电子式互感器
电子式互感器详解

• 输入输出单向
路径无法完全避 免外界温度和振 动的影响。
(3) 光纤熔接技术 • 全光纤电子式互感器由于敏感元件和传输元件都采用 光纤,而成熟的光纤熔接技术使得产品能够做到真正的 免维护,增加了可靠性和稳定性。 • 光学玻璃电子式互感器由于敏感元件采用光学玻 璃,而传输元件采用光纤,这两者之间采用胶粘方式 连接,从固有特性来说,容易受环境温度的影响而老 化、开裂,使其使用寿命大受影响,从而也带来了维 护和性能上的缺陷。
十六进制:00E7 (十进制:231)
十六进制:2D41H (十进制:11585)
目 录
一、基本概念 二、技术探讨 三、应用比较 四、发展展望
1、电子互感器分类和优缺点
(1) 罗氏线圈电子式电流互感器
�光纤只作为传输元件,敏感元件是空心 线圈 ;骨架截面积也要 空芯线圈密度要求恒定; �空芯线圈密度要求恒定 恒定;线圈横截面要与中心线垂直,工艺 水平影响产品稳定性。 �采用开环控制技术,动态范围和精度受 局限 �供能半导体激器功率大。 �易受杂散磁场影响。
(4)、低功率电子式电流互感器LPCT 2/2
LPCT二次回路要并接一阻值较小的电压取样电 阻,该电阻是LPCT的一个组成部分,等效电路 如下: Np Us = Rsh Ip Ns
Us为LPCT电压输出 Ip为一次侧电流 Rsh为采样电阻 Np为一次绕组匝数 NS为二次绕组匝数
2、电子式电压互感器
i
uo
复合绝缘子 光纤
u0 = − µ 0 ns
di dt
激光器 光缆 PIN
驱动电路 数据处理
合 并 单 元
保护 测控 计量
(1)、有源式电子式电流互感器原理图 2/2
(3)、无源电子式电流互感器 (磁光玻璃、全光纤)
电子式互感器的工作原理及应用

电子式互感器的工作原理及应用
电子式互感器是采纳磁光、电光变换原理或由无铁芯线圈构成的新型互感器,它包括电流(电压)传感器、传输系统、二次转换器,具有模拟量输出或数字量输出。
目前,有别于传统(电磁式互感器或电容式电压互感器)的互感器,包括采纳磁光效应、洛氏线圈、小型号输出、全光纤传输等类型的互感器统称为电子式互感器。
1、电压互感器
通常采纳简洁的电阻分压原理或电容分压原理实现电压信号的采集。
专用的高压电阻或电容,实现了电压信息的高精度与高稳定性采集。
采纳屏蔽电缆或光纤电缆传输。
2、电流互感器
采纳光隔离绝缘,它依靠高压母线磁场自励供应传感工作电源,高压侧的测量、爱护线圈输出的电流信号经数字采样后通过光钎传至二次设备,凹凸压间实现了光隔离,永久性解决了绝缘隔离难题。
传感头采纳小型纳米晶磁芯线圈及罗高斯基爱护线圈,具有测量精度高,爱护范围宽,免于维护,工作稳定牢靠的优点。
3、电子式互感器的应用
电子式互感器通过信号处理箱接收传感头输出的模拟感应信号,经信号处理箱进行滤波、幅值、相位仪校准后变成标准输出信号,供应给计量、爱护和测量设备。
由于输出信号为小信号(毫伏级),不存在二次短路(开路)危急。
电子式电流互感器原理

电子式电流互感器原理
电子式电流互感器利用负载中的电流通过主线圈产生磁场,再由副线圈感应到的原理来测量电流。
其工作原理如下:
1. 工作原理:
电子式电流互感器由主线圈、副线圈、铁芯以及信号处理电路等部分组成。
当负载中有电流通过时,主线圈中会建立一个磁场。
2. 磁场感应:
主线圈产生的磁场会传导到副线圈中,副线圈中感应到的磁场与主线圈中的磁场方向相反,通过副线圈的磁场感应电流。
3. 信号处理:
通过增益放大器等信号处理电路将感应到的电流进行放大和滤波处理,然后将结果输出给后续的电路或设备进行处理或显示。
4. 铁芯的作用:
铁芯的存在可以加强磁场的传导效果,从而提高互感器的灵敏度和准确性。
5. 特点:
