动力学模型—板块模型
高中物理板块模型归纳

高中物理板块模型归纳高中物理板块模型归纳是指将高中物理课程中所涉及的知识点进行分类、总结和归纳,形成一种系统化的知识结构。
这种模型可以帮助学生更好地理解和掌握物理知识,提高学习效率。
下面详细介绍高中物理板块模型。
一、力学1. 运动学(1)描述运动的数学工具:位移、速度、加速度、角速度、周期等。
(2)直线运动规律:匀速直线运动、匀加速直线运动、匀减速直线运动、匀速圆周运动。
(3)曲线运动规律:平抛运动、斜抛运动、圆周运动。
2. 动力学(1)牛顿运动定律:惯性定律、动力定律、作用与反作用定律。
(2)动量定理:动量的守恒、动量的变化。
(3)能量守恒定律:动能、势能、机械能、内能。
3. 机械振动与机械波(1)简谐振动:正弦、余弦、螺旋线。
(2)非简谐振动:阻尼振动、受迫振动。
(3)机械波:横波、纵波、波的干涉、波的衍射、波的传播。
二、热学1. 分子动理论(1)分子运动的基本规律:布朗运动、分子碰撞、分子速率分布。
(2)气体的状态方程:理想气体状态方程、范德瓦尔斯方程。
2. 热力学(1)热力学第一定律:内能、热量、功。
(2)热力学第二定律:熵、热力学第二定律的微观解释。
3. 物态变化(1)相变:固态、液态、气态、等离子态。
(2)相变规律:熔化、凝固、汽化、液化、升华、凝华。
三、电学1. 电磁学(1)静电学:库仑定律、电场、电势、电势差、电容、电感。
(2)稳恒电流:欧姆定律、电阻、电流、电功率、电解质。
(3)磁场:毕奥-萨伐尔定律、安培环路定律、洛伦兹力、磁感应强度、磁通量、磁介质。
2. 电路与电器(1)电路:串联电路、并联电路、混联电路、电路图。
(2)电器:电阻、电容、电感、二极管、晶体管、运算放大器。
3. 电磁波(1)电磁波的产生:麦克斯韦方程组、赫兹实验。
(2)电磁波的传播:波动方程、折射、反射、衍射。
四、光学1. 几何光学(1)光线、光的反射、光的折射、光的速度。
(2)透镜:凸透镜、凹透镜、眼镜、相机、投影仪。
初中物理板块模型总结归纳

初中物理板块模型总结归纳物理作为一门自然科学,是初中阶段学习的必修学科之一。
在学习物理的过程中,板块模型是一个重要的理论工具,它帮助我们更好地理解和掌握物理知识。
本文将对初中物理板块模型进行总结和归纳。
一、质点模型质点模型是物理学最简单的模型,它忽略了物体的大小和形状,只关注其质量和位置。
在质点模型中,物体可以看作一个点,其运动遵循牛顿第二定律。
利用质点模型,可以研究物体的运动规律,计算力的大小和方向等。
二、刚体模型刚体模型是指将物体看作一个不变形的整体。
在刚体模型中,物体的内部结构和形状不变,只考虑整体的平动和转动。
应用刚体模型,可以分析物体的受力情况和力的平衡条件,推导转动定律,解决刚体平衡、静力学和动力学问题等。
三、弹簧模型弹簧模型是指利用弹簧的力学特性来描述物体的弹性形变和回复力。
在弹簧模型中,弹簧可以看作一个理想弹簧,它的弹性力与形变量成正比。
应用弹簧模型,可以分析弹簧的弹性形变特性,研究弹簧和其他物体之间的力学关系,解决与弹簧有关的问题。
四、动力学模型动力学模型是指描述物体运动规律的模型,它基于牛顿运动定律。
在动力学模型中,将物体看作质点或刚体,通过建立物体的运动方程来研究物体的运动规律。
应用动力学模型,可以解决物体的运动问题,如自由落体、斜抛运动、圆周运动等。
五、电路模型电路模型是指描述电流流动和电路元件之间相互作用关系的模型。
在电路模型中,电源、导线和电器元件构成电路,根据欧姆定律和基尔霍夫定律进行电路分析。
应用电路模型,可以解决电流、电压和电阻等问题,研究电路的工作原理和性质。
六、光学模型光学模型是指描述光传播和光学现象的模型。
在光学模型中,光线可以用直线来表示,光的传播满足折射、反射和干涉等规律。
应用光学模型,可以解释光的传播方式和光学现象,如反射定律、折射定律和光的色散等。
