西南交通大学限修课数学实验题目及答案四

合集下载

西南交通大学数值分析上机实验报告

西南交通大学数值分析上机实验报告

数值分析上机实习报告学号:姓名:专业:联系电话:任课教师:序 (3)一、必做题 (4)1、问题一 (4)1.1 问题重述 (4)1.2 实验方法介绍 (4)1.3 实验结果 (5)2、问题二 (7)2.1 问题重述 (7)2.2 实验原理 (7)雅各比算法:将系数矩阵A分解为:A=L+U+D,则推到的最后迭代公式为: (8)2.3 实验结果 (8)二、选做题 (10)3、问题三 (10)3.1 问题重述 (10)3.2 实验原理 (10)3.3 实验结果 (11)总结 (11)序伴随着计算机技术的飞速发展,所有的学科都走向定量化和准确化,从而产生了一系列的计算性的学科分支,而数值计算方法就是解决计算问题的桥梁和工具。

数值计算方法,是一种研究并解决数学问题的数值近似解方法,是在计算机上使用的解数学问题的方法。

为了提高计算能力,需要结合计算能力与计算效率,因此,用来解决数值计算的软件因为高效率的计算凸显的十分重要。

数值方法是用来解决数值问题的计算公式,而数值方法的有效性需要根据其方法本身的好坏以及数值本身的好坏来综合判断。

数值计算方法计算的结果大多数都是近似值,但是理论的严密性又要求我们不仅要掌握将基本的算法,还要了解必要的误差分析,以验证计算结果的可靠性。

数值计算一般涉及的计算对象是微积分,线性代数,常微分方程中的数学问题,从而对应解决实际中的工程技术问题。

在借助MA TLAB、JA V A、C++ 和VB软件解决数学模型求解过程中,可以极大的提高计算效率。

本实验采用的是MATLAB软件来解决数值计算问题。

MA TLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,其对解决矩阵运算、绘制函数/数据图像等有非常高的效率。

本文采用MATLAB对多项式拟合、雅雅格比法与高斯-赛德尔迭代法求解方程组迭代求解,对Runge-Kutta 4阶算法进行编程,并通过实例求解验证了其可行性,使用不同方法对计算进行比较,得出不同方法的收敛性与迭代次数的多少,比较各种方法的精确度和解的收敛速度。

