线性离散系统状态方程的解
现代控制理论经典习题

1、我国人民哪些发明属于在经典控制理论萌芽阶段的发明?(AB)A 指南车B 水运仪象台C 指南针D 印刷术2、经典控制理论也可以称为(BD)A 现代控制理论B 自动控制理论C 近代控制理论D 古典控制理论3、以下哪些内容属于现代控制理论基础的内容?(AB)A 李雅普诺夫稳定性理论B 极小值原理C 频率响应法D 根轨迹法4 、传递函数模型假设模型初值不为零。
(✖)5 、传递函数描述的是单输入单输出的外部描述模型。
(✖)6 、线性系统理论属于现代控制理论的知识体系中数学模型部份。
(✔)7 、最优控制理论属于现代控制理论的知识体系中估计方法部份。
(✖)8、控制科学的意义下,现代控制理论主要研究(数学建模)和(控制理论方法) 的科学问题。
9 、现代控制理论在整个控制理论发展中起到了(承上起下)的作用。
10、除了稳定性外,现代控制理论基础还考虑系统(能控性)和(能观测性)两个内部特性。
一、现代控制理论作为一门科学技术,已经得到了广泛的运用。
你还知道现代控制理论具体应用到哪些具体实际的例子么?1、关于输出方程,下列哪些说法是正确的?(BD)A 输出方程中状态变量必须是一阶的B 输出方程中不含输入的任何阶倒数C 输出方程中输入变量可以是任意阶的D 输出方程中不含状态变量的任何阶倒数2、关于系统的动态方程,下列哪些说法是正确的?(AB)A 系统的状态方程的状态变量的个数是惟一的B 系统输出方程的输入输出变量是惟一的C 系统输出方程的输入输出变量是不惟一的D 系统的状态方程的状态变量是惟一的3、对于一个有多个动态方程表示的系统,下列说法正确的是?(AC)A 这些动态方程一定是等价的B 这些动态方程经过线性变化后,不能转化为一个动态方程C 这些动态方程经过线性变化后,可以转化为一个动态方程D 这些动态方程不一定是等价的4、选取的状态向量是线性相关的(✖)5、状态向量的选取是不惟一的(✔)6、状态向量的个数是不惟一的(✖)7、输出方程的选取是不惟一的(✔)8、(系统的输出量与状态变量、输入变量关系的数学表达式)称为输出方程。
现代控制原理2-3离散系统

−T −T
−T
)
−T
z 2 − (1 + e −T ) z + e −T
)
0 x( k + 1) = −T -e
0 x ( k ) + u( k ) −T 1+ e 1 1
y( k ) = 1 − e −T − Te − T
T − 1 + e −T x( k )
x(k+1) = [I +TA]x(k) + TBu(k) G = I +TA H =TB
17
0 1 0 & 的近似离散化方程。 例2-13 求 x = x + 1 u 的近似离散化方程。 0 −2
解: G = I + TA = 1 0 + 0 − T = 1 − T 0 1 0 − 2T 0 1 − 2T
x( k + 1) = G ( k ) x( k ) + H ( k )u( k ) y( k ) = C ( k ) x ( k ) + D( k )u( k )
2
2.结构图 2.结构图
3
3.差分方程和脉冲传递函数与离散状态空间表 3.差分方程和脉冲传递函数与离散状态空间表 达式之间的转换 在单变量离散系统中, 在单变量离散系统中,数学模型分为差分方程 和脉冲传递函数两类, 和脉冲传递函数两类,它们与离散状态空间表达式 之间的变换,和连续系统分析相类似。 之间的变换,和连续系统分析相类似。 离散 差分方程 连续 D.E
x1 ( k ) y ( k ) = [1 −4 ] + u( k ) x2 ( k )
离散化的状态方程

T ∫0
I ⋅ B ⋅ dt = BT
结论:上式为近似计算方法 例2.6 已知时变系统
0 5(1 − e −5t ) 5 5e −5t u ɺ x= x + −5t −5t 0 5(e − 1) 0 5(1 − e )
试将它离散化,并求出输入和初始条件分别为
0, x(0) = 0时,方程在采样时刻的近似解 u (t ) = 0 1
1 (3)H(T) = ∫ 0 0
T T 1/ 2(1−e )0 1 dt= ∫0 −2t e 1 0 −2t −2t
x 1 [( k + 1)T] x 1 (kT ) (4) = [G (T)] x (kT ) + [H (kT) U (kT)] x 2 [( k + 1)T] 2
归纳:将连续状态方程离散化步骤