七、量子模型量子模型是指描述微观世界粒子和能量的行为的模型。
在量子模型中,物质具有粒子性和波动性,能量以量子的形式存在。
专题讲座1 动力学观点分析传送带和“板块”模型

专题讲座1动力学观点分析传送带和“板块”模型考点一动力学中的传送带模型水平传送带【典例1】(多选)如图所示,水平传送带以速度v1匀速运动,通过定滑轮用不可伸长的轻绳将物体P,Q相连,t=0时P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时P离开传送带。
不计滑轮质量和摩擦,绳足够长。
物体P的速度随时间变化的图像可能是()答案:BC解析:若v2<v1,且m Q g<μm P g,则μm P g-m Q g=(m Q+m P)a1,当P加速运动至速度达到v1后,与皮带一起匀速运动,直到离开传送带(也可能在加速过程中离开传送带),故B正确;若v2<v1,且m Q g>μm P g,则P先匀减速到零,再反向加速到离开传送带(也可能在减速过程中离开传送带),加速度保持不变,图像斜率不变,若v2>v1,且m Q g<μm P g,则P先匀减速至v1,然后与传送带一起匀速运动,直到离开传送带(也可能在减速过程中离开传送带),若v2>v1,且m Q g>μm P g,满足m Q g+μm P g=(m Q+m P)a2,中途速度减至v1,以后满足m Q g-μm P g=(m Q+m P)a3,加速度减小,图像斜率绝对值变小,物体先减速到零再以相同的加速度返回直到离开传送带(也可能在减速过程中离开传送带),故C正确,A、D错误。
倾斜传送带【典例2】(易错题)如图所示,与水平面夹角θ=30°的传送带正以v= 2 m/s 的速度沿顺时针方向匀速运行,A、B两端相距l=10 m。
现每隔1 s把质量m=1 kg的工件(视为质点)轻放在传送带A端,在传送,g取10 m/s2,求:带的带动下,工件向上运动,工件与传送带间的动摩擦因数μ=√32(1)两个工件间的最小距离;(2)传送带满载时与空载时相比,电机对传送带增加的牵引力。
答案:(1)1.2 m(2)32.5 N解析:(1)对工件受力分析,根据牛顿第二定律得μmg cos θ-mg sin θ=ma工件放上传送带后的加速度大小a=μmgcosθ-mgsinθ=2.5 m/s2m=0.8 s设经过t1时间工件与传送带速度相等,则加速的时间为t1=vat1=0.8 m,再过t2=0.2 s,放下一个工件,此时该工件距前一个工件的距离最在此时间内运动的距离为x1=v2小,有x=x1+vt2代入数据解得x=1.2 m。
【动力学中的“板块”和“传送带”模型】规律总结

考点二 传送带模型
多维探究
第 1 维度:水平传送带问题
1.情景特点分析
项目
图示
滑块可能的运动情况
情景 1
(1)可能ቤተ መጻሕፍቲ ባይዱ直加速 (2)可能先加速后匀速
情景 2
(1)v0>v 时,可能一直减速,也可能先减速再匀速 (2)v0<v 时,可能一直加速,也可能先加速再匀速
项目 情景 3
图示
滑块可能的运动情况 (1)传送带较短时,滑块一直减速达到左端 (2)传送带较长时,滑块还要被传送带传回右端.其中 v0 >v 返回时速度为 v,当 v0<v 返回时速度为 v0
2.思路方法 解题的关键在于分析清楚物体与传送带的相对运动情况,从而确定物体所受摩擦力 的大小和方向.当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变.
【总结提升】 解答传送带问题应注意的事项 (1)比较物块和传送带的初速度情况,分析物块所受摩擦力的大小和方向,其主要目 的是得到物块的加速度. (2)关注速度相等这个特殊时刻,水平传送带中两者一块匀速运动,而倾斜传送带需 判断 μ 与 tan θ 的关系才能决定物块以后的运动. (3)得出运动过程中两者相对位移情况,以后在求解摩擦力做功时有很大作用.
