平行四边形的底和高(例3)
【典例精讲】第5讲 平行四边形和梯形-四年级上册数学精品讲义(思维导图+

第5讲平行四边形和梯形(思维导图+学问梳理+例题精讲+易错专练)一、思维导图二、学问点梳理学问点一:平行与垂直1.平行同一平面内不相交的两条直线叫做平行线。
直线a是直线b的平行线,直线a与b相互平行,记作a∥b,或者b∥a 2.垂直两条直线相交成直角,就说这两条直线相互垂直。
直线a是直线b的垂线,交点叫做垂足,记作a⊥b,或者b⊥a垂线的画法:用三角尺画已知直线的垂线比较便利,先把三角尺的一条直角边与已知直线重合,再沿着另一条直角边化一条直线,这条直线就是已知直线的垂线。
学问点二:平行四边形1.两组对边分别平行且相等的四边形叫做平行四边形。
2.常见的四边形有桌子、柜子、地砖、床、书本、打印纸等。
3.从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形高,垂足所在的边叫做平行四边形的底。
4.通过动手操作,我们发觉平行四边形简洁变形。
5.长方形和正方形是特殊的平行四边形。
学问点三:梯形1.只有一组对边平行的四边形叫做梯形。
2.两腰相等的梯形叫等腰梯形,有一个角是直角的梯形叫直角形。
3.梯形中,平行的一组对边叫做梯形的上底和下底,不平行的一组对边叫做梯形的腰。
4.一个平行四边形能分成两个完全一样的梯形。
学问点四:四边形之间的关系长方形、正方形是特殊的平行四边形。
三、例题精讲考点一:平行与垂直【典型一】关于下图,下列说法错误的是()。
A.直线a比直线c短B.直线a与直线b不平行C.直线c与直线d之间距离都相等D.直线c与直线d都垂直于直线a【分析】依据题意,直线无法测量长度;直线a与直线b不平行;平行线间的距离处处相等,因此直线c与直线d之间距离都相等;直线c与直线d都垂直于直线a,据此推断即可。
【详解】A.直线无法测量长度,所以直线a比直线c短,说法错误;B.直线a与直线b能相交,故不平行;C.直线c与直线d相互平行,所以它们之间距离都相等;D.直线c与直线d都垂直于直线a。
什么是平行四边形的底和高

什么是平行四边形的底和高教学目标(一)使学生理解平行四边形的概念及其特性,并会画平行四边形的高(二)并使学生掌控长方形、正方形和平行四边形的关系(三)进一步提高学生观察、比较能力和作图能力教学重点和难点理解和掌握平行四边形的定义及其特性,画平行四边形的高是教学重点;理解长方形、正方形与平行四边形之间的关系是难点教学过程设计(一)复习准备我们已经研习过一些几何图形,观测一下这些图形存有什么共同的特点?(投影)在明确它们都是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形回答:我们研习过哪些四边形呢?(学过的四边形有长方形、正方形、平行四边形)你能够举例说道说道哪些物体表面就是平行四边形吗?教师出示挂图,让学生初步感知平行四边形我们已初步重新认识了平行四边形,那么什么叫做平行四边形?它存有什么特性?这就是我们今天必须研究的课题(板书课题:平行四边形)(二)学习新课首先出具一组图形:这些图形是什么形?它们有什么特征?①动手测量指名一学生到黑板上用三角板检验一下,每个图形的对边怎样其余同学用三角板检验课本页3个图形的对边然后再用尺子度量一下每组对边的长怎样②抽象化归纳根据你测量的结果,能说说什么叫平行四边形吗?小组先议论一下,(可能将讲出每组对边分别成正比,也可能将讲出平行四边形每组对边平行)再使至黑板上测量的'同学讲出检验与测量的结果,从而带出平行四边形的清楚含义两组对边分别平行的四边形叫做平行四边形(板书)教师特别强调表明:只要四边形的每组对边分别平行就能够确认它的两组对边成正比,因此平行四边形的定义就是“两组对边分别平行的四边形”反馈:判断下面图形哪些是平行四边形?(投影)同学们已经研习过三角形,三角形具备平衡的特性,那么平行四边形存有什么特性呢?(1)教师演示教师拎一长方形木框,用两手夹住长方形的两个对角,向恰好相反方向扎观测两组对边存有什么变化?切为了什么图形?什么没变小?