最新西南交通大学高等数学练习题答案详解优秀名师资料

最新西南交通大学高等数学练习题答案详解优秀名师资料

西南交通大学高等数学练习题答案详解精品文档西南交通大学高等数学练习题答案详解高等数学1. 函数y?xcos2? A. 奇函数x3?x是1?xB. 偶函数C. 非奇非偶函数D. 有界函数2. 函数y?2cos的周期是B.?C.?D. 0an?2,. 设数列an,bn及cn满足:对任意的n,an?bn?cn,且limn??lim?0,则limbn?n??n??A. 0B. 1C.D. -21 / 32精品文档x2?2x?14. lim=x?ix3?xA.1B. 0C.1D. ?5. 在抛物线y?x2上点M的切线的倾角为 A. 1124tan2x?,则点M的坐标为11B. C. D.426.limx?0e?1?sinxB.2 / 32精品文档1xA. 0 C. 1 D. -27. A.limx?012B. eC.1D. ?8. 设曲线y?x与直线x=2的交点为P,则曲线在P点的切线方程是 A x-y-4=0B x+y-1=0C x+y-3=0D x-y+2=09. y?x?3?sinx,则y?? A. xx?1xx?3x?cosx1B. x?3ln3?cosxxxC. xlnx?3ln3?cosxxxD. x?3ln3?cosx3 / 32精品文档xx10. f在点x0可微是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件11. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.C. ,12.?sin3xdx?11cos3x?c B. ?cos3x?C C. ?cos3x?C D. cos3x?C3 21dt,则??? 13. 设??? sinx1?t21cosxcosx1?? A.B.C.D.1?sin2x1?sin2x1?sin2x1?sin2xA.14. 函数5e的一个原函数为 A.e5x5xB.e4 / 32精品文档5xC.15xeD. ?e5x15.??2??2xcos3xdx= B.A.2???4C. 0D.216. 下列广义积分收敛的是 A.5 / 32精品文档??dxx1B.dx? 022C.??11dx 1?xD.?adxa?x2217. 下列集合可作为一条有向直线在空间直角坐标系中的方向角?,?,?的是 A. 5?,45?,60?C. 0?,45?,60?,18. 设函数f?xy? A. 06 / 32精品文档B. 12B.5?,60?,60? D.5?,60?,90? y,则f?=xxC. ?1D.2219. 设函数u?ln,则du2=A.1C. dx?dy?dz 0.24D.3B.7 / 32精品文档23x ??xA?2xcos2x B xsinx2C sinxDsin2x2. 当D?{|x2?y2?1} 时,则??dx?DA ?B 1C 0D ?a23. 设a?0,则?? A.?B.?C.发散D.?4225. 曲面z?x2?y2在点处的切平面方程是A.?4??0 B ?4??0 C. ?2??0,D.?4??0?26. 判断级数?n?118 / 32精品文档n?12n2?n是 A绝对收 . B条件收敛. C 发散 . D 以上都不正确 . ?g27. f???x,x?0其中g?=2要使f在x?0处连续,则a?A. 0B. 1C.D. e28. 方程y???4y?0的通解是 A. y?Ce2x?Ce?2xC.y?C1e2x?C2e?2x?B. y?C1e2x?e?2x D. y?e2x?C2e?2xn?1x2n?129. ?内的和函数是n?1!AsinxB cosx Cex30. 设f?3??x9 / 32精品文档20tdt,,则f=西南交通大学网络教育2010年秋季入学考试模拟题高等数学1.函数y?x2sinx?ln,则y?? A. xx?1x3?3x?cosx2B. x?3ln3?cosx D. x?3ln3?cosxxxxxC. x?3x?sinxx7. f在点x0可导是f在点x0连续的 A. 充分条件B. 必要条件C. 充分必要条件D. 无关条件8. 函数y?2x3?6x2?18x?7单调减少的区间是 A.B. x? D.10 / 32精品文档C. ,1x9. 曲线y?e?1的水平渐近线方程为 A. x?1B. y?1C. x?0D.y?0210.?5一、填空题: 1(设函数z?z是由?nxz?lnzy所确定,则dz?0,1,1??dx?dy (?2(设幂级数?anx的收敛区间为??3,3?,则幂级数?an?x?1?的收11 / 32精品文档n?0n?0n敛区间为 ??2,4? ((设函数??x,f???0,y???x?00?x??的付氏级数的和函数为S,则S??2(4(设z?f,其中f具有连续的二阶偏导数,则x??z?x?y2=1x???f121x12 / 32精品文档2f2??yx3?? ( f225(设幂级数?an?x?1?在x?0处收敛,而在x?2处发散,则幂级数?anxn的n?0n?0n?收敛域为 [?1,1)((函数?n?1?n关于x的幂级数展开式为 ? ( f??1??x,x?2n?1x?x?2n?0?2?3?y7(设函数z?x,则dz? dx?2ln2dy8(曲线x?t,y??t2,z?t3的切线中,与平面x?2y?3z?6垂直的切线方程是13 / 32精品文档x?11?y?1?2?z?13z(9(设z?z是由方程e?zsin?lna a?0为常数所确定的二元函数,则 dz? yzcose?sin2zdx?xzcose?sinzdy(10.旋转抛物面z?x?y的切平面:x?4y?8z?1?0,2平行与已知平面x?y?2z?1.111(微分方程2y???y??y?0的通解为 Y?C1e2x?C2e14 / 32精品文档?x,1x2y???y??y?e的通解为 y?C1e2?C2ex?x?12e(x12.曲线?:x??tecosudu,y?2sint?cost,z?1?eu3t在点?0,1,2?处的切线方程为3(函数f?1x?4的麦克劳林级数的第5项为?x44515 / 32精品文档,收敛域为.14.(已知函数f?2x?3y?x?y,有一个极值点,则a?2, b?3,此时函数f 的极大值为 .ab15.试写出求解下列条件极值问题的拉格朗日函数:分解已知正数a为三个正数x,y,z之和,使x,y,z的倒数之和最小L?x,y,z??1x?1y?1z???x?y?z?a?16函数f?xln?1?x?的麦克劳林级数的收敛域为x???1,1?,f?二、单项选择题:请将正确结果的字母写在括号内。