(2) 速度关系 滑块和滑板之间发生相对运动时,分析速度关系,从而确定滑块受到的摩擦力的方 向.应注意当滑块和滑板的速度相同时,摩擦力会发生突变的情况. (3) 位移关系 滑块和滑板叠放在一起运动时,应仔细分析滑块和滑板的运动过程,认清对地位移 和相对位移之间的关系.这些关系就是解题过程中列方程所必需的关系,各种关系找到 了,自然也就容易列出所需要的方程了.
考点一 “滑块—滑板”模型
师生互动
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2023年高考物理二轮复习核心素养微专题(三)模型建构——板块模型

核心素养微专题(三) 模型建构——板块模型【模型解读】滑块和木板组成相互作用的系统,在摩擦力的作用下发生相对滑动,称为板块模型。
板块模型是高中动力学部分中的一类重要模型,也是高考考查的重点,能从多方面体现物理学科素养。
此类模型的一个典型特征是:滑块、木板间通过摩擦力作用使物体的运动状态发生变化。
常见类型如下:类型图示规律分析B 带动A木板B 带动物块A ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B =x A +LA 带动B物块A 带动木板B ,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时,二者速度相等,则位移关系为x B +L =x AF 作用在A 上力F 作用在物块A 上,先考虑木板B 与地面是否有摩擦,然后利用整体受力分析和隔离B 受力分析,分析相关临界情况 F 作用在B 上力F 作用在木板B 上,先考虑B 与地面是否有摩擦,然后利用整体受力分析和隔离B 受力分析,分析相关临界情况【模型1】 物块、木板上均未施加力【典例1】(2022·山东等级考)如图所示,“L ”形平板B 静置在地面上,小物块A 处于平板B 上的O'点,O'点左侧粗糙,右侧光滑。
用不可伸长的轻绳将质量为M 的小球悬挂在O'点正上方的O 点,轻绳处于水平拉直状态。
将小球由静止释放,下摆至最低点与小物块A 发生碰撞,碰后小球速度方向与碰前方向相同,开始做简谐运动(要求摆角小于5°),A 以速度v 0沿平板滑动直至与B 右侧挡板发生弹性碰撞。
一段时间后,A 返回到O 点的正下方时,相对于地面的速度减为零,此时小球恰好第一次上升到最高点。
已知A 的质量m A =0.1 kg,B 的质量m B =0.3 kg,A 与B 的动摩擦因数μ1=0.4,B 与地面间的动摩擦因数μ2=0.225,v 0=4 m/s,取重力加速度g = 10 m/s 2。
牛顿第二定律的应用——板块、皮带模型

假设法
整体法
假设两物体间无相对滑动,先用
对滑块和木板进
将滑块和木板看
整体法算出一起运动的加速度,
行隔离分析,弄
成一个整体,对
再用隔离法算出其中一个物体“
具体步骤 清每个物体的受
整体进行受力分
所需要”的摩擦力Ff;比较Ff与最
体情况与运动
析和运动过程
大静摩擦力Ffm的关系,若Ff>Ffm,
过程
分析
则发生相对滑动
D.行李在传送带上的时间一定大于 L
v
D
)
类型(二)
情境
倾斜传送带问题
滑块可能的运动情况
情境1:上传
>
即 >
(1)可能一直加速 还未共速,传送带较短
(2)可能先加速后匀速
mg
情境2:下传(v0=0)
FN
mgsin + =
FN
(1)可能一直加速
类型(一) 水平传送带问题
情境
情境1:轻放
Ff =μmg=ma
a=μg
滑块可能的运动情况
(1)可能一直加速 = >
(2)可能先加速后匀速 = <
情境2:同向
Ff
Ff
(1)v0>v时,可能一直减速,也可能先减速再匀速
(2)v0<v时,可能一直加速,也可能先加速再匀速
当f=fm=μmAg时相对滑动
f
aBm=
μg
a
=
Am
f
F
第四讲 牛顿第二定律的应用--板块模型、皮带模型
一、板块模型
1.水平面光滑:
F甲=(mA+mB)am = ( + )
牛顿第二定律的综合应用——动力学中的“板块”和“传送带”模型

动力学中的“板块”和“传送带”模型一.“滑块—滑板”模型1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。
2. 两种位移关系①物体的位移:各个物体对地的位移,即物体的实际位移。
②相对位移:一物体相对另一的物体的位移。
两种情况。
(1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=∆相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=∆相 这是计算摩擦热的主要依据,.相滑x f Q ∆=3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。