学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角(2)动手操作方式学生自己动手,把准备好的长方形框拉成平行四边形,并测量一下两组对边是否还平行根据刚才的实验、测量,鼓励学生归纳出来:平行四边形存有不稳定性(板书)(4)对比三角形具备稳定性,不难变形平行四边形与三角形相同,难变形,也就是具备不稳定性这种不稳定性在实践中有广泛的应用你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等)出具:教师边演示边说明:从平行四边形一条边上的一点到对边惹来一条垂线,这点和像距之间的线段叫作平行四边形的低这条对边叫作平行四边形的底(2)找出相应的底和高出具:(投影)观察上图中,有几条高?它们相对应的底各是哪条线段?从而使学生明晰:从b点画低,它的底就是cd;从d点画低,它的底就是bc同学们已经学过三角形画高的方法,平行四边形高的画法与其相同,都用过线外一点画已知直线的垂线的方法从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高这里高要画在平行四边形内,不要求把高画在底边的延长线上同学动手图画低:页“搞一搞”4、教学长方形、正方形和平行四边形的关系教师利用长方形侧边,带动长方形的边,并使其变为相同的平行四边形还可以把平行四边形变为长方形,比较一下长方形和平行四边形的优劣点引导学生明确:相同点是两组对边都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形比较正方形和平行四边形的相同点和不同点引导学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形还可看作是特殊的长方形这三种图形之间的关系可以用子集图去则表示(三)巩固反馈1、说道说什么叫作平行四边形?它存有什么特性?2、在下面图形中画高,并指出它的底3、在下面图形中,图画出来两条相同的高4、说一说平行四边形、长方形和正方形之间的关系(四)作业(略)课堂教学设计说明本节课就是在学生对平行四边形存有了初步认知的基础上,通过直观模拟,操作方式课堂教学等手段,给学生创建明晰的概念新课分为四个部分1、首先使同学利用前面谈过的检验平行线的方法,检查三个相同形状的平行四边形,然后再用尺子度量一下每组对边的长度,使学生从实践中辨认出平行四边形的特征,从而抽象化归纳出来平行四边形的定义2、其次通过教师的演示和学生实际操作,发现平行四边形的特性,就是具有不稳定性3、然后重新认识平行四边形的底和低,并可以图画低4、最后通过比较长方形、正方形和平行四边行的异同点,明确它们的关系:正方形是特殊的长方形,长方形、正方形都是特殊的平行四边形并用集合图表示5、在教学或练中,既必须注重直观模拟,运用比较的方法,又必须强化动手操作方式,量一量、图画一画等,使学生在实践中既赢得科学知识,又提升能力板书设计由四条线段围起的图形叫作四边形两组对边分别平行的四边形叫做平行四边形特性:不稳定性画出两条不同的高。
人教版数学三年级上册平行四边形的认识教案与反思推荐(3)篇

人教版数学三年级上册平行四边形的认识教案与反思推荐(3)篇〖人教版数学三年级上册平行四边形的认识教案与反思第【1】篇〗[教学目标]1、知识与技能直观地认识平行四边形学会从各种平面图或实物中辨认平行四边形培养初步的观察能力,空间观念和动手能力。
2、过程与方法让学生在观察、操作、合作交流中探索新知3、情感态度与价值观渗透事物之间相互联系及转化的辩证唯物主义思想。
[教学重点]引导学生直观的认识平行四边形[教学难点]引导学生通过直观感知抽象出平行四边形。
[教学关键]在教学过程中,尽可能为学生提供观察、操作的机会,丰富学生的感性认识,使学生的感性认识升华为理性认识。
[教学方法]演示法、观察法、操作法等。
[教具准备]多媒体课件、可拉动的长方形框架、钉子板,方格纸[学具准备]可拉动的长方形框架,一张长方形的纸。
[教学过程]一、复习引入游戏引入(出示课件)以“七个小矮人”中的开心果讲游戏规则,老师先发一些基本图形给学生,有三角形、圆形、长方形、正方形、平行四边形等,叫到什么图形的时候,大一部分同学就起立把图形举高让大家看,最后,只剩下平行四边形没有叫着,揭示课题:今天我们就来认识这一种新的四边形。