西交大少年班备考专题(四)几何初步(测试题)(含答案)

西交大少年班备考专题(四)几何初步(测试题)(含答案)

西交大少年班备考专题(四)几何初步(测试题)试卷简介:整张试卷共四道选择题,共100分,针对我们专题一种的三种类型,希望同学们能独立认真地做一遍,争取把这四种类型题全面掌握。

学习建议:几何初步在考试中往往以选择、填空等小题出现,对同学们的要求是又快又准,大家注意我们课程讲解的四种类型,掌握每一种类型的解题套路和方法。

一、单选题(共4道,每道25分)1.已知△ABC为等腰三角形,BC边上的高等于BC长的一半,∠BAC的度数不可能为()A.90°B.75°C.30°D.15°答案:C解题思路:(1)若BC为等腰三角形的底,作AH⊥BC于H,则H为BC的中点,且,故△AHB和△AHC都是等腰直角三角形,故∠BAC=90°;(2)BC为等腰三角形中的一腰:①当∠ABC为锐角时,,故∠B=30°,∠BAC=75°;②当∠ABC=90°时,AB=BC=AH,这与矛盾;③当∠ABC为钝角时,,故∠ABH=30°,∠BAC=∠C=15°综上所述,∠BAC的度数可能为90°、75°或15°.易错点:分类标准不清晰,漏掉若干情况。

试题难度:三颗星知识点:等腰三角形的性质2.在△ABC中,最大角∠A是最小角∠C的2倍,且AB=7,AC=8.则BC=()A.B.C.D.答案:C解题思路:如图,延长CA至点D,使AD=AB则∠D=∠ABD==∠C故△CBD∽△DAB则,又因为∠C=∠D,则BC=BD=,答案为C.易错点:没有注意到“二倍角”这个几何特征,构造不出相似三角形试题难度:三颗星知识点:相似三角形的判定与性质3.如图,设E、F分别是△ABC边AC、AB上的点,线段BE、CF交于点D.已知△BDF、△BCD、△CDE的面积分别为3、7、7.则四边形AEDF的面积为()A.15B.10C.14D.18答案:D解题思路:易错点:没有注意到三角形的面积与线段比之间的两种常用思路,设未知数表达也是非常重要的方法。

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案

西南交大线性代数习题参考答案第一章 行列式§1 行列式的概念1. 填空(1) 排列6427531的逆序数为 ,该排列为 排列。

(2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。

若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166aa a a a a 的项的符号为 ,含324314516625a a a a a a的项的符号为 。

2. 用行列式的定义计算下列行列式的值(1)1122233233000a a a a a解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。

(2)12,121,21,11,12,100000n n n nn n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比nn-2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式 (1)21141183---(2)222111a b c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式 (1)()33ax byay bzaz bxxy z D ay bz az bx ax by a b yz x az bx ax by ay bz zxy+++=+++=++++(提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2) ()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n nnn n xx x a x a x a x a a a a x a ------=++++-+(提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