(2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。
二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。
(3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。
相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。
(4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。
例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ∆相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f<f max . 解析:(1)B 和木板共速前,AB 加速度分别为a A 、a B ,木板加速度为a 1.经t 1木板和B 共速. 对A 向左减速,加速度大小:../5,211向右解得s m a a m g m A A A ==μ 对B 向右减速,加速度大小:.m /s 5,21==B B B B a a m g m 解得μ对木板,由于g m m m g m g B A A B )(m 211++>-μμμ,则合外力向右,向右加速运动../5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμB 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2v v x 1Bo B =+= A 的速度大小v A =v B =1m/s.(2)设B 和木板共速后相对静止,对B 和木板:./m 35,)m 22212s a a m m g m g m m B A B A =+=+++解得)((μμ向右减速运动. 对B 有,木板和A相对静止.假设正确,设再经t g,m μN 320a m f 2B 12B B <== A 全程加速度不变.对B 和木板:,222t a v v B -=对A 有:,222t a v v A +-=解得t 2=0.3s.v 2=0.5m/s.0.225m,m 409t 2v v x 22B /B ==+=0.875m.)t (t a 21)t (t v x 221A 210A =+-+= 故 1.9m.x x x L /B B A =++= 练习1. (水平面光滑的“滑块—滑板”模)如图所示,质量M =8 kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8 N .当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m =2 kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t =1.5 s 的时间,物体相对地面的位移为(g 取10 m/s 2)( )A .1 mB .2.1 mC .2.25 mD .3.1 m解析:(1)刚放上物体时,对物体:.2m/s解得a ,ma μmg 211== 对小车:,/5.0,222s m a Ma mg F ==-解得μv 0=1.5m/s.设经t 1二者等速v 1.则2m/s.1s,v 解得t ,t a v t a v 11120111==+==此时物体运动:1m.t v 21x 111==故A 错.(2)共速后,设二者相对静止,整体:.0.8m/s,解得a m)a (M F 233=+= 对物体:μmg,<1.6N =ma =f 3假设正确.再经0.5s 物体运动:.1.2,1.12121223212m x x x m t a t v x =+==+=故故B 对CD 错.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )解析:(1)物体刚放上木板,对木板:.a ,mg g )1121向左,减速运动(Ma M m =++μμ (2)共速后若二者相对静止:错,,则(BC a a Ma g M 2121,)m >=+μ 由于地面有摩擦,共速后木板做减速运动,故D 错。
板块模型-----牛顿运动定律与运动学的综合运用

板块模型-----牛顿运动定律与运动学的综合运用板块模型-----牛顿运动定律与运动学的综合运用一.涉及知识点:动力学,如受力分析,摩擦力(是静摩擦力还是滑动摩擦力,大小,方向)、牛顿第二定律,运动学规律公式。