1、求Φ(t )=e = L [ SI − A] 2、G(T ) = Φ(T ) = Φ(t ) t = T T At 3、求H (T ) = ∫0 e Bdt 4、求x[(k + 1)T ] = G(T ) x(kT ) + H (T )u (kT )
At
−1
−1
例2.5已知控制对象满足 1 x + 0u,求其离散化方程 ɺ = 0 x 0 1 −2
系统离散状态方程(T=0.1) 可见T较小时, x1[(k + 1)T ] 0.9 0.1 x1(kT ) 0 = + r (kT ) 两种方法得 x2[(k + 1)T ] − 0.1 0.9 x2 (kT ) 0.1 状态空间表 x1(kT ) 达式近似相 输出y(kT ) = [1 0] 等。 x2 (kT ) 离散方程求解可按2.3递推法或Z变换求解
(第8讲)离散系统状态方程及解

X ( z ) ( zI G ) 1 zx(0) HU ( z )
25 17 z z0.2 22 z z0.8 18 z z 1 9 176 z 88 7 z z 30 z 0.2 45 z 0.8 18 z 1
Φ(t ) Φ(t, 0) eAt
Φ(t, t0 ) Φ(t t0 ) e
A(t t0 )
Φ1 (t ) Φ(t )
Φ(t1 t2 ) Φ(t1 )Φ(t2 ) Φ(t2 )Φ(t1 )
Φ(t2 , t1 )Φ(t1 , tt ) u (nT ) t nT t (n 1)T , A( t nT ) x(t ) e x(nT ) e A(t )bu* ( )d nT ( n 1)T AT x[(n 1)T ] e x(nT ) e A( nT T )bu* ( )d
25 17 (0.2) k 22 (0.8) k 18 9 x(k ) 176 7 (0.2) k 88 (0.8) k 18 45 30
tgq77@
Symbolic Math Toolbox of MATLAB
已知系统x(n 1) Gx(n) Hu(n), 求状态方程的解。其中 1 0 1 1 G , H 1, x(0) 1, u (n ) 1, n 1,2, 0.16 1
零输入响应自由响应零状态响应强迫响应tgq77126com状态转移矩阵就是将系统由一个状态转移到另外一个状态即制理论上叫状态转移矩数学上叫矩阵指数控tgq77126com信号在时间上不连续的信号叫离散信号
Modern Control Theory
自动控制原理第九章线性离散控制系统

e -Ts
1 - e-Ts s
注意:这里的输入为1×δ(t),是单位幅 值脉冲经理想脉冲调制后的信号,即单 位理想脉冲,其拉氏变换为1。
16
u( t )
1
0
uh( t )
1
0T
1 0 -1
说明:零阶保持器实际的传递函数
u( t )
零阶 uh ( t )
保持器
实际的 u( t ) 1( t ) - 1( t - )
t
7
单位幅值脉冲与理想脉冲的区别
δT (t)
1
δT (t)
0 T 2T
t
0 T 2T
t
用 1( t ) 表示 0 时刻的单位幅值脉冲,则第nT 时刻的单位幅值 脉冲为 1( t - nT ) 1( t - nT ) - 1( t - nT - ) , n 0 , 1, 2,
当 0 时, 其拉氏变换为
- s - max 0 max s
2s
s 2max 时
F( j )
- s - max 0 max s
2s
13
s 2max 时
F( j )
- 2s
-
-
s
max
0
max
s
2s
只有满足 s 2max,采样信号 f ( t ) 才包含了原信号
f ( t )的全部信息,因此可以不失真地重现原信号。
说明:采样定理只提供了选择采样周期的理论依据,对于 实际的反馈控制系统,连续反馈信号的上限频率(带宽) 通常难以准确地确定,因此选择采样周期一般依靠估计。
15
u( t )
1
0
uh( t )
1
0T
1 0 -1
离散系统的状态空间描述状态方程

上式中:
h0 bn h1 bn1 an1h0 h2 bn 2 an1h1 an 2 h0 hn b0 an1hn1 a1h1 a0 h0
12
2019/1/5
得到一阶差分方程组:
x1 ( k 1) x2 ( k ) h1u( k ) x ( k 1) x ( k ) h u( k ) 2 3 2 x ( k 1) x ( k ) h u( k ) n n1 n1 xn ( k 1) a0 x1 ( k ) a1 x2 ( k ) an1 xn ( k ) hn u( k )