电子式电流互感器具有体积小、重量轻、精度高、能耗低的特点,适用于各种工业自动化控制系统中的电流测量和保护。
需要注意的是,在文中不能使用与标题相同的文字,以避免重复。
以上是电子式电流互感器的工作原理和特点的简要描述。
IEC 60044-7-1999 互感器 第7部分:电子式电压互感器

互感器−第7部分:电子式电压互感器1. 概述1.1. 范围作为国际标准IEC 60044系列之一的本标准,适用于新制造的模拟量输出的电子式电压互感器,供频率15~100Hz的电气测量仪器和电气保护装置使用。
注1 光学装置通常包含电子器件,因而认为属于本标准的适用范围。
注2 详细资料见附录B。
注3 本标准不包括专用于三相电压互感器的要求,但它们是相关的,3~11各条的要求适用于这些互感器,也有些条文包含三相电压互感器的内容(例如,见2.1.5,5.1.1,5.2,11.2.1和11.2.2)。
1.2 引用标准下列标准文件中的条款,通过本条文的引用,构成本标准的条款。
对标明日期的引用标准,不使用在此日期后的修改单或改版。
但鼓励按本标准达成协议的各方,研究使用下列标准最新版本的可能性。
对未标明日期的引用标准,使用其最新版本。
IEC和ISO会员国都持有现行有效的国际标准目录。
IEC 60038:1983,IEC标准电压IEC 60044-2:1997,互感器−第2部分:电磁式电压互感器IEC 60050(161):1990,国际电工词汇(IEV)− 161章:电磁兼容IEC 60050(321):1986,国际电工词汇(IEV)− 321章:互感器IEC 60050(601):1985,国际电工词汇(IEV)− 601章:发电、输电和配电−概述IEC 60050(604):1985,国际电工词汇(IEV)− 604章:发电、输电和配电−运行IEC 60060(所有各部分),高电压技术IEC 60060-1:1989,高电压试验技术−第1部分:通用定义和试验要求IEC 60071-1:1993,绝缘配合−第1部分:定义、原则和规定IEC 60186:1987,电压互感器IEC 60255-5:1977,继电器−第5部分:继电器的绝缘试验IEC 60255-6:1988,继电器−第6部分:测量用继电器和保护设备IEC 60255-11:1979,继电器−第11部分:测量用继电器直流辅助励磁的(脉动)交流分量和间断IEC 60255-22-1:1988,继电器−第22部分:测量用继电器和保护装置的电气干扰试验−第一章:1MHz脉冲干扰试验IEC 60270:1981,局部放电测量IEC 60617-1:1985,图形符号−第1部分:通用信息,总索引。
电子式互感器工作原理

电子式互感器工作原理
电子式互感器是一种将电流和电压信号转化为电压输出的传感器。
它的工作原理基于法拉第电磁感应定律,即当变化的磁场穿过一定面积的线圈时,会在线圈中产生感应电动势。
电子式互感器通常由一对互相耦合的线圈组成,分别称为主线圈和次级线圈。
主线圈通常与被测信号相关的电流或电压输入相连接,而次级线圈则用于输出感应电动势。
当主线圈中的电流或电压发生变化时,它会产生一个变化的磁场。
这个变化的磁场会穿过次级线圈,并在其内部产生感应电动势。
次级线圈的输出电压与主线圈中电流或电压的变化成正比。
为了保证准确的信号转换,电子式互感器通常采用一些补偿措施来减小非线性和失真。
例如,使用磁芯可以增强磁场的感应效果,并提高传感器的灵敏度和稳定性。
此外,电子式互感器还通过电路设计来对感应电动势进行放大、滤波和线性化。
总的来说,电子式互感器的工作原理是基于通过变化的磁场产生感应电动势,将输入的电流或电压信号转换为输出的电压信号,实现信号的传感和测量。
电子式电流互感器原理