板书课题:平行四边形二、探索新知1、观察感知(课件展示)教学例1:课件出示生活中的实物图形,引导学生观察在观察的基础上进行小组交流讨论,这些图形都有什么共同点?交流抽象:在小组讨论的基础上进行全班交流,教师引导学生观察发现:以上的图形都含有,指出这种图形就是我们今天要认识的平行四边形,课件出示平行四边形的图和文字。
2、操作感知教学例2拉一拉:⑴你能把长方形变成平行四边形吗?你是怎样变的?捏住长方形的两个对角,向相反的方向拉动,这样就变成了一个平行四边形。
在学生独立操作、感知的基础上进行小组合作、交流:长方形有什么变化?全班交流时引导学生发现:通过拉动长方形框架使它变成了平行四边形,在拉动的过程中,四条边的长短不变,所以平行四边形的对边相等;四个角变了,原来是四个直角,拉成平行四边形后,四个角分别变成了两个锐角和两个钝角。
平行四边形的周长和面积计算

平行四边形的周长和面积计算平行四边形是一种具有特殊性质的四边形,它的对边是平行的,对角线向量相等。
在几何学中,计算平行四边形的周长和面积是基础而重要的内容。
本文将详细介绍如何计算平行四边形的周长和面积,并给出相关公式及实际应用示例。
一、周长的计算平行四边形的周长是指四条边的总长度。
要计算平行四边形的周长,需要知道其边长或者对角线长度。
1. 已知边长的情况:设平行四边形的边长分别为a和b,则周长C可通过以下公式计算:C = 2a + 2b2. 已知对角线长度的情况:设平行四边形的对角线长度分别为d1和d2,则周长C可通过以下公式计算:C = 2√(d1^2 + d2^2)二、面积的计算平行四边形的面积是指其内部所围成的平面的大小。
面积的计算可以通过多种方法实现,具体取决于已知信息。
1. 已知底边和高的情况:设平行四边形的底边长度为b,高为h,则面积A可通过以下公式计算:A = b * h2. 已知边长和夹角的情况:设平行四边形的边长为a和b,夹角为θ,则面积A可通过以下公式计算:A = a * b * sin(θ)3. 已知对角线长度的情况:设平行四边形的对角线长度为d1和d2,则面积A可通过以下公式计算:A = 1/2 * d1 * d2三、实际应用示例无论是周长还是面积的计算,平行四边形都可以在很多实际应用中发挥作用。
以下是一个示例:假设某个足球场的形状近似为一个平行四边形,已知其中一条边长为60米,另一条边长为80米。
我们首先可以计算该足球场的周长:C = 2a + 2b = 2 * 60 + 2 * 80 = 120 + 160 = 280米接下来,我们可以计算该足球场的面积,假设其高为40米:A = b * h = 80 * 40 = 3200平方米在实际应用中,计算平行四边形的周长和面积可以帮助我们更好地了解和描述各种几何形状,并应用于建筑、地理测量、设计等领域。
结论通过本文的介绍,我们了解了平行四边形的周长和面积的计算方法。
结合案例,解读小学阶段“图形与几何

结合案例,解读⼩学阶段“图形与⼏何结合案例解读⼩学阶段“图形与⼏何”的三个核⼼概念新课标在《图形与⼏何》领域的核⼼概念主要有:空间观念、⼏何直观、推理能⼒。
【空间观念】:空间观念在学术⽂献中的基本解释:所谓的空间观念,是指物体的形状、⼤⼩、⽅向、各部分之间的位置关系、变化等特征在⼈们头脑中留下的表象。
表象就是⼀个初步感知,即⼀提到某个⼏何图形学⽣就能在头脑中再现出⼏何图形的形象,能了解其某些基本特征。
2011课标中的空间观念:主要是指根据物体特征抽象出⼏何图形,根据⼏何图形想象出所描述的实际物体;想象出物体的⽅位和相互之间的位置关系;描述图形的运动和变化;依据语⾔的描述画出图形等。
《图形与⼏何》的课程内容主要有:图形的认识、图形的测量、图形的运动、图形与位置。
如何在这些内容的教学中,体现空间观念培养?⼀、如何以“认识图形”为载体,发展空间观念。
“认识图形”实际也属于“概念教学”,那么它在教学过程中不仅要遵循概念教学的规律,还需突出空间观念的培养。
(实际我们通常教的图形的认识,也在培养空间观念,我们今天提空间观念培养是希望更鲜明⼀点,更强烈⼀点。
)(⼀)充分感知,培养空间观念。