1)差分方程的输入函数中不包含高于一阶的差分项
y( k n) an1 y( k n 1) a1 y( k 1) a0 y( k ) b0u( k )
选择状态变量: x1 ( k ) y( k )
x ( k ) y( k 1) 2 x 3 ( k ) y( k 2 ) xn ( k ) y( k n 1)
求解法同连续时间定常系统的传递函数的实现。
这里仅给出结论:第二能控标准型、第二能观测标准型
2019/1/5
16
1)第二可控标准型
x1 ( k 1) 0 x ( k 1) 0 2 0 x n ( k 1) a0 1 0 0 a1 0 1 0 a2 0 x1 ( k ) 0 x ( k ) 0 0 2 0 x 3 ( k ) u( k ) 0 1 0 a n 1 1 x n ( k )
现代控制理论第二章

第二章 控制系统状态空间表达式的解建立了控制系统状态空间表达式之后,就是讨论求解的问题,本章重点讨论状态转移矩阵的定义,性质和计算方法,从而导出状态方程的求解公式并讨论连续时间系统状态方程的离散化的问题。
§2-1线性定常齐次状态方程的解(自由解)所谓自由解是指系统输入为零时,由初始状态引起的自由运动。
状态方程为齐次矩阵微分方程:AX X= (2-1)若初始时刻0t 时的状态给定为00)(x t x =,则式(2-1)有唯一确定解。
0)(0)(x e t x t t A -=,0t t ≥(2-2)若初始时刻从0=t 开始,即0)0(x x =,则其解为:0)(x e t x At =, 0t t ≥(2-3)证:先假设式(2-1)的解)(t x 为t 的矢量幂级数形式,即:+++++=k k t b t b t b b t x 2210)((2-4)对上式求导: ++++=-1232132)(k k t kb t b t b b t x代人式(2-1)得:A x= ( +++++kk t b t b t b b 2210) (2-5)既然式(2-4)是(2-1)的解,则式(2-5)对任意时刻t 都成立,故t 的同次幂项的系数应相等,有:01Ab b =,0212!2121b A Ab b ==,0323!3131b A Ab b ==,… 01!11b A k Ab kb k k k ==-,… 在式(2-4)中,令0=t ,可得:00)0(x x b == 将以上结果代人式(2-4),故得:022)!1!211()(x t A k t A At t x k k +++++= (2-6)括号内的展开式是n n ⨯矩阵,它是一个矩阵指数函数,记为At e221112!!At k ke At A t A t K =+++++ (2-7)式(2-6)可表示为:0()At x t e x =再用)(0t t -代替)0(-t ,即在代替t 的情况下,同样证明0)(0)(x e t x t t A -=的正确性。
离散系统的基本概念

06
CATALOGUE
离散系统的发展趋势与展望
离散系统的新理论与方法
离散系统的新理论
随着科技的不断发展,离散系统的新理论也在不断涌现。例如,离散概率论、离散控制论、离散信息论等,这些 新理论为离散系统的发展提供了重要的理论支持。
离散系统的新方法
在实践中,人们不断探索新的方法来处理离散系统的问题。例如,离散数学、离散优化算法、离散模拟技术等, 这些新方法为离散系统的研究提供了更有效的工具。
状态转移图的绘制方法
根据状态方程,通过计算或模拟得到状态变量的时间序列解,并绘 制成图形。
状态转移图的应用
通过观察状态转移图,可以直观地了解系统动态行为和变化趋势。
04
CATALOGUE
离散系统的稳定性分析
线性离散系统的稳定性分析
定义
线性离散系统是指系统 的数学模型可以表示为 离散时间的线性方程组 ,如差分方程或离散时 间状态方程。
状态方程
1
状态方程是描述离散时间动态系统状态变化的基 本方程,通常表示为离散时间序列的递推关系。
2
状态方程通常由当前状态和输入量来预测下一个 状态,是离散系统分析的重要基础。
3
状态方程的解法包括递归法和矩阵法等,其中递 归法较为直观,而矩阵法适用于大规模系统。
转移矩阵
转移矩阵是描述离散系统状态转移关系的矩阵,其元素表示状态之间的转 移概率。
社会科学领域
在社会学、经济学、管理学等领域中,离散系统也有着广泛的应用。例如,在经济学中,离散模型被用 于描述经济活动中的离散事件;在社会学中,离散模型被用于描述社会结构和社会动态。
离散系统未来的研究方向
要点一