二.与传送带模式的解题思路相似。
三.二者速度相等时,摩擦力的突变(大小,方向,f滑与fmax转变),从而受力情况变,加速度变,运动情况变。
四.板块模型中的功能关系,动量问题1.产生的内能:Q=f滑·X相对2.摩擦力做功:Q=f·X对地3.动能定理,能量守恒4.动量定理,动量守恒5.用隔离还是整体来分析问题例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)1秒末滑块和滑板的速度分别是多少?(4)1秒末滑块和滑板的位移分别是多少?相对位移是多少?(5)2秒末滑块和滑板的速度分别是多少?(6)2秒末滑块和滑板的位移分别是多少?相对位移是多少?(7)2秒后滑块和滑板将怎样运动?例2:如图所示,一质量为m=3kg、初速度为5m/s的小滑块(可视为质点),向右滑上一质量为M=2kg的静止在水平面上足够长的滑板,m、M间动摩擦因数为μ1=0.2,滑板与水平面间的动摩擦因数为μ2=0.1,(设最大静摩擦力等于滑动摩擦力)。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止?(4)滑块和滑板相对静止时,各自的位移是多少?(5)滑块和滑板相对静止时,滑块距离滑板的左端有多远?(6)5秒钟后,滑块和滑板的位移各是多少?1. 如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐减小,直到做匀速运动C .木板向右运动,速度逐渐减小,直到做匀速运动D .木板和物块的速度都逐渐减小,直到为零2、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4动力学四大模型之一————物块物块与物块(或木板)组合在一起的连接体问题,是历年高考重点考查的内容之一,其中用整体法和隔离法处理连接体问题,牛顿运动定律与静力学、运动学的综合问题,非匀变速直线运动中加速度和速度变化的分析判断等都是高考热点。
|平衡状态的物块与物块[例1]质量均为m的a、b两木块叠放在水平面上,如图所示,a受到斜向上与水平面成θ角的力F作用,b受到斜向下与水平面成θ角等大的力F作用,两力在同一竖直平面内,此时两木块保持静止,则()A.b对a的支持力一定等于mgB.水平面对b的支持力可能大于2mgC.a、b之间一定存在静摩擦力D.b与水平面之间可能存在静摩擦力[答案] C[跟进训练]1.(多选)完全相同的两物体P、Q质量均为m,叠放在一起置于水平面上,如图所示。
现用两根等长的细线系在两物体上,在细线的结点处施加一水平拉力F,两物体始终保持静止状态,则下列说法不正确的是(重力加速度为g)()A .物体P 受到细线的拉力大小为F2B .两物体间的摩擦力大小为F2C .物体Q 对地面的压力大小为2mgD .地面对Q 的摩擦力为F2解析:选AD|匀变速运动的物块与物块[例2]如图所示,木块A、B、C叠放于水平面上,它们的质量分别为m、2m、3m,A、B间的动摩擦因数为μ1,B、C间的动摩擦因数为μ2,C与地面间的动摩擦因数为μ3,现用水平向右的恒力F作用在C上,使A、B、C保持相对静止一起加速运动。
求B受到A、C的摩擦力分别为多大。
[答案]F6-μ3mgF2-3μ3mg2.(2017·哈尔滨师大附中等三校联考)如图所示,物块A 放在木板B 上,A 、B 的质量均为m ,A 、B 之间的动摩擦因数为μ,B 与地面之间的动摩擦因数为μ3。
若将水平力作用在A 上,使A 刚好要相对B 滑动,此时A 的加速度为a 1;若将水平力作用在B 上,使B 刚好要相对A 滑动,此时B 的加速度为a 2,则a 1与a 2的比为( )A .1∶1B .2∶3C .1∶3D .3∶2 解析:选C|变加速运动的物块与物块[例3](2017·上海徐汇区模拟)如图甲所示,足够长的木板B静置于光滑水平面上,其上放置小滑块A。
木板B受到随时间t变化的水平拉力F作用时,木板B的加速度a与拉力F关系图像如图乙所示,则小滑块A的质量为()A.4 kg B.3 kg C.2 kg D.1 kg[答案] B[跟进训练]3.(多选)如图甲所示,在光滑水平面上叠放着A、B两物体,现对A施加水平向右的拉力F,通过传感器可测得物体A的加速度a随拉力F变化的关系如图乙所示。
已知重力加速度为g=10 m/s2,由图线可知()A.物体A的质量m A=2 kgB.物体A的质量m A=6 kgC.物体A、B间的动摩擦因数μ=0.2D.物体A、B间的动摩擦因数μ=0.6解析:选BC1.(2017·名校大联考)如图所示,两个等大的水平力F分别作用在物体B、C上,物体A、B、C都处于静止状态。