⼩学⽣思维以直观形象为主逐步向抽象过渡,他们对物体的认识在⼀定程度上主要依赖于直觉观察。
因此教师要按照⼉童认识事物的规律,运⽤感知规律使学⽣获得空间与图形的鲜明表象,积累丰富的感性经验,培养空间观念。
《标准》中较多地使⽤这样的表述,这实际上明确了认识图形的过程和⽅式。
通过观察、操作,认识……结合实例(⽣活情境)了解……通过实物和具体模型,了解…(1)视觉与思维结合。
⽆论哪⼀种图形的基本认识,⼩学阶段都依赖实物、模型,提供给学⽣充分观察,交流、体验的机会。
长⽅体、正⽅体、长⽅形、正⽅形、平⾏四边形、三⾓形、梯形、圆的认识都是从具体物体上剥离后抽象形成的,都从具体⾛向抽象。
线段、射线、直线也不例外。
不过射线、直线在⽣活中找不到,从抽象到抽象⼩学⽣很难接受,我们⽼师创造出从地球射向⽉球的⼀束激光,有⽆穷的能量,外加没有任何阻挡,创造了所谓的“射线”实体,让学⽣通过视觉和合理想象,“直观”感知射线。
平行四边形专题详解

平行四边形专题详解18.1 平行四边形知识框架{基础知识点{ 平行四边形的定义平行四边形的性质平行四边形的判定定理三角形中位线定理典型题型{利用平行线的性质求角度平行线间距离的运用平行四边形的证明难点题型{平行四边形间距离的应用平行四边形有关的计算平行四边形的有关证明一、基础知识点知识点1 平行四边形的定义1)平行四边形的定义:两组对边分别平行的四边形。
平行四边形用“▱”表示,平行四边形ABCD 表示为“▱ABCD ”,读作“平行四边形ABCD ”注:只要满足对边平行的四边形都是平行四边形。
矩形、菱形、正方形都是特殊的平行四边形 2)平行四边形的高:一条边上任取一点作另一边的垂线,该垂线的长度称作平行四边形在该边上的高。
3)两条平行线之间的距离:一条直线上任一点到另一直线的距离。
平行线间距离处处相等。
例1.如图,AB ∥EG ,EF ∥BC ,AC ∥FG ,A ,B ,C 分别在EF ,EG 上,则图中有 个平行四边形,可分别记作 。
例2.如图,▱ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别为E ,F .求证:BE=DF 。
例3.如图,a∥b,AB∥CD,CE⊥b,FG⊥b,点E,G为垂足,则下列说法错误的是()A.AB=CDB.CE=FGC.直线a,b之间的距离是线段AB的长D.直线a,b之间的距离是线段CE的长知识点2 平行四边形的性质平行四边形的性质,主要讨论:边、角、对角线,有时还会涉及对称性。
如下图,四边形ABCD是平行四边形:1)性质1(边):①对边相等;②,即:AB=CD,AD=BC;AB∥CD,AD∥BC2)性质2(角):对角相等,即:∠BAD=∠BCD,∠ABC=∠ADC3)性质3(对角线):对角线相互平分,即:AO=OC,BO=OD注:①平行四边形仅对角线相互平分,对角线不相等,即AC≠BD(矩形的对角线才相等);②平行四边形对角相等,但对角线不平分角,即∠DAO≠∠BAO(菱形对角线才平分角)4)性质4(对称性):平行四边形不是轴对称图形,是中心对称图形。
平行四边形10道经典例题
平行四边形经典例题一、已知平行四边形的性质求角度例题:在平行四边形ABCD 中,∠A 的度数比∠B 的度数小40°,求∠A 和∠B 的度数。
解析:因为平行四边形的邻角互补,即∠A + ∠B = 180°。
又已知∠A 比∠B 小40°,即∠B - ∠A = 40°。
联立这两个方程可得:∠A = 70°,∠B = 110°。
二、利用平行四边形的性质求边长例题:平行四边形ABCD 的周长为40,AB = 6,求BC 的长。
解析:平行四边形的对边相等,所以AB = CD = 6,BC = AD。
周长为40,则2(AB + BC) = 40,即2×(6 + BC) = 40,解得BC = 14。
三、判断四边形是否为平行四边形例题:已知四边形ABCD 中,AB∠CD,AB = CD,判断四边形ABCD 是否为平行四边形。
解析:一组对边平行且相等的四边形是平行四边形,所以四边形ABCD 是平行四边形。
四、根据平行四边形的性质求线段长度例题:在平行四边形ABCD 中,AC、BD 是对角线,AC = 10,BD = 8,且AC 与BD 的夹角为60°,求AB 的长度。