数学建模精讲_西南交通大学中国大学mooc课后章节答案期末考试题库2023年

数学建模精讲_西南交通大学中国大学mooc课后章节答案期末考试题库2023年

数学建模精讲_西南交通大学中国大学mooc课后章节答案期末考试题库2023年1.Lingo软件是常用的优化问题的求解软件。

参考答案:正确2.0-1规划是整数规划。

参考答案:正确3.求解整数规划一定能得到最优解。

参考答案:错误4.整数规划是指规划问题中的全部变量限制为整数。

参考答案:错误5.所有决策变量均要求为整数的整数规划称为纯整数规划。

参考答案:正确6.整数规划与线性规划不同之处在于增加了整数约束。

参考答案:正确7.分枝定界法是整数规划的常见算法。

参考答案:正确8.原线性规划有最优解,当自变量限制为整数后,其整数规划也一定有最优解。

参考答案:错误9.整数规划最优解常可以按照实数最优解简单取整而获得。

参考答案:错误10.与线性规划连续的可行域不同,整数规划的可行域是离散的。

参考答案:正确11.整数规划由于限制变量是整数,增加了求解难度,但整数解是有限个,所以有时候可以采用枚举法。

参考答案:正确12.非线性规划已经有一般的适合所有问题的成熟的解法。

参考答案:错误13.非线性规划的局部最优解和全局最优解等价。

参考答案:错误14.多目标规划的目标函数多于1个。

参考答案:正确15.非线性规划是指规划模型的目标函数或者约束条件中至少有一个为非线性表达式。

参考答案:正确16.多目标规划的解法包括分枝定界法,单纯形法。

参考答案:错误17.根据地球上任意两点的经纬度就可以计算这两点间的距离。

参考答案:正确18.如果可能,把非线性规划转换为线性规划是非常好的一个思路,原因是线性规划有比较成熟的算法。

参考答案:正确19.Lingo软件求解非线性规划的结果都是全部最优解。

参考答案:错误20.求解多目标规划的线性加权和法,在确定权系数之前,一般要对目标函数值做统一量纲处理,其目的是避免出现大数吃小数、权系数失去其作用的问题。

参考答案:正确21.哥尼斯堡七桥问题由欧拉证明了是可以走通的。

参考答案:错误22.“健康中国2030”规划纲要其中一项主要指标是将我国人均预期寿命提升至79岁左右。

西交大数学试题及答案解析

西交大数学试题及答案解析

西交大数学试题及答案解析一、选择题(每题5分,共20分)1. 函数$f(x) = x^2 - 4x + 3$的零点个数是:A. 0B. 1C. 2D. 3解析:函数$f(x) = x^2 - 4x + 3$可以通过因式分解为$f(x) = (x-1)(x-3)$,因此函数有两个零点,即$x=1$和$x=3$。

正确答案为C。

2. 以下哪个选项是$\sin(\frac{\pi}{6})$的值:A. $\frac{1}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{\sqrt{3}}{2}$D. $\frac{\sqrt{5}}{2}$解析:根据三角函数的定义,$\sin(\frac{\pi}{6})$等于$\frac{1}{2}$。

正确答案为A。

3. 直线$y = 2x + 3$与x轴的交点坐标是:A. $(-\frac{3}{2}, 0)$B. $(\frac{3}{2}, 0)$C. $(0, 3)$D. $(0, -3)$解析:要找到直线与x轴的交点,需要令$y=0$,解方程$0 = 2x +3$得到$x = -\frac{3}{2}$。

因此,交点坐标为$(-\frac{3}{2}, 0)$。

正确答案为A。

4. 以下哪个选项是$e^{\ln 2}$的值:A. 1B. 2C. $\ln 2$D. $\ln e$解析:根据对数的定义,$e^{\ln 2}$等于2。

正确答案为B。

二、填空题(每题5分,共20分)1. 函数$f(x) = \sqrt{x}$的定义域是 $[0, +\infty)$。

2. 函数$f(x) = \cos x$的周期是 $2\pi$。

3. 函数$f(x) = \log_2 x$的反函数是 $f^{-1}(x) = 2^x$。

4. 函数$f(x) = x^3 - 3x^2 + 2$的导数是 $f'(x) = 3x^2 - 6x$。

三、解答题(每题15分,共40分)1. 求函数$f(x) = x^3 - 6x^2 + 9x + 1$的极值点。

第一学期西南交大理论力学C第4次作业答案

本次作业是本门课程本学期的第4次作业,注释如下:一、单项选择题(只有一个选项正确,共4道小题)1.图示均质圆盘质量为m,绕固定轴O转动,角速度均为ω。

动能为。

(A) T=mr2ω2(B) T=mr2ω2(C) T=mr2ω2(D) T=mr2ω2正确答案:D解答参考:2.图示均质等截面直杆,质量为m,长为l, 已知,则的计算公式为。

