息源的熵值。

2. 信道容量定理:这是关于信道容量的计算的一个经典定律,可以说是信息论的基础。

在高斯白噪声背景下的连续信道的容量= (b/s)。

其中B为信道带宽(Hz),S为信号功率(W),n0为噪声功率谱密度(W/Hz),N为噪声功率(W)。

这个定理告诉我们,信道容量受三要素B、S、no的限制,提高信噪比S/N可增大信道容量。

3. 数据压缩定理:这个定理与压缩理论有关,主要研究如何通过压缩数据来减少冗余信息,从而实现更高效的数据传输和存储。

香农定理为我们提供了一套完整的理论框架,用于研究和优化信息的传输、存储和处理过程。

简述香农公式。

简述香农公式。

简述香农公式。

c=wlog2(1+s/n)
香农定理:香农定理则描述了有限带宽;有随机热噪声信道的最大传输速率与信道带宽;信号噪声功率比之间的关系.
在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为: Rmax=B*LOG⒉(1+S/N)
在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。

它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。

因此我们可以用香农定理来检测电话线的数据速率。

香农定理由如下的公式给出: C=Blog2(1+S/N) 其中C是可得到的链路速度,B 是链路的带宽,S是平均信号功率,N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。

信息论三大定律

信息论三大定律

信息论三大定律信息论是由克劳德·香农在1948年提出的一种研究信息传输和处理的数学理论。

在信息论中,有三个重要的定律,分别是香农熵定律、数据压缩定律和通信容量定律。

本文将分别介绍这三个定律的基本原理和相关应用。

首先是香农熵定律。

香农熵是用来描述一个随机变量的平均不确定性的度量。

根据香农熵定律,信息的平均传输速率不能高于信源的熵。

这个定律可以通过以下公式表示:H(X) = - Σ (P(xi) * log2 (P(xi)))其中,H(X)表示随机变量X的熵,P(xi)表示X取值为xi的概率。

根据熵的定义,我们可以得出一个重要结论:当信源的熵为最大值时,信息传输效率最低,即传输的信息量最大。

所以,在信息传输中,我们希望尽量减小信源的熵,以提高信息传输的效率。

香农熵定律的应用广泛。

例如,在数据压缩中,我们可以根据香农熵定律,对信源进行编码,以达到尽量减小信息传输量的目的。

另外,熵也被广泛应用于密码学领域,用来评估密码算法的安全性。

接下来是数据压缩定律。

数据压缩定律指的是,随机变量的数据可以通过适当的编码方法进行压缩,使其传输所需的位数尽可能减少。

数据压缩的目标是尽量减小数据的冗余性,从而节省传输带宽和存储空间。

数据压缩定律的应用非常广泛。

在计算机领域,我们经常使用各种压缩算法对数据进行压缩,例如无损压缩算法(如ZIP)和有损压缩算法(如JPEG)。

此外,数据压缩也被广泛应用于通信领域,以提高数据传输的效率和速率。

最后是通信容量定律。

通信容量定律指的是,在给定的信道条件下,最大传输速率是有限的。

通信容量取决于信道的带宽和信噪比(信号与噪声比)。

通信容量定律的应用包括无线通信、光纤通信等领域。

通过优化通信系统的参数,如信噪比、调制方式等,可以提高通信容量,从而提高数据传输的速率和可靠性。

综上所述,信息论的三大定律分别是香农熵定律、数据压缩定律和通信容量定律。

这些定律在信息传输和处理中起到了重要的作用,相关应用广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

香农第一定理:可变长无失真信源编码定理。

采用无失真最佳信源编码可使得用于每个信源符号的编码位数尽可能地小,但它的极限是原始信源的熵值。

超过了这一极限就不可能实现无失真的译码。

香农第二定理:有噪信道编码定理。

当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。

香农第三定理:保真度准则下的信源编码定理,或称有损信源编码定理。

只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即
D'<=D.
一:香农第一定理(可变长无失真信源编码定理)
设信源S的熵[shāng]H(S),无噪离散信道的信道容量为C,于是,信源的输出可以进行这样的编码,使得信道上传输的平均速率为每秒
(C/H(S)-a)个信源符号.其中a可以是任意小的正数, 要使传输的平均速率大于(C/H(S))是不可能的。

二:香农第二定理(有噪信道编码定理)
设某信道有r个输入符号,s个输出符号,信道容量为C,当信道的信息传输率R<C,码长N足够长时,总可以在输入的集合中(含有r^N个长度为N的码符号序列),找到M (M<=2^(N(C-a))),a为任意小的正数)个码字,分别代表M个等可能性的消息,组成一个码以及相应的译码规则,使信道输出端的最小平均错误译码概率Pmin达到任意小。

公式:C=B*log2(1+S/N) 注:B为信道带宽;S/N为信噪比,通常用分贝(dB)表示。

三:香农第三定理(保失真度准则下的有失真信源编码定理)
设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为
M<=EXP{N[R(D)+a]},而编码后码的平均失真度D'(W)<=D+a。

相关文档
最新文档