解析:过 A 作AE∠BD 于E。
设O 为AC 与BD 的交点,则AO = 5,BO = 4。
在直角三角形AOE 中,因为∠AOE = 60°,所以OE = AO×cos60° = 5×1/2 = 2.5,AE = AO×sin60° = 5×√3/2。
在直角三角形ABE 中,根据勾股定理可得AB = √(AE² + BE²) = √[(5×√3/2)²+(4 + 2.5)²]。
五、利用平行四边形的性质证明线段相等例题:在平行四边形ABCD 中,E、F 分别是AB、CD 的中点,连接DE、BF。
第十七讲 认识底和高(五年级)
第十七讲认识底和高(五年级)教学目标:1.结合“限高”的情境体会高的意义,并通过动手操作,认识梯形、平行四边形与三角形的底和高。
2.会用三角尺画出平行四边形、三角形与梯形的高。
3.能在方格纸上画出给定底和高长度的平行四边形、三角形与梯形。
重难点重点:会用三角尺画出平行四边形、三角形与梯形的高。
难点:理解底和高的对应关系。
教学过程:一、创境导入,设疑激趣1、在我们日常生活中,无论是马路上,还是桥洞、桥上,甚至是小区的门口,我们常常会看到这样的一些标志。
你知道这些标志中数字的含义吗?对,这就是“限高”。
今天,我们就一起来认识底和高。
板书课题:认识底和高2、如果把桥洞可能成一个梯形,你知道“限高4..5米”是从哪到哪的距离吗?你认为“限高”指的是哪一条线段的长度呢?二、新课探究。
(一)梯形、平行四边形,三角形的底和高。
1、教师提问:你猜测一下(上下的高度)到底是不是这样的呢?让我们一起来验证一下吧!2、过程讲解(1)理解限高的含意①观图,抽象出平面图形。
桥洞的形状可以看成是梯形,如下图所示。
②指出限高指的是哪一条线段。
(2)认识梯形的底和高①初步认识梯形的高。
上图中的限高线就是梯形的高。
②进一步认识梯形的底和高。
梯形中平行的两条边为梯形的上底和下底,上底与下底间的垂线段为梯形的高,不平行的对边为梯形的腰。
如下图所示。
③让学生从上底向下底画垂线段,看一看能画多少条。
让学生发现:腰 腰梯形的高有无数条。
(3)认识平行四边形的底和高从平行四边形的顶点(或一条边上的任意一点)向它的对边画垂直线段,这条垂直线段就是平行四边形的高,这条对边就是这条高所对应的底,如下图所示。
发现:平行四边形有无数条高。
(4)认识三角形的底和高三角形有三条边,三条边都可以作底边,每条边与其所对的顶点到这条边的垂直线段就是三角形的底和高。
如下图所示。
发现:三角形有三组对应的底和高。
3、归纳总结1.梯形的底和高:梯形中平行的两条边为上底和下底;上底和下底之间的垂直线段就是梯形的高。
平行四边形知识点及同步练习、含答案3
平行四边形的特征【学习目标】1.探索并掌握平行四边形的特征.2.灵活运用平行四边形的特征解决问题.3.平行四边形一般转化成三角形的问题来解决.【基础知识概述】 1.平行四边形:(1)平行四边形的定义:两组对边分别平行的四边形是平行四边形. (2)平行四边形的表示:平行四边形用符号“”表示. 平行四边形ABCD 记作,读作平行四边形ABCD . (3)平行四边形定义的作用:①由定义知平行四边形的两组对边分别平行.②由定义可以得出只要四边形中两组对边分别平行,那么这个四边形是平行四边形. 2.平行四边形的特征:(1)平行四边形的邻角互补,对角相等. (2)平行四边形的对边平行且相等. (3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形,对角线的交点为对称中心.(5)若一条直线过平行四边形两对角线的交点,则这直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积.注意:①特征:都是通过连对角线把四边形问题转化成三角形问题来处理的,即通过平移或旋转,利用重合来证明的.②夹在两条平行线间的平行线段是指端点分别在两条平行线上的平行线段. ③互相平分指两条线段有公共的中点. 3.平行四边形特征的作用:可以用来证明线段相等、角相等及两直线平行等.