(A)(B)(C)正确答案:C解答参考:3.设弹簧的原长为l0,弹簧系数为k,物块由M1运动至M2 ,弹性力的功为。

(A)(B)(C)(D)正确答案:A解答参考:4.图a、b中所示的两个滑轮O1和O2完全相同,在图a所示情况中绕在滑轮上的绳的一端受拉力作用,在图b所示情况中绳的一端挂有重物A,其重量等于,且P=F。

设绳重及轴承摩擦均可不计。

则两轮的角加速度。

(A) 相同(B) 不相同(C) 不能确定正确答案:B解答参考:二、判断题(判断正误,共9道小题)5.只要知道作用在质点上的力,那么质点在任一瞬时的运动状态就完全确定了。

()正确答案:说法错误解答参考:6.作用于质点上的力越大,质点运动的速度也越大。

()正确答案:说法错误解答参考:7.牛顿定律适用于任意参考系。

()正确答案:说法错误解答参考:8.一个质点只要运动,就一定受力的作用,而且运动的方向就是它受力的方向。

()正确答案:说法错误解答参考:9.若系统的总动量为零,则系统中每个质点的动量必为零。

()正确答案:说法错误解答参考:10.冲量的量纲与动量的量纲相同。

()正确答案:说法正确解答参考:11.质点系的内力不能改变质点系的动量与动量矩。

()正确答案:说法错误解答参考:12.质点系内力所做功之代数和总为零。

()正确答案:说法错误解答参考:13.如果某质点系的动能很大,则该质点系的动量也很大。

()正确答案:说法错误解答参考:(注意:若有主观题目,请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。

在线只需提交客观题答案。

西南交大高数上册第一至第三章习题解答

习题1—71.指出下列各函数的间断点以及所属的类型。

如果是可去间断点,则重新定义函数值使函数在该点连续(1)23x -x 1-x y 22+=解:1x 023x -x 2=→=+,2x =22-x 1x lim 23x -x 1-x lim y lim 1x 221x 1x -=+=+=→→→,y lim 2x →不存在 所以1x =,是函数的第一类间断点,且是可去间断点 定义当1x =,-2y =可使函数在1x = 点连续。

2x =是函数的第二类间断点(2)2x x xy 2-+=解:→⎩⎨⎧≥=-+0x 02x x 21x =,y lim 1x →不存在,所以1x =是函数的第二类间断点 (3)x x 1x -1limy 2n2nn +=∞→ 解:1x >时,x x 1x11x 1lim x x 1x -1limy 2n 2nn 2n2nn -=+-=+=∞→∞→1x =时,0x x 1x -1limy 2n 2nn =+=∞→ 1x <时,x x x 1x -1limy 2n2nn =+=∞→ -1y lim 01x =+→,1y lim 01x =-→,0y 1x ==,所以1x =是函数的第一类间断点-1y lim 01x =+-→,1y lim 01x =--→,0y 1x =-=,所以1x -=是函数的第一类间断点(4)x 1x)1(y +=解:e x )1(lim y lim x10x 0x =+=→→,0x =时,x1无意义,x 1x)1(y +=无意义,所以0x =是函数的第一类间断点。

定义0x =时,e y =可使函数在0x =处连续 2.写出函数在点x 0连续的ε—δ定义。

解:设函数x)(f 在点x 0的某邻域内有定义,0>∀ε,0>∃δ,x ∀:δ<0x -x ,使ε<)x (-(x)0f f 成立,则x)(f 在点x 0处连续3.(1)函数x)(f 在点x 0连续,而函数x)(g 在点x 0不连续,问此两函数之和在点x 0是否连续?那么此两函数的积呢?(2)在点x 0,x)(f 与x)(g 都不连续,则两函数的积是否必不连续? 解:(1)①(x)x)(g f +在x 0处不连续证明:设(x)x)(g f +在x 0处连续,则0>∀ε,01>∃δ,x ∀:10x -x δ<,2/)x ()x (-(x)x)(00ε<-+g f g f2/)x ()x (-(x )x )(2/00εε<-+<-g f g f)]x (-x )([2/)x ((x ))]x (-x )([2/000f f g g f f -<-<--εε由于x)(f 在x 0处连续,所以0>∀ε,02>∃δ,x ∀:20x -x δ<,2/)x (-x)(0ε<f f ,2/)x (-x )(2/0εε<<-f fεεεε=--<-<-]2/[2/)]x (-x )([2/)x ((x )00f f g g εεεε-=-->-->-2/2/)]x (-x )([2/)x ((x )00f f g g故: ε<-)x ((x)0g g所以0>∀ε,},m in{21δδδ=∃,x ∀:δ<0x -x ,使ε<-)x ((x)0g g 成立。