电子式电流互感器原理电子式电流互感器是一种用于测量电流的传感器,它能够将高电流转换成低电流,并通过电子设备进行测量和处理。
在电力系统中,电流互感器是非常重要的设备,它能够实现电流的测量、保护和控制功能。
本文将详细介绍电子式电流互感器的原理和工作机制。
首先,电子式电流互感器通过感应原理将高电流转换成低电流。
当高电流通过主绕组时,会在副绕组中感应出相应的低电流。
这是通过互感器的铁芯和线圈来实现的,铁芯能够集中磁场,而线圈则能够感应出相应的电流。
通过这种方式,电子式电流互感器能够将高电流转换成适合电子设备测量的低电流信号。
其次,电子式电流互感器采用了电子器件进行信号处理和输出。
经过副绕组感应的低电流信号会经过放大、滤波、线性化等处理,最终输出为标准的电流信号。
这样的设计能够保证互感器输出的电流信号稳定、准确,并且符合标准要求。
同时,电子式电流互感器还可以通过数字接口输出信号,方便与其他设备进行数据交互和远程监测。
最后,电子式电流互感器具有高精度、低功耗、抗干扰能力强等特点。
由于采用了先进的电子器件和信号处理技术,电子式电流互感器能够实现高精度的电流测量,满足电力系统对电流测量的严格要求。
同时,电子式电流互感器的功耗较低,对电力系统的影响较小。
而且,它能够抵抗外部干扰,保证测量结果的准确性和稳定性。
总的来说,电子式电流互感器是一种基于电子技术的高精度、稳定性强的电流测量设备,它通过感应原理将高电流转换成低电流,并通过电子器件进行信号处理和输出。
在电力系统中,电子式电流互感器扮演着重要的角色,它能够实现电流的测量、保护和控制功能。
相信随着科技的不断进步,电子式电流互感器将会有更广泛的应用和更高的发展。
电子式电流互感器的基本原理及应用

经济性好。在电压等级升高时,成本只稍有增加。 可以组合到断路器或其他高压设备中,共用支撑 绝缘子,可减少变电站的占地面积。
2018/11/12 8
电子式电流互感器的需求更迫切
故障情况下,传统互感器的测量都有不同程度 的失真,但电流互感器远比电压互感器严重。 光学互感器采用光纤传输,而光纤传输方式对 于电流互感器可以大幅度简化绝缘结构和降低 制造成本,对于电压互感器却达不到此种效果。 电力系统中,电流互感器的数量远多于电压互 感器,市场规模更大。
14
法拉第效应
1864年,法拉第发现在磁场的作用下,本来不具 有旋光性的物质也产生了旋光性,即光矢量发生 旋转,这种现象称作磁致旋光效应或法拉第效应。
2018/11/12
15
法拉第效应
VH sl
2018/11/12
V 维尔德(Verdet)常数 n
Hs
l 磁场在光传播方向的分量 光通过物质的光程
采用油浸纸绝缘,易燃易爆,不安全;
电磁式电流互感器的二次侧输出对负载要求严格, 若二次负载较大,测量误差就增大,准确度下降; 传统互感器的模拟量不能直接与计算机相连(电 流互感器模拟量输出为5A或1A) ,难以满足新 一代电力系统自动化、数字化的发展需要。
2018/11/12 6
电子式互感器的优势
2018/11/12 17
法拉第效应
目前尚无高精度测量偏振面旋转角的检测器, 因此,通常将线偏振光的偏振面角度变化的信 息转化为光强变化的信息,然后通过光电转换 将光信号变为电信号,并进行放大处理,以正 确反映最初的电流信息。 一般用光电探测器(检偏器)将角度信息转换为 光强信息。为此必须先用起偏器将光变成线偏 振光,经被测磁场后用光电探测器求光强信息。
科兴电器电子式互感器简介

电气工程应用2012.2一、电子式电流互感器原理及结构二、电子式电压互感器原理及结构三、电子式互感器应用范围四、电子式互感器的优点五、电子式互感器应用前景六、电子式互感器订货注意事项一电子式电流互感器产品原理及结构目前我公司生产的中压电子式电流互感器原理主要有以下两种:1.1、采用罗氏线圈(也叫空心线圈)原理的互感器。