复杂离散系统的研究
随着科技的不断发展,复杂离散系统 的研究已经成为一个重要的研究方向 。例如,复杂网络、离散事件动态系 统等,都是复杂离散系统的研究重点 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z变换法(2/7)
在Z反变换中对标量函数存在下述公式和性质:
Z 1 1 /(1 az 1 ) a k Z {W1 ( z )W2 ( z )} w1 (k i ) w2 (i )
1 i 0 k
Βιβλιοθήκη 其中W1(z)和W2(z)分别为w1(k)和w2(k)的Z变换。 将上述公式推广到向量函数和矩阵函数,则可得
离散卷积
Z变换法(3/7)—例3-14
因此,离散系统的状态方程的解为:
x(k ) G k x(0) G k j 1Hu( j )
j 0
k 1
该表达式与前面递推法求解结果一致。 例 已知某系统的状态方程和初始状态分别为 1 0 1 1 x(k 1) x( k ) u ( k ) x(0) 0.16 1 1 1
( k 1 , k0 ) G ( k ) ( k , k 0 ) ( k0 , k0 ) I
其解为
(k , k0 ) G(k 1)G(k 2)...G(k0 ) , k k0
线性时变离散系统状态方程的解(3/6)
与线性定常离散系统类似,线性时变离散系统的状态求解公 式可用迭代法证明。 对线性时变离散系统的状态方程,依次令k= k0, k0+1, k0+2, …,从而有
2. 引入状态转移矩阵概念和表示之后,线性连续系统和线 性离散系统的状态方程的求解公式在形式上一致,都由 零输入响应和零状态响应叠加组成, 只是相应的零状态响应在形式上略有不同,一为求 积分(卷积),一为求和(离散卷积),但本质是一致的。 3. 在由输入所引起的状态响应中,第k个时刻的状态只取决 于此采样时刻以前的输入采样值,而与该时刻的输入采 样值u(k)无关。
类似地,可继续递推下去,直到求出所需要的时刻的解为止。 2. 用Z变换法求解。先计算(zI-G)-1 z 1 zI G ( z 0.2)( z 0.8) 0.16 z 1
Z变换法(5/7)—例3-14
( zI - G )
1
adj( zI - G ) z 1 1 /[( z 0.2)( z 0.8)] | zI - G | - 0.16 z 1 5 5 4 1 z 0.2 - z 0.8 z 0 . 2 z 0 . 8 -1 4 3 0.8 0.8 z 0.2 z 0.8 z 0.2 z 0.8
因此,有
(k ) G k Z 1[( zI - G ) 1 ] 1 4(-0.2) k - (-0.8) k 3 - 0.8(-0.2) k 0.8(-0.8) k 5(-0.2) k - 5(-0.8) k k k - (-0.2) 4(-0.8)
Z变换法(6/7)—例3-14
由Z变换,有 u(k)=1 U(z)=z/(z-1) 因此,有 X(z)=(zI-G)-1[zx(0)+HU(z)]
( z 2 2) z ( z 0 . 2 )( z 0 . 8 )( z 1 ) 2 (- z 1.84 z ) z ( z 0.2)( z 0.8)( z - 1) 44 25 - 51z 1 z 0.2 z 0.8 z - 1 18 10.2 z - 35.2 7 z 0.2 z 0.8 z - 1
Z变换法(7/7)—例3-14
k k 5 1 ( 0 . 2 ) 44 ( 0 . 8 ) 25 1 1 x(k ) Z { X ( z )} k k 18 10.2(-0.2) - 35.2(0.8) 7
令k=0,1,2,3代入上式,可得
1 x( k ) , 1
j 0
k 1
亦为
x(k ) Φ(k )x(0) Φ( j ) Hu(k - j - 1)
j 0
k 1
递推法(5/10)
比较连续系统与离散系统状态方程的解的表示形式: 连续系统
x(t ) (t )x0 (t ) Bu( )d
0 t
离散系统
x(k ) Φ(k )x(0) Φ(k - j - 1) Hu( j )
k j 0 k 1
递推法(3/10)
若初始时刻k0不为0,则上述状态方程的解可表达为:
x( k ) G
或
k k0
x(k0 ) G k j 1 Hu( j )
j k0
k 1
x( k ) G k k 0 x( k 0 )
k k 0 1 j 0
j G Hu(k j 1)
递推法(2/10)