各接触面与水平地面平行,物体A、C间的摩擦力大小为f1,物体B、C间的摩擦力大小为f2,物体C与地面间的摩擦力大小为f3,则()A.f1=0,f2=0,f3=0 B.f1=F,f2=0,f3=0C.f1=0,f2=F,f3=0 D.f1=0,f2=F,f3=F解析:选C2.(2017·上海十三校联考)如图,质量m A>m B的两个物体A、B叠放在一起,在竖直向上的力F作用下沿竖直墙面向上匀速运动。
现撤掉F,则物体A、B在沿粗糙墙面运动的过程中,物体B的受力示意图是()解析:选A3.如图所示,两个等大、反向的水平力F分别作用在物体A和B上,A、B两物体均处于静止状态。
若各接触面与水平地面平行,则A、B两物体的受力个数分别为()A.3个、4个B.4个、4个C.4个、5个D.4个、6个解析:选C4.如图所示,在水平桌面上叠放着质量相等的A、B两块木板,在木板A上放着质量为m的物块C,木板和物块均处于静止状态。
A、B、C之间以及B与地面之间的动摩擦因数均为μ,设最大静摩擦力与滑动摩擦力大小相等,重力加速度为g,现用水平恒力F向右拉木板A,则以下判断正确的是()A.不管F多大,木板B一定保持静止B.B受到地面的摩擦力大小一定小于FC.A、C之间的摩擦力大小一定等于μmgD.A、B之间的摩擦力大小不可能等于F解析:选A5.一物块静止在粗糙的水平桌面上。
从某时刻开始,物块受到一方向不变的水平拉力作用。
假设物块与桌面间的最大静摩擦力等于滑动摩擦力。
以a表示物块的加速度大小,F表示水平拉力的大小。
能正确描述F与a之间关系的图像是()解析:选C6.如图所示,木板B放在粗糙的水平面上,木块A放在B的上面,A的右端通过一不可伸长的轻绳固定在竖直墙上,用水平恒力F向左拉动B,使其以速度v做匀速运动,此时绳水平且拉力大小为F T,下面说法正确的是()A.绳上拉力F T与水平恒力F大小相等B.木块A受到的是静摩擦力,大小等于F TC.木板B受到一个静摩擦力和一个滑动摩擦力,合力大小等于FD.若木板B以速度2v做匀速运动,则拉力仍为F解析:选D7. (多选)如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。
现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为()A.物块先向左运动,再向右运动B.物块向右运动,速度逐渐增大,直到做匀速运动C.木板向右运动,速度逐渐变小,直到做匀速运动D.木板和物块的速度都逐渐变小,直到为零解析:选BC8.如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2,下列反映a1和a2变化的图线中正确的是()解析:选A9.(2017·海口调研)如图所示,A、B两物块叠放在一起,放在光滑地面上,已知A、B物块的质量分别为M、m,物块接触面间粗糙。
现用水平向右的恒力F1、F2先后分别作用在A、B物块上,物块A、B均不发生相对运动,则F1、F2的最大值之比为()A.1∶1 B.M∶mC.m∶M D.m∶(m+M)解析:选B[B级——冲满分]10.(多选)(2017·郑州模拟)如图所示,质量为m的木块在质量为M的长木板上受到水平向右的拉力F的作用向右滑行,但长木板保持静止不动。
已知木块与长木板之间的动摩擦因数为μ1,长木板与地面之间的动摩擦因数为μ2,下列说法正确的是()A.长木板受到地面的摩擦力的大小一定为μ1mgB.长木板受到地面的摩擦力的大小一定为μ2(m+M)gC.只要拉力F增大到足够大,长木板一定会与地面发生相对滑动D.无论拉力F增加到多大,长木板都不会与地面发生相对滑动解析:选AD11.(多选)(2017·浙江六校联考)如图所示,木板C放在水平地面上,木板B放在C的上面,木板A放在B的上面,A的右端通过轻质弹簧秤固定在竖直的墙壁上,A、B、C质量相等,且各接触面动摩擦因数相同,用大小为F的水平力向左拉动C,使它以速度v匀速运动,三者稳定后弹簧秤的示数为T。
则下列说法正确的是()A.B对A的摩擦力大小为T,方向向左B.A和B保持静止,C匀速运动C.A保持静止,B和C一起匀速运动D.C受到地面的摩擦力大小为F-T解析:选ACD12.(多选)如图所示,用水平力拉着三个物体A、B、C在光滑水平面上一起做匀加速运动。
如果在中间物体B上放一个砝码,使砝码跟三个物体一起运动,且保持拉力大小不变,那么A、B间的拉力T1和B、C 间的拉力T2将会()A.T1变大B.T1变小C.T2变大D.T2变小解析:选AD13.(多选)(2017·衡水调研)如图甲所示,A、B两长方体叠放在一起放在光滑的水平面上,B物体从静止开始受到一个水平变力的作用,该力与时间的关系如图乙所示,运动过程中A、B始终保持相对静止。