1.1.1、原理图:1.1.2原理说明:此类电子式电流互感器一次传感部分采用了罗哥夫斯基线圈的原理,它由罗哥夫斯基线圈、积分器、A/D 转换等单元组成,将一次侧大电流转换成二次的低电压模拟量输出或数字量输出。
此类电子式电流互感器不使用铁芯,使用了原理上没有饱和的罗哥夫斯基线圈,由这个罗哥夫斯基线圈得到了与一次电流I 1的时间微分成比例的二次电压E 2,将该二次电压E 2进行积分处理,获得与一次电流成比例的电压信号。
1.2采用低功率线圈(感应式宽带线圈)原理的互感器。
1.2.1原理图:科兴电器电子式互感器简介由罗氏线圈组成的电子式电流互感器原理、实物图由低功率线圈组成的电子式电流互感器原理、实物图34电气工程应用2012.21.2.2、原理说明此类电子式电流互感器的这种原理是采用低功率线圈(感应式宽带线圈)的原理,它代表着经典感应电流互感器的发展方向。
它由一次绕组、小铁芯和损耗最小化的二次绕组组成。
二次绕组上连接着分流电阻R A ,该电阻是电流互感器一体化元件,分流电阻R A 是以使互感器消耗的功率接近为零这种方式设计的。
二次电流I 2在分流电阻R A 两端的电压降U 2与一次电流I 1成比例,U 2可以根据需要设计在0-5V 之间,这种互感器比传统互感器的电流测量范围大很多,甚至同一个线圈可以同时满足测量和保护的要求。
二电子式电压互感器产品原理及结构目前我公司生产的中压电子式电压互感器原理主要有以下两种:2.1采用电阻分压原理的电子式电压互感器2.1.1、原理图2.1.2原理说明此类电子式电压互感器采用优化的高压电阻及低压电阻设计,其分压器的特性无比优越,其准确度误差特性表明,电子式电压互感器可同时满足电压测量和保护的要求,测量准确度可达0.2级,保护级可达3P 级;电子式电压互感器的二次电压正比于一次电压,二次电压可以根据需要设计在0-6.5V 或6.5/之间,很容易与二次智能化设备接口,满足当代智能化、数字化二次仪表及保护的需要,又因其没有铁芯,因而从根本上消除了产生铁磁谐振的危险。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子式电流互感器采用Rogowski线圈或低 功率小铁心的设计原理。
电子式电压互感器采用电阻、阻容、串联 感应分压的原理。
输出均为小电压信号,可直接与合并单元, 继电保护,仪表装置接口。
一、背景知识
电子式电压、电流互感器特点:
二、工作原理
有源电子式电流、电压互感器通用框图:
P1
一次
P2 电压传感器
一次 电源
一次 转换器
二次 电源
传输 系统
二次 转换器
MR:维修申请 IV:输出无效 MR IV
S 供合并单元用
三、性能比较
三、性能比较
四、工程应用
(1)独立型电子式电流互感器在高压测量系统中的 应用,示意图如下:
四、工程应用
四、工程应用
电流互感器与电压互感器可组合为一体,实现对一
次电流电压的同时测量。
电流传感器采用LPCT及空芯线圈。 电压互感器采用电容分压器传感一次电压。 采用激光供能与母线取能相结合的方法为采集器供
电。
四、工程应用
(3)基于低功率线圈原理的电子式电流互感器在中低 压测量系统中的应用,示意图如下:
LPCT LPCT LPCT
模拟信号接入 A/D转换 保护测控
IEC61850-9-1/2标 准的采样值报文输
出 开入量采集 开出执行
采样值报文输出 GOOSE接收
间隔装置
四、工程应用
电子式互感器输出为低功率的模拟信号,直接接入
间隔装置。
间隔装置接收同步采样脉冲对模拟信号采样,供功
能实现使用,同时也可设计IEC61850-9-1/2标准的 采样值输出接口,与其它智能装置进行数据共享。
一些不足,也是电子式互感器技术的一个发展方向。
谢谢!