如图12-1-1,有如下结论:⎪⎪⎩⎪⎪⎨⎧==∠=∠∠=∠==(对角线互相平分),(对角相等),(对边相等),(对边平行),是平行四边形,则如果四边形DO BO CO AO D B C A ADBC CD AB AD//BC CD //AB ABCD 4.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.(2)两平行线间的距离处处相等.注意:距离是指垂线段的长度,是大于0的.①平行线的位置确定后,它们的距离是定值,不随垂线段的位置改变.②平行线间的距离处处相等,因此在作平行四边形的高时,可根据需要灵活选择位置.5.平行四边形的面积:(1)如图12-1-2①,.也就是(a是平行四边形任何一边长,h必须是a边与其对边的距离).(2)同底(等底)同高(等高)的平行四边形面积相等.如图12-1-2②,有公共边BC,则.注意:这里的底是相对而言的,也就是高所在的边,平行四边形任意一边都可以作底,底确定后,高也就确定了.【例题精讲】例1如图12-1-3,已知的对角线相交于点O,过O作直线交AB于E,交CD 于F,可得OE=OF.为什么?分析:要得到OE=OF,可先证得它们所在△AEO与△CFO(△BEO与△DFO)重合.解:在中,∵AB∥CD,OD=OB,∴∠1=∠2,∠3=∠4,∴将△BOE绕点O旋转180度后与△DOF重合.∴OE=OF.注意:把线段与角归结为平行四边形的边,对角线或对角,利用平行四边形的特征证明.例2(1)在中,∠A︰∠B=2︰3,求各角的度数.(2)已知的周长为28cm,AB︰BC=3︰4,求它的各边的长.分析:(1)在平行四边形中,邻角是互补的,而对角是相等的,所以∠A与∠B必是邻角,其和为180°,可据此列式求出角度.(2)平行四边形的对边相等,所以周长为邻边之和的2倍,可以据此列式求出各边长.解:(1)由于∠A、∠B是平行四边形的两个邻角,所以∠A+∠B=180°.又因为∠A︰∠B=2︰3,不妨可设∠A=2k,∠B=3k,那么2k+3k=180°,可以解得k=36°,则∠A=∠C=72°,∠B=∠D=108°.(2)由于在中,AB=CD,BC=AD.所以AB+BC+CD+AD=28,即AB+BC =14.由题意得AB︰BC=3︰4,因此可设AB=3k,BC=4k,那么有3k+4k=14,解得k =2,则AB=CD=6cm,BC=AD=8cm.例3如图12-1-4,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB 的周长比△BOC的周长长8cm,求这个四边形各边长.分析:由平行四边形对边相等知AB+BC=平行四边形周长的一半=30cm,又由△AOB 的周长比△BOC的周长长8 cm知AB—BC=8cm,由此两式,可得各边长.解:∵四边形ABCD为平行四边形,∴AB=CD,AD=CB,AO=CO.∵AB+CD+AD+CB=60,AO+AB+OB-(OB+BC+OC)=8,∴AB十BC=30,AB-BC=8,∴AB=CD=19,BC=AD=11.答:这个四边形各边长分别为19 cm,11 cm,19 cm,11 cm.注意:①平行四边形的邻边之和等于平行四边形周长的一半.②平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.思考:如图12-1-4,如果△AOB与△AOD的周长之差为8,而AB∶AD=3∶2,那么的周长为多少?提示:周长为80.设AB=3x,则AD=2x,依题意有3x-2x=8,∴x=8,∴AB=3x=3×8=24,AD=2x=2×8=16.∴周长=2(24+16)=80.例4 如图12-1-5,在中,∠B=120°,DE⊥AB,垂足为E,DF⊥BC,垂足为F.求∠ADE,∠EDF,∠FDC的度数.分析:由平行四边形对角相等、邻角互补得∠A=∠C,∠A+∠B=180°,再由垂直得到角为90°即可.解:在中,∵∠A=∠C,AD∥BC,∴∠A+∠B=180°.∴∠A=180°-∠B=60°.∴∠C=60°.∵DE⊥AB,DF⊥BC,∴∠ADE=∠FDC=90°-∠A=90°-60°=30°.注意:在平行四边形中求角的度数时,一般运用平行四边形的特征,即对角相等、邻角互补来进行求解.