则在0~2t0时间内,下列说法正确的是()A .t 0时刻,A 、B 间的静摩擦力最大,加速度最小 B .t 0时刻,A 、B 的速度最大C .0时刻和2t 0时刻,A 、B 间的静摩擦力最大D .2t 0时刻,A 、B 离出发点最远,速度为0 解析:选BCD14. (多选)如图所示,小车的质量为M ,人的质量为m ,人用恒力F 拉绳,若人与小车保持相对静止,且地面为光滑的,又不计滑轮与绳的质量,则小车对人的摩擦力可能是( )A.M -m m +MF ,方向向左 B.m -M m +MF ,方向向右C.m -M m +MF ,方向向左 D.M -m m +M F ,方向向右 解析:选CD解题方法系列讲座(三) 用牛顿定律处理综合应用中的三种常见模型模型一 牛顿运动定律在滑块—典例1 (2015·新课标全国Ⅰ)一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5 cm ,如图(a)所示.t =0时刻开始,小物块与木板一起以共同速度向右运动,直至t =1 s 时木板与墙壁碰撞(碰撞时间极短).碰撞前后木板速度大小不变,方向相反;运动过程中小物块始终未离开木板.已知碰撞后1 s 时间内小物块的v -t 图线如图(b)所示.木板的质量是小物块质量的15倍,重力加速度大小g 取10 m/s 2.求:(1)木板与地面间的动摩擦因数μ1及小物块与木板间的动摩擦因数μ2; (2)木板的最小长度;(3)木板右端离墙壁的最终距离. [[答案] (1)0.1 0.4 (2)6 m (3)6.5 m(1)不清楚滑块一滑板类问题中滑块、滑板的受力情况,求不出各自的加速度. (2)画不好运动草图,找不出位移、速度、时间等物理量间的关系. (3)不清楚每一个过程的末速度是下一个过程的初速度. (4)不清楚物体间发生相对滑动的条件.模型二 牛顿运动定律在传送 带问题中的应用模型概述 物体在传送带上运动的情形统称为传送带模型.因物体与传送带间的动摩擦因数、斜面倾角、传送带速度、传送方向、滑块初速度的大小和方向的不同,传送带问题往往存在多种可能,因此对传送带问题做出准确的动力学过程分析,是解决此类问题的关键.下面介绍两种常见的传送带模型:1.水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端.其中v0>v返回时速度为v,当v0<v返回时速度为v02.倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能先加速后匀速(3)可能一直匀速(4)可能先以a1加速后以a2加速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速典例20止时,已知物体能滑过右端的B点,经过的时间为t0,则下列判断正确的是()A.若传送带逆时针方向运行且保持速率不变,则物体也能滑过B点,且用时为t0B.若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0D.若传送带顺时针方向运行,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t0[答案]AC典例3如图所示,绷紧的传送带,始终以2 m/s的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°.现把质量为10 kg的工件轻轻地放在传送带底端P处,由传送带传送至顶端Q处.已知P、Q之间的距离为4 m,工件与传送带间的动摩擦因数为μ=3)2,取g=10 m/s2.(1)通过计算说明工件在传送带上做什么运动;(2)求工件从P点运动到Q点所用的时间.[答案](1)先匀加速运动0.8 m,然后匀速运动3.2 m(2)2.4 s模型三等时圆模型的应用模型概述1.“等时圆”模型(1)物体沿着位于同一竖直圆上的所有光滑弦由静止下滑,到达圆周最低点时间均相等,且为t=2Rg)(如图甲所示).(2)物体沿着位于同一竖直圆上的所有过顶点的光滑弦由静止下滑,到达圆周低端时间相等为t=2Rg)(如图乙所示).2.巧用“等时圆”模型解题对于涉及竖直面上物体运动时间的比较、计算等问题可考虑用等时圆模型求解.典例4如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点.竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的圆心,已知在同一时刻a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道AM、BM运动到M点;c球由C点自由下落到M点.