不含铁芯或含小铁芯,不会出现饱和和铁磁谐振。功 耗小,节电效果显著。
体积小、重量轻、精度高、线性好、测量范围宽,克 服了传统电磁式电流互感器的频带窄、响应慢等缺点。
电流互感器二次开路时不会产生高电压,电压互感器 二次短路时不会产生大电流,从根本上消除了电力系 统运行中的重大故障隐患,最大程度地保障了人员和 设备的安全。
二、工作原理
(2)阻容分压原理(GIS适用) 原理示意图如下:
电容分压是通过将柱状电容环套在导电线路外面来实 现的,柱状电容环及其等效接地电容构成了电容分 压的基本回路。
二、工作原理
考虑到系统短路后,若电容环的等效接地电容上积 聚的电荷在重合闸时还未完全释放,将在系统工作 电压上叠加一个误差分量,严重时会影响到测量结 果的正确性以及继电保护装置的正确动作,长期工 作时等效接地电容也会因温度等因素的影响而变得 不够稳定,所以对电容分压的基本测量原理进行了 改进。在等效接地电容上并联一个小电阻R 以消除 上述影响,从而构成新的电压测量电路(阻容分 压)。电阻上的电压Uo即为电压传感头的输出信号:
一、背景知识
互感器特点(续):
无油或少油设计,环保且提高了安全性,减少了维护 工作量。
成本低,见效快,对现有中、低压电气设备的改造具 有现实意义。
二、工作原理
电子式电流互感器工作原理:
(1)罗氏(Rogowski)线圈设计原理 罗氏线圈是将导线均匀地绕在非铁磁性环形骨 架上,一次母线置于线圈中央,因此绕组线圈 与母线之间的电位是隔离的。由于不存在铁心 所以不存在饱和现象。如果母线电流为i(t), 根据法拉第电磁感应定律,罗氏线圈两端产生 的感应电势: e(t)= -Mdi/dt,其中M为互感系数 罗氏线圈两端产生的感应电势e(t)经过积分器 处理后得到与被测电流成比例的电压信号,经 处理、变换后,即可得到与一次电流成比例的 模拟量输出。
罗氏线圈、低功率线圈(LPCT)数据采集模
块位于高电位部分;合并单元,保护测控装 置位于低电位部分。
高压系统和低压系统通过光纤解决绝缘问题 由专用激光器产生高能激光和取能线圈为采
集模块供电。
由于成本因素,适用于110kV以上电压等级。
四、工程应用
(2)独立型电子式电流电压组合互感器在高压测量系 统中的应用,示意图如下:
二、工作原理
低功率小铁心线圈原理示意图:
二、工作原理
电子式电压互感器工作原理:
(1)电阻分压原理 电子式电压互感器采用电阻、阻容分压原理, 其输出在整个测量范围内呈线性,其原理图如 下:
二、工作原理
上图中:1—均压电极,Ra—高压臂电阻,Rb—低 压臂电阻,该原理将一次高电压转换成低电压, 经处理后输出符合标准的二次电压。Tv 是过电 压保护装置,一旦出现Rb 损坏,可以限制二次 电压升高保护测量系统。由于高压端与分压器 本体及分压器本体与地之间存在杂散电容,使 分压器产生误差,而且电压分布不均匀。为改 善电压分布、减小分压器误差,在分压器高压 端加屏蔽电极,以补偿分压器对地杂散电容。 同时,在接地端加屏蔽电极,使分压器对地杂 散电容相对固定。