【中考考点】会利用平行四边形证明角相等,线段相等及直线平行.【命题方向】多以中档题型出现,填空、选择、计算、证明等各种形式都会涉及.【常见错误分析】例7如图12-1-7,中,AC和BD交于O,OE⊥AD于E,OF⊥BC于F,则OE=OF.为什么?错解:∵,∴OA=OC,∵OE⊥AD,OF⊥BC,∴∠AOE=∠COF.又∠1=∠2,∴△AOE旋转180°后与△COF重合,∴OE=OF.误区分析:错误出于∠AOE=∠COF这一步骤,原因在于默认了E,O,F三点共线,而已知条件中并没有这个结论,其实E,O,F三点共线在证题过程中应该加以证明,否则就犯了推理没有根据,理由不充足的逻辑错误.正解:解法一:∵,∴AD∥BC,∴∠3=∠4.又OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.解法二:∵AD∥BC,OE⊥AD∴OE⊥BC.又OF⊥BC,∴直线OE与OF重合,即E,O,F三点共线,∴∠1=∠2.又∵OA=OC,∠AEO=∠CFO=90°,∴△AOE旋转180°后与△COF重合,∴OE=OF.此命题可推广如下:已知中,AC 和BD 交于O ,过点O 作直线EF 交AD 于F ,交BC 于F ,则OE =OF .求解(略).这个推广后的命题,是平行四边形中一个十分重要的基本命题,利用它的结果可以证明很多问题成立.【学习方法指导】1.学习平行四边形的特征时,按照对角、对边、对角线的顺序去理解,便于记忆和应用.2.本节主要内容是平行四边形的定义及特征,并且要重点理解两条平行线间的距离的概念.【同步达纲练习】 一、填空题1.若一个平行四边形相邻的两内角之比为2︰3,则此平行四边形四个内角的度数分别为____________.2.在中,周长为28,两邻边之比为3︰4,则各边长为____________. 3.在中,∠A =30°,AB =7 cm ,AD =6 cm ,则=____________. 4.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为____________.5.中,周长为20cm ,对角线AC 交BD 于点O ,△OAB 比△OBC 的周长多4,则边AB =____________,BC =____________.6.平行四边形的边长等于5和7,这个平行四边形锐角的平分线把长边分成两条线段长各是____________.7.已知等腰△ABC 的一腰AB =9 cm ,过底边上任一点P 作两腰平行线分别交AB 于M ,交AC 于N ,则AN 十PN =____________.8.平行四边形两邻边分别是4和6,其中一边上的高是3,则平行四边形的面积是____________.9.平行四边形邻边长是 4 cm 和8cm ,一边上的高是 5 cm ,则另一边上的高是____________.10.如图12-1-8,中,E 是AD 的中点,BD 与EC 相交于F ,若2S EFD =∆,则BFC S ∆=____________.11.已知P 为内一点,,则PCD PAB S S ∆∆+=____________.12.已知的对角线相交于点O ,它的周长为10 cm ,△BCO 的周长比△AOB 的周长多2cm ,则AB =____________.二、解答题13.已知,如图12-1-9,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF ∥AC交BC于F,则BE=FC,为什么?14.如图12-1-10,中,E,F是对角线BD上两点,且BE=FD,连结AE,FC,则AE=FC,试说明理由.15.如图12-1-11,中,对角线AC长为10 cm,∠CAB=30°,AB长为6 cm,求的面积.16.如图12-1-12,在等边△ABC中,P为△ABC内一点,PD∥AB,PE∥BC,PF∥AC,D,E,F分别在AC,AB和BC上,试说明PD+PF+PE=AB.17.从平行四边形的一个锐角顶点作两条高,如果这两条高的夹角是135°,求此平行四边形的各角的度数.三、思考题18.