若给出初始状态x(0),即可递推算出x(1),x(2),x(3),…重复 以上步骤,可以得到如下线性离散系统状态方程的递推 求解公式: x(k ) G k x(0) G k 1 Hu(0) ... GHu(k - 2) Hu(k - 1)
G x(0) G k j 1 Hu( j )
递推法(4/10)
与连续系统状态方程求解类似,对线性离散系统的状态方程 求解,亦可引入状态转移矩阵。 该状态转移矩阵是下列差分方程初始条件的解: (k+1)=G(k) (0)=I 用递推法求解上述定义式,可得
(k)=Gk
因此,可得线性定常离散系统状态方程另一种解表示形式:
x(k ) Φ(k )x(0) Φ(k - j - 1) Hu( j )
G k Z 1 ( I - Gz 1 ) 1 Z 1 ( zI - G ) 1 z
Z -1{( zI - G ) -1 HU ( z )} Z -1{( zI - G ) -1 z z -1 HU ( z )} G k - j -1 Hu( j )
j 0
k 1
假定系统状态方程的解存在且惟一,则解为
x ( k ) ( k , k0 ) x ( k0 )
k 1
i k0
(k , i 1)H (i)u(i)
式中, (k ,k0)称为线性时变离散系统的状态转移矩阵。
线性时变离散系统状态方程的解(2/6)
线性时变离散系统的状态转移矩阵(k ,k0)满足如下矩阵差 分方程及初始条件:
线性时变离散系统状态方程的解(4/6)
因此有
x (k ) G (k 1)G (k 2)...G (k0 ) x (k0 ) G (k 1)G (k 2)...G (i 1) H (i )u(i )
x (k0 1) G (k0 ) x (k0 ) H (k0 )u(k0 ) x (k0 2) G (k0 1) x (k0 1) H (k0 1)u(k0 1) G (k0 1)G (k0 ) x (k0 ) G (k0 1) H (k0 ) u(k0 ) H (k0 1) u(k0 1) x (k0 3) G (k0 2) x (k0 2) H (k0 2) u(k0 2) G (k0 2)G (k0 1)G (k0 ) x (k0 ) G (k0 2)G (k0 1) H (k0 ) u(k0 ) G (k0 2) H (k0 1)u(k0 1) H (k0 2) u(k0 2)
k j 0
k 1
上述递推计算公式中的第2项为离散卷积,因此有如下另 一形式的线性离散系统状态方程的解表达式
x(k ) G k x(0) G k 1 Hu(0) ... GHu(k - 2) Hu(k - 1) G x(0) G j Hu(k j 1)
递推法(1/10)
1. 递推法
递推法亦称迭代法。 用递推法求解线性定常离散时间系统的状态方程 x(k+1)=Gx(k)+Hu(k)
时,只需在状态方程中依次令k=0,1,2,…,从而有 x(1)=Gx(0)+Hu(0) x(2)=Gx(1)+Hu(1)=G2x(0)+GHu(0)+Hu(1) ……
j 0
k 1
线性时变离散系统状态方程的解(1/6)
2.4.2 线性时变离散系统状态方程的解
设线性时变离散系统的状态空间模型为
x (k 1) G(k ) x (k ) H (k )u(k ) y (k ) C (k ) x (k ) D(k )u(k )
式中,初始时刻为k0;初始状态为x(k0)。
试求系统状态在输入u(k)=1时的响应。
Z变换法(4/7)—例3-14
解 1. 用递推法求解。分别令k=1,2,3,…,则由状态方程有
0 x(1) 0.16 0 x(2) 0.16 0 x(3) 0.16
1 1 1 0 1 1 1 1.84 1 0 1 2.84 1 1.84 1 0.84 1 2.84 1 0.16 1 0.84 1 1.386
这即为计算机控制系统固有的一步时滞。
Z变换法(1/7)
2. Z变换法
已知线性定常离散系统的状态方程为 x(k+1)=Gx(k)+Hu(k) 对上式两边求Z变换,可得 zX(z)-zx(0)=GX(z)+HU(z) 于是 (zI-G)X(z)=zx(0)+HU(z)
用(zI-G)-1左乘上式的两边,有 X(z)=(zI-G)-1zx(0)+(zI-G)-1HU(z) 对上式进行Z反变换,有 x(k)=Z-1[(zI-G)-1zx(0)]+Z-1[(zI-G)-1HU(z)]
j 0
k 1
初始时刻后输入的 初始状态 影响,为脉冲响应函 的影响 数与输入的卷积