则()A.a球最先到达M点B.b球最先到达M点C.c球最先到达M点D.b球和c球都可能最先到达M点[答案] C1.如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v=1 m/s的恒定速率运行.旅客把行李无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离为2 m,g取10 m/s2.若乘客把行李放到传送带的同时也以v=1 m/s的恒定速率平行于传送带运动到B处取行李,则()A.乘客与行李同时到达B处B.乘客提前0.5 s到达B处C.行李提前0.5 s到达B处D.若传送带速度足够大,行李最快也要2 s才能到达B处[答案]BD2.如图所示,AB和CD为两条光滑斜槽,它们各自的两个端点均分别位于半径为R和r的两个相切的圆上,且斜槽都通过切点P.设有一重物先后沿两个斜槽,从静止出发,由A滑到B和由C滑到D,所用的时间分别为t1和t2,则t1与t2之比为()A.2∶1B.1∶1C.3∶1 D.1∶3[答案] B3.如图所示,薄板A长L=5 m,其质量M=5 kg,放在水平桌面上,板右端与桌边相齐.在A上距右端x =3 m处放一物体B(可看成质点),其质量m=2 kg.已知A、B间动摩擦因数μ1=0.1,A与桌面间和B与桌面间的动摩擦因数均为μ2=0.2,原来系统静止.现在在板的右端施加一大小一定的水平力F持续作用在A 上直到将A从B下抽出才撤去,且使B最后停于桌的右边缘,求:(1)B运动的时间;(2)力F的大小.[答案](1)3 s(2)26 N押题一牛顿第二定律的应用1.如图所示,倾角为30°的光滑斜面与粗糙的水平面平滑连接.现将一滑块(可视为质点)从斜面上A点由静止释放,最终停在水平面上的C点.已知A点距水平面的高度h=0.8 m,B点到C点的距离L=2.0 m(滑块经过B点时没有能量损失,取g=10 m/s2).求:(1)滑块在运动过程中的最大速度的大小;(2)滑块与水平面间的动摩擦因数μ;(3)滑块从A点释放后,经过时间t=1.0 s时速度的大小.[答案](1)4 m/s(2)0.4(3)3.2 m/s押题二滑块—木板模型问题2.如图所示,可看成质点的小物块放在长木板正中间,已知长木板质量M=4 kg,长度L=2 m,小物块质量M=1 kg,长木板置于光滑水平地面上,两物体皆静止.现在用一大小为F的水平恒力作用于小物块上,发现只有当F超过2.5 N时,才能让两物体间产生相对滑动.设两物体间的最大静摩擦力大小等于滑动摩擦力大小,重力加速度g=10 m/s2,试求:(1)小物块和长木板间的动摩擦因数;(2)若一开始力F就作用在长木板上,且F=12 N,则小物块经过多长时间从长木板上掉下?[答案](1)0.2(2)2 s模块高考预测预测一匀变速直线运动的规律及综合应用1.在操场400 m标准跑道上有相距l=21 m的甲、乙两名同学,如图所示.甲同学以4 m/s的速率绕操场逆时针慢跑.乙同学开始处于静止状态,他加速的最大加速度为1 m/s2,最大速度为5 m/s.乙同学想在最短时间内与甲同学相遇,试通过计算判断乙同学应该顺时针运动还是逆时针运动.(假设乙同学在直道部分加速)[答案]逆时针预测二滑块—木板模型问题分析2.10个同样长度的木块放在水平地面上,每个木块的质量m=0.5 kg、长度L=0.6 m,它们与地面之间的动摩擦因数μ1=0.1,在左方第一个木块上放一质量M=1 kg的小铅块(视为质点),它与木块间的动摩擦因数μ2=0.25.现给铅块一水平向右、大小为5 m/s的初速度v0,使其在木块上滑行.g取10 m/s2,求:(1)开始带动木块运动时铅块的速度;(2)铅块与木块间因摩擦产生的总热量;(3)铅块运动的总时间.[答案](1)1 m/s(2)12.42 J(3)2.1 s预测三力与运动的综合应用3.某电视台闯关竞技节目的第一关是雪滑梯,其结构可以简化为如图所示模型.雪滑梯顶点距地面高h=15 m,滑梯斜面部分长l=25 m,在水平部分距离斜道底端为x0=20 m处有一海绵坑.比赛时参赛运动员乘坐一质量为M的雪轮胎从赛道顶端滑下,在水平雪道上翻离雪轮胎滑向海绵坑,运动员停在距离海绵坑1 m 范围内算过关.已知雪轮胎与雪道间的动摩擦因数μ1=0.3,运动员与雪道间的动摩擦因数μ2=0.8,假设运动员离开雪轮胎的时间不计,运动员落到雪道上时的水平速度不变.g取10 m/s2.求质量为m的运动员(可视为质点)在水平雪道上的什么区域离开雪轮胎才能闯关成功..[答案]运动员应该在距离海绵坑6~7.6 m之间的区域离开雪轮胎。