西南交通大学期末真题及答案19-20高等数学II半期考试试卷参考解答

西南交通大学2019-2020学年第2学期半期测试课程代码 MATH011512 课程名称 高等数学II 考试时间 60 分钟注意:本试卷共9道大题,需要详细解答过程,将答案写在答题纸上,考试结束前拍照上传。

要求独立完成,诚信参考!考试诚信承诺书。

我郑重承诺:我愿意服从学校本次考试的安排,承认考试成绩的有效性,并已经认真阅读、了解了《西南交通大学考试考场管理办法》和《西南交通大学本科生考试违规处理办法》,我愿意在本次考试过程中严格服从监考教师的相关指令安排,诚信考试。

如果在考试过程中违反相关规定,我愿意接受《西南交通大学本科生考试违规处理办法》的规定处理。

您是否同意:A. 同意B. 不同意选择B 选项,本次考试无效。

一(10分) 、判断直线1212:012+--==-x y z L 与222:2+=⎧⎨+-=⎩x y L x y z 的位置关系,并给出理由。

解 法一 化2L 为对称方程12:121-==--x y zL (不唯一) 故12、L L 方向向量分别为()()120,1,21,2,1=-=--、s s ,(不唯一)分别过点()()122,1,20,2,0=-=、M M计算121201212110212-⎡⎤=--=-⎣⎦-,,s s M M (8分)(不唯一,只要最终表明混合积不为零即可)这表明直线异面(而且12⊥s s 表明其异面垂直)法二 1L 的参数为2122=-⎧⎪=+⎨⎪=-⎩x y t z t ,(不唯一)代入2L 得41221222-++=⎧⎨-++-+=⎩t t t (*),(*)无解,这表明12、L L 无交点,故它们要么平行要么异面,注意到12、L L 方向向量分别为()()120,1,21,2,1=-=--、s s ,它们不平行,这表明12、L L 异面。

二 (10分)、 设函数()22,=z f xy x y ,其中f 具有二阶连续偏导数,求d z 及22∂∂z x。

工程力学教程-西南交通大学应用力学与工程系-第二版-习题-答案-详解


x2
MO2 FRy
997.1 7.53m 132.4
14
F3 1m 2m
5m
1m
O2
F2
2m
2m
O1 F4
1m
O3
1m
Me F1
300
MO3 = mO3( Fi ) = F1 sin300 ×8+ F2 × 2 +F3 cos 450 × 4 + Me
=729.7N.m
x3
MO3 FRy
729.7 132.4
FC
DF
解:
a
C点
2F
2F
2
2
B
2F 2
2F 2
D点
F
2F 2
F
A点
F
2F
2
AC、BC、AD、BD均为拉杆,故
2 F 125kN F 125 2 176.75kN
2
AB为压杆,故 F 150kN 所以 Fmax 150kN
P155 7-8 横截面面积A=200mm2的杆受轴向拉力F=10kN作用, 试求斜截面m-n上的正应力及切应力。
F 0
5
2
2m FB
10 FA 4 F 5 10 15.81kN
Fy = 0
FB FA
1 F 5
2 0 2
FB 5 2 7.07kN
9
第三章 P47:
P47: 3-4 图示折梁AB,试求支座A和B的约束力。
梁重及摩擦均可不计。
A
B
F F/
300
解:【AB】
m 0
l
FA
FB
FA l F a cos300 0
y
几何法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验课题四曲面图与统计图
第一大题:编程作下列曲面绘图:
用平面曲线r=2+cos(t)+sin(t),t∈(0,π)绘制旋转曲面
t=0:0.02*pi:pi;
r=2+cos(t)+sin(t);
cylinder(r,30)
title('旋转曲面');
shading interp
用直角坐标绘制双曲抛物面曲面网线图,z2=xy (-3<x<3,-3<y<3) [x,y]=meshgrid(-3:0.1:3);
z2=x.*y;
surf(x,y,z2);
title('双曲抛物面');
shading interp
axis off
用直角坐标绘制曲面表面图,y
=(-5<x<5,-5<y<5)
32-
z2
x
[x,y]=meshgrid(-5:0.1:5);
z3=(x.^2)-2*y;
surf(x,y,z3);
title('picture 3');
shading interp
axis off
用直角坐标绘制修饰过的光滑曲面曲面:z 4=sin(x )-cos(y ) x 与y 的取值在(-π,π)
[x,y]=meshgrid(-pi:0.02*pi:pi); z4=sin(x)-cos(y); surf(x,y,z4); title('picture 4'); shading interp axis off
用连续函数绘图方法绘制曲面)2sin(6522x y x z ++=,x ∈[-2pi,2pi], y ∈[-2pi,2pi],并作图形修饰。