如图12-1-13,EF 过对角线的交点O ,交AD 于E ,交BC 于F ,若AB =4,BC =5,OE =1.5,求四边形EFCD 的周长.19.以平行四边形ABCD 两邻边BC 、CD 为边向外作正△BCP 和正△CDQ ,则△APQ 为正三角形,请说明理由.参考答案【同步达纲练习】 一、1.72°,108°,72°,108° 2.6,8,6,83.2cm 21 4.10<x<22 5.7cm ,3 cm 6.5,2 7.9 cm 8.12或189.cm 2510.8 11.50 12.1.5cm 二、13.提示:由△BED 是等腰三角形得到BE =ED ,由四边形DEFC 是平行四边形得到ED =FC 即可.14.提示:通过△ABE 与△DCF 重合可以得出.15.2cm 30.16.延长FP 交AB 于G ,延长DP 交BC 于H ,四边形AGPD ,EBHD 为平行四边形,PD =AG ,PH =BE ,△GEP ,△PHF 为等边三角形,PE =EG ,PH =PF =BE ,PD +PF +PE =AG +GE +EB =AB .17.45°,135°,45°,135°. 三、18.OE =OF =1.5,AE =CF ,DE =BF ,ED +CF =BF +FC =5,CD =AB =4,四边形EFCD 的周长为2×1.5+5+4=12.19.提示:证明△ABP 、△QDA 、△QCP 三个三角形重合,可得出AP =AQ =PQ 即可.。
平行四边形的底和高
平行四边形的四条边都可以做为边.
高是以为那条边为底而定的.
(高即是两平行线的最短距离.)
高可以这样做:
1.随便以一条边为底边, 过底边的一个边点作边的垂线,交另一边.
交点与垂点的距离就是以这条边为底的高.
2.画一条直线交且垂直两平行线,两个交点的距离就为高.
不同的平行四边形,它得出的高是不一样的.
同一个平行四边形,以不同的边为底,它的高也不一样.
平行四边形有两组底和高,底就是平行四边形的一条边,而该底对应的边就是与这条边垂直并与夹在两平行边之间的线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的底和高
教学内容:课本第63页
教学目标:1、认识并掌握平行四边形底和高的概念。
2、会画出平行四边形底上的高。
教学重点:掌握平行四边形底和高的概念。
教学难点:会画出平行四边形底上的高。
教学过程:
一、复习引入
1.什么是平行四边形?
生:……
2.平行四边形有哪些特征?
生:……
3.你还知道哪些和平行四边形相关的知识?(底和高)
引出新课
板书:平行四边形的底和高
二、探究
1.认识平行四边形的底和高
(1)生猜测一下平行四边形的底和高。
交流想法
(2)学生在作业纸上自己试画平行四边形的高。
教师指导并板书画高的方法。
师:通过画高,你有什么新的发现?
板书:从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
师:平行四边形有几个底呢?
学生讨论:
得出:平行四边形有4条底,每一条边都可以作为底。
师:请你在平行四边形上画高,看谁画的多?
你怎么不画了?
得出:同一条底上有无数条高。
追问:你能分析一下平行四边形为什么可以画无数条高吗?
观察你所画的高,你有什么发现吗?
预设:对边之间的高长度相等,对边之间的高互相平行。
师:平行四边形有几种高?(2种)
(3)认识外高。
投影出示:画平行四边形外边的高,让学生识别。
师:这样画是不是平行四边形的高?为什么?
得出:平行四边形的高有的可以画在平行四边形的里边,有的可以画在平行四边形的外边,不管画在哪儿都要注意底和高的对应关系。
(4)我们可以怎样画平行四边形的高呢?
小组内交流,然后汇报。
高
底
三.画高练习
1.试一试:画出平行四边形底上的高
底
底底
学生完成后实物投影展示。
师:在画高的过程中,你有什么想提醒大家注意的吗?
或者是遇到什么困难需要大家帮助解决的?
学生分享心得,解答疑难。
2.过点B画底CD的高
A D
B C 底
高
3.过点A画平行四边形ABCD的高
4.写出下列平行四边形一组底和高长度
四.全课总结:今天你有什么收获?五.提高练习:
找出平行四边形中相对应的底和高。