时也满足IEC61850-9-1/2,IEC60044-7/8标准对电子式 互感器的要求。
吸取了常规电流、电压互感器丰富的制造和运行经验,
技术具有一定延续性。
在采用低功率输出信号后,需要增加额外的措施来保证
电磁兼容性能。
带来了电流、电压互感器校验标定方法的变革。 目前在一定程度上克服了常规电流、电压互感器存在的
e(t)= RC1du/dt,R<<1/(ωC2)
二、工作原理
(3)电容分压原理(户外独立式适用) 原理示意图如下:
高压母线 C1 Us C2 R U0
e(t)= Us*C1/(C1+C2),R>>1/(ωC2)
二、工作原理
输出电压由C1和C2的容值比决定。这种分压技术来自 传统的电容式电压互感器(CVT),目前采用传统的 电容分压器来获得低压小信号(一般为数伏)。同 上述原理(2)一样要解决C2上电荷释放的问题。
二、工作原理
(4)串联感应分压器原理 串联感应分压器是由多级不饱和电抗器串联而 成的,输出电压信号从串联在电路中的小电抗上 取出,其原理图如下所示:
二、工作原理
N1—分压器主绕组,N2—平衡绕组,N3—耦合 绕组。
根据需要,信号可以在高压端取出,也可以 在分压器接地端取出。串联感应分压器是参照 串级式电压互感器原理制成的。平衡绕组和耦 合绕组的作用是保证感应分压器在不同电压、 不同负载(允许范围内)时的各个电抗器单元 的磁势平衡,而使各个单元承受电压均衡。N2、 N3匝数的具体数值必须在初步设计后,又通过 测量各元件分布电压的方法来调整。
二、工作原理
罗氏(Rogowski)线圈原理示意图:
非磁性骨架
i(t)
二次绕组
Z
e(t)
二、工作原理
(2)低功率小铁心线圈原理
小铁芯线圈式低功率电流互感器是传统电磁式 电流互感器的一种发展,小铁心线圈式低功率 电流互感器包含一次绕组小铁心和损耗极小的 二次绕组。二次绕组上连接集成元件Ra,因此, 其二次输出为电压信号。二次电流I2 在集成元 件Ra 上产生的电压降Us,其幅值正比于一次电 流且同相位。而且,互感器的内部损耗和负荷 要求的二次功率越小,其测量范围越宽、准确 度越高。其原理图如下:
电子式互感器
南京中德保护控制系统有限公司 09年02月
一、背景知识
研制背景:
随着IEC61850标准在数字化变电站中的应用,
作为过程层设备的互感器也逐步数字化。
电子、通信技术的飞速发展使得保护、测控、
计量装置不再需要高功率输出的互感器。
随着超高压电网的建设,传统互感器存在重
量和体积加大,价格上升,防爆绝缘困难,磁 饱和时输出信号畸变严重等一系列问题。
这种方式通常应用于中低压开关柜内。一次信号与
二次信号的绝缘较易解决;间隔装置与电子式互感 器距离较近。
取消了价格昂贵且寿命较短的激光供能系统,减小
了成本,提高了可靠性。
五、小结
上述电子式互感器的基本工作原理还是采用经典的法拉
第电磁感应原理,基尔霍夫电流电流定律。
此类电子式互感器技术融合了现代电子和通信技术,同