ezsurf(@(x,y)(x^2+y^2+6*sin(2*x)),[-2*pi 2*pi -2*pi 2*pi]) title('picture 5'); shading interp axis off
第二大题:按要求作下列问题的统计图:
x21是1—10的10维自然数构成的向量,y21是随机产生的10维整数向量,画出条形图。

(提示bar(x,y)) x21=1:10; y21=randn(10,1); bar(x21,y21)
随机生成50维向量y22,画出分5组的数据直方图。

(提示hist(y,n))
y22=randn(50,1);
hist(y22,5)
由以下数据绘出饼形图y23=(46 75 148 214 98 35),并抽出第四块。

(提示pie(y))
y23=[46 75 148 214 98 35];
pie(y23,[0 0 0 1 0 0])
调用函数数据绘其平面等高线,绘图数据用[x,y,z]=peaks(30)生成。

(提示contour(x,y,z,15) )
[x,y,z]=peaks(30);
contour(x,y,z,15)
第三大题应用问题:作数据饼形图及条形图
初中毕业生状况统计:
某年代欧洲若干国家初中毕业生升学、就业统计数据如下,作出饼形图及条形图,以便分析不同国家对青年培训的做法上的差异。

数据资料如下:
(提示:将九行四列的数据构成矩阵A,对A的每一行作饼形图pie( ) ,对矩阵A作条形图bar() )
A=[56 36 4 4;21 19 51 9;31 31 23 15;27 40 14 19;21 51 24 4;26 29 9 26;56 10 5 29;24 13 31 32;32 10 14 44]; A=A./100;
subplot(2,5,1)
pie(A(1,:))
title('比利时')
subplot(2,5,2)
pie(A(2,:))
title('德国')
subplot(2,5,3)
pie(A(3,:))
title('卢森堡')
subplot(2,5,4)
pie(A(4,:))
title('法国')
subplot(2,5,5)
pie(A(5,:))
title('意大利') subplot(2,5,6) pie(A(6,:)) title('荷兰') subplot(2,5,7) pie(A(7,:)) title('爱尔兰') subplot(2,5,8) pie(A(8,:)) title('丹麦') subplot(2,5,9) pie(A(9,:)) title('英国') subplot(2,5,10) bar(A)
第四大题绘制动态图
4.1 应用函数comet(x,y)作二维动态曲线图(西瓜图):
ππ5.55.5cos *sin :⎩
⎨⎧≤≤-==t t t y t x l t=-5.5*pi:pi/50:5.5*pi; comet(sin(t),t.*cos(t)) 4.2 应用函数
comet3(x,y,z)作三维动态曲线图:
1000)3cos(5)sin(22:2≤≤⎪⎩

⎨⎧===t t z t y t x l (提示:t=0:0.01:100运行时将图形窗口放在可视的旁
边)
t=0:0.01:100;
comet3(2*t.^2,2*sin(t),5*cos(3*t))。

相关文档
最新文档